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The dynamical theory of telephone traffic in connecting networks, ini-
tiated by A. K. Erlang, has long lacked satisfactory ways of making ap-
proximations and deriving inequalities. These would reduce the fantastic
computational burden implicit in the ‘‘statistical equilibrium’ equations
while still controlling accuracy. It is the aim of this paper lo present a
start in such a direction, in the form of inequalities (valid for wide classes
of metworks) for moments, probabilities, and ratios of expectations, among
these last being the loss. The bounds in one series of these inequalities all
depend on the known distribution of the number of calls in progress in a
nonblocking network associated with the network under study. In a second
series of cognate, simpler, bul weaker inequalilies, these bounds depend
on Erlang’s loss function or more generally on the terms of the Poisson
distribution.

1. INTRODUCTION

Determining the grade of service of a telephone connecting network,
as measured, for example, by the probability of blocking, continues to
be a major outstanding problem of telephone traffic theory. Two princi-
pal methods are available for solving this problem. The first, simulation
of a mathematical model of the operating system, has, with the advent
of large high-speed computers, become very much less arduous than it
used to be. The second, calculation of desired probabilities and expecta-
tions from [the] statistical equilibrium equations [of a mathematical
model for network operation], is still hampered by the astronomical
order of the equations, and in spite of its apparent promise, and its
success with trunking problems early in the century, cannot be said to
have reached fruition as far as connecting networks are concerned.

Indeed, it is taking so long for the strictly analytical approach to
develop beyond its trunking and delay applications that in practical
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engineering circles its value is in serious question. The problem is not
so much the lack of a suitable basic theory, for the models provided by
the “statistical equilibrium” approach have been available since the
time of Erlang. The real problem is a lack of approximate methods for
collecting and reducing the information available in these models in a
manageable way to desired quantities without losing track of the accuracy
of the approximations along the way. It is no trick to dream up approxi-
mate ways of calculating loss. But who can meet a challenge to show
theoretically that his approximate method is not off by more than fifty
per cent?

Some basic studies of the combinatorial and probabilistic features
of connecting systems have been undertaken in previous work.! From
these emerged a broad class of Markov stochastic processes suitable as
mathematical descriptions of operating connecting networks. The
statistical equilibrium equations for these models have been solved in
principle with complete rigor, and the probability of blocking defined
and calculated in prineiple. The results obtained were valid for arbitrary
networks, and so were of necessity rather complex. Subsequent effort
has been concentrated on reducing the rigorous results to practice by
finding bounds and inequalities, and by making suitable approximations.

It is the aim of this paper to present, as the first step in such a pro-
gram, a number of inequalities involving such quantities of interest to
the traffic engineer as the probability of blocking, the mean and variance
of the number of calls in progress, and the probability of more than &
calls in progress. These inequalities have several noteworthy features:

(7) They are simple.

(i7) Most of them are consequences of one analytical “basic lemma”.

(i71) The bounds they give are couched in terms of the distribution
of the number of calls in progress in a corresponding nonblocking net-
work of comparable size, or in terms of the Poisson or truncated Poisson
(Erlang) distribution. (These distributions are familiar in traffic theory,
but they have not been exploited systematically to give rigorous bounds
for large classes of connecting networks.)

(#v) They afford ways of directly converting ecombinatorial informa-
tion about network structure into probabilistic information about the
chance of loss, the load carried, the attempt rate, ete.

In casting about for approximations and inequalities in a subject
such as the present one, it is reasonable to collect first those that are
valid for wide classes of connecting networks, and then those that de-
pend on special combinatorial features of certain connecting networks.
Only the first task has been attempted here; a start on the second
appears in a later paper.?
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1I. THE THEORETICAL MODEL AND ITS PRINCIPAL PROPERTIES

Before summarizing results, we describe the assumptions on which
they are based, the notations in which they are couched, and the salient
properties of the theoretical model used to represent network operation.
The results themselves will be given and derived only for the important
case of “one-sided” networks,® for which all inlets are also outlets; it
will be easy to see that analogous results (with similar proofs) are valid
in the “two-sided”, and other, cases.

With S the set of permitted (i.e., physically meaningful) states of
the network » (of T terminals) under study, we recall' that S is par-
tially ordered by inclusion =, where + £ y means that state x can be
obtained from state ¥ by removing zero or more calls. If x is a state,
the notation | = | will denote the number of calls in progress in state x.

The Markov stochastic process x, (taking values on S) studied in
previous work"? is used as a mathematical description of an operating
connecting network subject to random traffic. This process is based on
two simple probabilistic assumptions:

(7) Holding-times of calls are mutually independent variates, each
with the negative exponential distribution of unit mean.

(¢7) If w is an inlet idle in state z, and v # w is any outlet, there is a
(conditional) probability

M+ o(h), A>0

that » attempt a call to v in (1, + k) if 2, = =, as h — 0. All terminals
have the same traffic characteristics.

The choice of unit mean for the holding-times merely means that the
mean holding-time is being used as the unit of time, so that only the
traffic parameter A needs to be specified.

It is assumed that attempted calls to busy terminals are rejected,
and have no effect on the state of the system; similarly, blocked at-
tempts to call an idle terminal are refused, with no change of state.
Successful attempts to place a call are completed instantly with some
choice of route.

To describe how routes are assigned to calls, we introduce a routing
matrizx B = (rs), with the following properties: I'or each z, with 4.
the set of states accessible from x by new calls, let II. be the partition
of A, induced by the equivalence relation of “having the same calls
up”’, or satisfying the same “assignment” of inlets to outlets; then for
each Y e 1l., r;, for y € ¥ is a probability distribution over Y; in all
other cases rr, = 0.

The interpretation of the routing matrix R is this: Any Y e II; repre-
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sents all the ways in which a particular call ¢ not blocked in z (between
an inlet idle in z and an outlet idle in ) could be completed when the
network is in state z; for y € Y, rz, is the chance that if this call ¢ is
attempted, it will be routed through the network so as to take the sys-
tem to state y. That is, we assume that if ¢ is attempted in z, then a
state y is drawn at random from ¥ with probability ., , independently
each time ¢ is attempted in x; the state y so chosen indicates the route ¢
is assigned. The distribution of probability {rz , ¥ € Y} thus indicates
how the calling-rate A due to the eall ¢ is to be spread over the possible
ways of putting up the call ¢. It is apparent that

>~ = = number of calls each of which can
e actually be put up in state x
= s(z), (“successes” in x),

the second equality defining s(-) on S. This account of the method of
routing completes the description of the traffic models to be studied.

The “statistical equilibrium” equations for the stationary proba-
bilities {p: , * ¢ S} have the simple form

[|m!+>\s(z)]p==§ Pyt AN Prus, xeS

veB,
where

A, = set of states accessible from z by placing a new call,
B, = set of states accessible from x by a hangup.

The probability of blocking, or call-congestion, written in the mnemonie
form Pr{bl} is just

Pribl} = &5 —— (1)

where
Bz = number of idle inlet-outlet pairs that are blocked in state x.
o, = number of idle inlet-outlet pairs in state z.

The mean of the number of calls in progress is

m = Elwlpz

zel

and its variance is

=2 (|z| = m)p..

zeS
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It has been shown® that for a “one-sided” network » of T terminals
we have

| —

2m
MN(T —2m)2 — T + 2m + 4¢*° 2)

1 — Pr{bl} =

This formula relates the important parameters of the system, limiting
their possible values to a surface in five dimensions.

I1I. TRAFFIC IN NETWORKS

It is important to equip a reader with intuitive motivation for mathe-
matical procedures and results, and to do this at an early enough stage
in the exposition of work for it to be helpful. With this motivation in
mind we proceed with a discussion of certain traffic theory topics, to
which the ensuing mathematies is most directly relevant.

The best-known and most widely used results in telephone traffic
theory are undoubtedly those deduced in Erlang’s classical model for a
finite trunk group: ¢ trunks, Poisson arrivals at rate a > 0, negative
exponential holding-times, and blocked calls cleared without retrials.
As is familiar, the probability of & ealls in progress in equilibrium in
this model is

P = ¢ '7'1]":07"':'::

the probability of blocking is just E(c,) = p., the load offered is a,
the load carried is m = a(1 — p.), and the load variance is

2

o = m — ap.(c — m).

It is important to note precisely just what is given, and what is caleu-
lated, in this model. The attempt rate and the number of trunks are
given, and all else is calculated from @ and ¢. This is because there is
no ‘““finite-source effect” here, no diminution of the instantaneous calling
rate when many calls are in progress.

In a telephone connecting network model with a finite number of
terminals, however, the finite source effect is inescapable. The attempt
rate (or offered load, if the mean holding time is the unit of time) is
not given a priori, but must itself be determined from the statistical
equilibrium equations. This fact is sometimes overlooked. The same
circumstance applies to the carried loads, whether the total load or
simply the loads on particular parts (e.g., junctors or links, or groups
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thereof) within the networks; all these loads are functions of network
structure and operation (e.g., routing) and are not given a priori. It
is, nevertheless, a common practice to assume that such loads are
known."®

For the reasons cited in the foregoing paragraph, the fact that the
basic relationship (2) obtains between m, Pr{bl}, ¢°, T, and A assumes
additional importance over and above its value as an aid to rough
calculation,

Also, while it is inescapable, the finite source effect may nevertheless
be demonstrably negligible. For example, 7 may be so large and A so
small that the finite source effect is virtually absent and can be neglected:
almost everyone is idle almost all of the time. On the other hand, this
may not happen, and thus it is important to be able to foretell to some
extent when it does. Our analyses provide (among other results) some
upper bounds on how large the finite source effect in a particular model
actually is, and thus are of use in deciding whether or not it can be

ignored.
It is known that there are respects in which either the Poisson dis-
tribution € “(a’/4!), 7 = 0, 1, 2, ---, or sometimes the truncated

Poisson or Erlang distribution
a’
J!
c a:‘

i=o0 7!

j:O:]-J"' » 6

plays a boundary or limiting role for the equilibrium distribution of
the number of calls in progress in various stochastic telephone traffic
models, Examples of this phenomenon abound. In Palm’s “infinite
trunk” model' this equilibrium distribution is exactly the Poisson; in
Erlang’s classical model' for ¢ trunks, Poisson arrivals, and lost calls
cleared, it is exactly the truncated Poisson.

Further, it has been shown® that if the present model is used to de-
scribe the operation of a nonblocking network, then asA » 0and 7' — «
with IAT® = a = constant, the distribution of the number of calls in
progress approaches the Poisson with mean a. Finally, it is suggestive
but perhaps less directly relevant that in the present model the expan-
sion of Pr{| z;| = k} in powers of A has the form

Pr{| x| = &} = poQA*/kDw + o(A), A—0

where p; is the probability that no calls are in progress (p, - = nor-
malization constant) and % is a constant depending only on the strue-
ture of the network and on the routing rule R used.’
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All these facts suggest that the relationships of the distribution {p}
of the number of calls in progress to various possible distributions similar
in algebraic character to the truncated Poisson should be explored in
a systematic way, with special efforts to establish rigorous inequalities
for quantities of interest in terms of truncated Poisson distributions.
Such inequalities are obtained in the sequel.

Applications of the inequalities are numerous. A particularly im-
portant one provides a precise form of the following natural approxima-
tion procedure: In most telephone systems, the chance of having many
more calls in progress than the average will be small; hence little error
will be incurred in the calculation of loss if the states with many more
calls in progress than the average are omitted from the sums defining
[ef. (1)] the loss.

1V. SUMMARY AND CONCLUSIONS

Some of the problems, ideas, and observations that motivated the
inequalities to be presented here were considered informally in Section
III. The problem of estimating the extent of the “finite source effect’’,
and the fact that distributions related to the Poisson or Erlang distribu-
tions give rigorous and useful bounds in traffic theory, were both men-
tioned.

In Section V we discuss the distribution of the number of calls in
progress, and remark on the basic inequality

Pr{k ealls in progress} = Pr{no calls in progress}

N T — 2 )

The distribution of the number of calls in progress, it is to be recalled,’
entirely determines the load carried and the load offered in a “one-
sided’” network; thus it also determines the probability of loss, by (2).

Section VI contains two analytical lemmas on which all the ensuing
inequalities are based. The first merely observes that all extrema of a
bilinear funectional on a polyhedron must be achieved at the vertices.
The second lemma is used over and over again in the sequel and for this
reason it is called the ‘basic lemma.” For certain special convex poly-
hedra and bilinear functionals, it pinpoints that extreme point of the
polyhedron at which the functional assumes its maximum. Many
problems of traffic theory lead to polyhedra and functionals of just
these special types, whence their relevance.

A network », together with a routing rule R for », is called a system.
There is a natural map u which takes a system (»,R) into the distribu-
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tion of the number of calls in progress induced by (v,£) (for a stochastic
process z, describing the operation of » under R and under the traffic
assumptions of Section II). Section V is devoted to proving a basic
preliminary result to the effect that if » carries at most w calls then for
any R the induced distribution of the number of calls in progress be-
longs (if normalized so that Pr{z, = 0} = 1) to a special convex set of
(w 4+ 1) dimensions, describable in terms of w, A, and T, and closely
related to the factors

k k—1 ;
bk=)\_H(T—2J): k=1a"'|w: (4)
k! =6 2

appearing in (3) and in the theory of traffic in nonblocking networks.

All the preceding preliminary results are combined in Section VIII
to prove a principal inequality for ratios of expectations: For nonde-
creasing nonnegative f(-) and positive noninecreasing g (- ),

L miga) RO
P Em D) " g o

where by, are as in (4), and the maximum is over » and R appropriate
to » such that » has T terminals and carries at most w calls. In Section
IX we make direct applications of this result to the mean load carried
and to the attempt rate.

The extent of the finite source effect is estimated in Section X in
terms of the quantities b, of (4), or, more roughly, in terms of the Erlang
loss function E(c,a), with @ = 3AT". Section XI next considers the
problem of estimating the equilibrium chance that more than & calls
are in progress; again, this is done in terms of the b, , and also by means
of Erlang’s function, using the basic lemma. Estimates of this proba-
bility have important applications to studying the error incurred in
omitting states with more than k calls in progress in the sums in (1),
defining loss.

It is natural to expect that in most telephone systems the probability
that an immoderately large number (about twice the average number)
of calls be in progress is small. This expectation suggests omitting
states with more than k calls in progress from the sums defining loss,
for some suitable %, as an approximation. The next two sections, XII
and XIII, are concerned with the magnitude and the sign, respectively,
of the error in this approximation. Two of the results are simple enough
to paraphrase: Theorem 5: In virtually all cases of practical interest, if
Pr{| 2, | > k} = [p/(1 + p)], then omitting states with more than k
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calls in progress in caleulating Pr{bl} [by (1)] will not result in an error
of more than 100p per cent. Theorem 6: If Pr{|z,| > k} = ¢, then
omitting states... [etc., as above] will not result in an absolute error
of more than e.

Because the loss, Pr{bl} , is a bilinear (or linear fractional) functional
of the state probabilities, determining the sign of the error incurred in
the approximation under discussion is usually not simple. This sign de-
pends (Theorems 7, 8, 9) on whether or not the fraction of hangups made
with more than & + 1 calls in progress exceeds the fraction of attempts
made with more than k calls in progress. In particular, if the fraction of
altempts made with at most & calls in progress is not more than a certain
expression (15) involving & and Erlang’s loss function the approxima-
tion is an underestimate; whereas if the fraction of hangups made with
at most k& 4+ 1 calls in progress exceeds another similar expression (16),
then the approximation overestimates loss.

Other approximations are considered in Section XIV. A natural one
is omission of states with more than k calls in progress in (2) for loss
in terms of the mean and variance of the load. The basie lemma implies
that this approximation is always an upper bound.

The final section, XV, exhibits a simple upper bound on the loss in
terms of a bound on the number of blocked idle terminal-pairs in a state
with k& calls up, i.e., 2 bound of the form

Be = fiz1 f(+) increasing. (5)

This result, to be developed in a later paper,” provides a reasonably
manageable way of converting combinatorial information about net-
work structure directly into probabilistic inequalities about loss. The
search for bounds of the form (5) for various classes and kinds of net-
work is now one of the next most important tasks of congestion theory.
Some of the conclusions to be drawn from the present work are set
down in the following list; many others will occur to those skilled in the
art.

(7) The terms b, given by (4), of the distribution of the number
of calls in progress in nonblocking networks can be used to give
inequalities for the mean load carried, the attempt rate, the loss,
and other quantities of interest arising in the study of traffic in
blocking networks.

(77) Terms of the Poisson or Erlang distribution, long used in trunk-
ing theory and in certain limiting cases of no congestion, can be
used to give inequalities similar to, but always weaker and sim-
pler than, those of (7), for the same quantities of interest.

(77i) The inequalities of (¢) become those of (i7) in the “infinite
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source” limit A — 0, T — «, 2AT* = @ = constant, with A the
calling rate per pair of idle lines, and T the total number of lines.
(This limit is interesting and relevant to practical matters.)

Of the networks with 7' terminals, the nonblocking ones carry
the most load and have the smallest attempt rate; among those
that can carry at most w calls, the networks which are nonblock-
ing up to w calls in progress, and block completely at w calls in
progress, carry the most load and have the smallest attempt rate.
If a network carries at most w calls, its load per line is at most

A11[]‘ - E(w,a)],

and the equilibrium chance that it have more than & calls in
progress is at most

L 1 _ aw—k ﬂ E(kja)
w! E(w,a)’

where E(-,a) is Erlang’s loss function and a = 3AT™

In almost all cases, omitting states with more than three times
the average number of calls in progress from the sums in (1)
defining loss will result in at most a 50 per cent error in the loss.
Omission, in calculating loss by (1), of all states with more than
k calls in progress will result in an underestimate if &t is low
enough. If (2) is used, this omission always overestimates loss.
If Pr{z: > k} < ¢ the above omission makes an absolute error
of at most e, if formula (1) is used.

Any bound 3, £ fiz, fi, on the number of blocked idle termi-

nal pairs in a state x at once yields the inequality

Pribl} = =0 -
a

When the right-hand side is within an order of magnitude of
the left, this result puts a large premium on combinatorial stud-
ies in networks of the rate at which blocking goes up with number
of calls in progress.

THE DISTRIBUTION OF THE NUMBER OF CALLS IN PROGRESS

The calculation of the call-congestion, or probability of blocking
Pr{bl}, reduces in general to that of the stationary state-probabilities
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{pz,x e S}. In the case of one-sided connecting networks, however, the
basic formula (2) shows that a knowledge of the equilibrium mean and
variance of the number of calls in progress is sufficient to determine
the call-congestion. It is particularly important, then, to study the
distribution of the number of calls in progress very carefully, because:
(a) it contains all the information necessary to calculate congestion;
(b) being a distribution of probability over a finite subset of the integers,
it is a much simpler object than the distribution {pz} over S; (¢) without
doubt, it is much easier to approximate than {p,} itself, and so is much
more likely to be useful. Various properties, inequalities, etc., pertaining
to this distribution are studied in this section.
We use the notation
pe= 2 P
l=|=k

for the probability that & calls are in progress in equilibrium. We know
from Lemma 1 of Ref. 3 that for1 = k S w = max ||,

kpe = N pas (). (6)
|z|=k—1
This formula expresses the fact that in equilibrium the average rate of
entrances into the set {x: |2 | = &} must equal the average rate of
exits from this set.

Unfortunately, (6) does not in general permit an actual calculation
of {pi}, because it depends, on the right, on the actual distribution of
probability over {z: |z | = k — 1}, and not merely on p:—, . However,
let us observe (i) that if it takes more than &k — 1 calls in progress to
block any call at all then

s(ﬂ')=(T_,)2#‘TI), for x| ==k —1,

&

and (77) that in any case

o) < (T—§|.r|)‘

Thus, if n is the minimum number of calls which must be in progress
in order that there by any blocked calls at all, we find that

T —2k+ 2
nli‘,p;, = Rpkf:[( 9 + ), 1

T — 2k 2
)\pkfl( 2+ ), 1

A

k

IIA

n

IIA
IIA
el
A
S

kp
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Iteration of these relations then gives

k k—1 T -
m=po)‘—H(T Y, 1z2kszn
Fias\ 2 -
k k—1 ;
Pképo?:—H(T 2‘7), 1=k = w
’C!j=0 2

The bound on the right of this last inequality has the same form as
the exact formula for p. for a nonblocking network.’ This implies that
for \ fixed the maximum possible value of the ratios

(pe/pa) bk =1,---,w

is achieved by nonblocking networks, and it is achieved by a blocking
network at a particular value of k only if

T — 2k + 2
L s seom=(""5T)
Pi—1 |z|=k—1 =

i.e., only if the conditional expectation of s(-) given that £ — 1 calls
are in progress is the number

(T—2k+2
9 .

Since this is an upper bound for s(-) over all  with |z | = k — 1, this
means that all the probability is concentrated on the nonblocking states,
so that the bound (7) is also achieved for k — 1. (This observation will
be fundamental in the proof of Lemma 3.)

Reasoning from (6) leads to the inequalities

Apra min s(y) = kpr £ Apra max s(y)
ly=k—1 yl=k—1

and thence by iteration to the

Remark:
)\ k— k k—1
— min s(2 = = max s
k! IID lwl=3 () = Pn = :I=Io lv=i (v)-

This result indicates (to a first approximation) how the values as-
sumed by the “success” function s(-) on S affect the distribution of
the number of calls in progress, and through it, the congestion or proba-
bility of blocking. Obviously, the nearer the network is to being non-
blocking, i.e., the nearer s(-) comes to assuming the value
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(=317

for state x, the closer p, will be to its upper bound (7), and the less will
be the congestion.

VI. TWO PRELIMINARY RESULTS

Lemma 1: Let P be a polyhedron in n-dimensional Euclidean space, and let

+ (ax)
F(x) = O T Aar) , -,
@) = o (B
be a bilinear (or linear fractional) function of the n-vector x, such that the

plane ¢; + (b,x) = 0 does not inlersect P. Then the extreme values of F()
on P are assumed al the vertices of P.

-) = inner product

Proof: Let x be a point interior to P. Since the sign of
oF _ ades + (b)) — biler + (a,)]

dvi 2 + (b)

does not depend on 2, we can find another point y e 9P (the boundary of
P) such that F(x) £ F(y). The point y will be on a face P, of P deter-
mined by a linear condition (¢c,x) = « which can be used to eliminate
one of the variables from F(-) to get a new bilinear function Fy(-) of
(n — 1) variables agreeing with F(-) on P, . Except for dimension, the
problem of maximizing F1(-) over P is of exactly the same form as that
maximizing F(-) over P. The result is true for n = 1, and hence for all
n = 1. The argument for minima is dual.

Basic Lemma (Lemma 2): Let A = (Ao, M, -+, M) be a veclor of
(n + 1) positive numbers, and let A be the closed convexr hull of the poinis

Mo, 0, 0, 0, cee, 0
Aﬂs A[, 01 01 T, 0
Ao, A1, Ao, 0, e, 0
>‘0’ Al) ?\21 Tt An .

Let f(-) be nondecreasing and nonnegative, and let g(-) be nonincreas-
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ing and positive, on 0,1, - - - , n}. Then with (-, -) = inner product,

(F2) _ (UGN

e (g) N

Proof: It follows from Lemma 1 that the maximum is assumed at a
vertex. However, as can be verified,

k k41

Z}fihj gfj}\j

i= i=

& =@ ,k =10,1, n —1

VII. BASIC INCLUSION

Let I be the set of inlets, and Q@ that of outlets, of a possible or in-
tended connecting network to be used for making calls from I to €.
By a network » for I and @ we mean a quadruple

v = (G,I,Q,S)

where G is a linear graph indicating network structure, I and £ are
respectively the inlets and outlets of the network, and S is the set of
permitted states.' The letter w is used to stand for the largest possible
number of calls in progress; thus
w = max |z |.
zeS

If »is one-sided, ] = Qand w = [ |1 |]. If » is two-sided, I N @ = #
andw £ min{|7],|Q]}].

By a system for I and € we mean a pair (»,E) with » a network for
I and @ and R a routing rule defined on the states x ¢ § = S(») and
satisfying the conditions of Section II. It follows from the theoretical
assumptions made in Section II that, together with a value of the traffic
parameter A > 0, v and R determine a stochastic process z, taking
values on S with a stationary distribution

{pz = p(nR\), z e S(v)}

determined by the equilibrium condition (cf. Section IT).

We shall assume that I, @, and A are fixed, and shall omit indications
of dependence on these notions or numbers.

Let 8, denote the set of systems for I and Q such that w = n. With

P = pk(V:R) = I;k pz(l’,R)

ze8(v)
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the map u(-, ) is defined on 8, for each value of A > 0 by
JPL, s ")
pi () o PP Bl < p(oR),

ie., its value for (»,R) is the distribution of the number of calls in
progress in the associated stochastic process z,, normalized so that
Do = 1

Lemma 3: Let n = [T, and lel
bo = ].
() T
k' (T —2k)V’

by = E=1,---,n. (8)

Let C be the closed convex hull of the (n + 1)-dimensional points

Cp = (11010; et rO)
cl=(1rbl)0)"'i0)
62=(1rbl,b21"':0)

ea = (1,bi,bay oo s ba).
Then
w(s:) €0,
i.e., C includes the u-image of 8, .

Proof: We show first that each ¢;, 7 = 0, - -+, n is in fact in the image
of 8, under u (- ). Let » be the trivial network containing no crosspoints,
and let By be the trivial rule that says nothing. Then

b I(I’n,Ra)ﬁ’ Co,

and ¢ € u(S,). Now let »., k = 1, --- ,n, be a “one-sided” network
_consisting (i.) of a concentrator taking T terminals to 2k in a non-
blocking manner, and (#7.) of a nonblocking “one-sided” network on
those 2k terminals. In such a network, obviously, a state is nonblocking
if fewer than % calls are in progress; the network blocks up completely
as soon as k calls are in progress. It follows from the arguments for
Theorem 1 of Ref. 6 that for any routing rule R; appropriate to v,

#:(Vth)_’ Ck .
From formula (7) of Section V we know that

Pk(VpR) — B é b
po(v,R)  po
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Hence, to show that p(8,) is contained in C, it suffices to show that if for
some (»,R) €8, and some 1 = k = =n,
(pr/po) = be,  p=pHR)
then forall1 £ 5 = K,
(pi/po) = b;.
Suppose then that pi/pe = bx . Using (6) we find
kpe =\ 3 pus@) = M@ |z =k = 1}

= Pokbk
— 2k
= ‘puk (T 9 + 2) bk—l .
Hence,
(T — 2k + 2)
Pt g 2 .
Po Els(z) | |z| = kb — 1}
But,

max s(y) = (T -2k + 2)

Iy |=k—1 2

so the ratio is = 1. But we know from (7) that py—/pe = bi— . Hence,
equality holds, and by iteration,

IIA

pilpo = b;, 1=j=k

VIII. PRINCIPAL INEQUALITY FOR RATIOS OF EXPECTATIONS

We now combine Lemmas 2 and 3 to obtain a basic inequality for
ratios of expectations. Applications of this result to the quantities of
interest in traffic engineering appear in the following Sections IX
through XIV.

Theorem 1: If f(-) is nmondecreasing and nonnegative, and g(-) 1is

nonincreasing and positive, on {0,1, - - -, n}, then
Bz} DY

ﬂ%mmMm_iﬂm7

=0
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(the expectation being calculated with respect to the stationary probabilities
assoctated with v and R.)

Proof: By Lemma 3, the image of 8, under u(-, -) is contained in the
closed convex hull € of the points ¢o, ¢1, - -+, ¢x . By the basic lemma,
the maximum of the functional

w = X 16y
o ;1 g( i)

for r € C is assumed at r = ¢, .

IX. INEQUALITIES FOR THE MEAN AND THE ATTEMPT RATE

Let » and » be two connecting networks with the same number of
terminals, and the same offered traffic A per idle pair. If » is nonblocking,
it is our intuitive expectation that it will carry at least as great a load
as v, and that (since more lines of » are busy on the average than of
v') the attempt rate for »* will be at least as great as that for ». It is

~being assumed here, of course, that in each case the operation of the
network is being represented by a stochastic process z. of the type de-
scribed in Section II, with

Z kpe/po
m = carried load = ==
L+ 2 p/m
= T — 2k
2 pe/po ( 9 )
ME{a;,} = attempt rate = A k=0 .

1+ 2 p/po
=1

Arguments »R are used in the next three results to indicate de-
pendence on the network » and the routing rule R under discussion.

Theorem 2: Let v be a one-sided network of T terrﬁinals, and let w =
w(r) = max | x|, a = 3\T. Then for any R such that (v,R) €8,

zeS(v)

w

2 ib;
m(yR) £ 1 —— < all — E(wa)l.
1+ Z; b,
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Proof: For the first inequality let f(j) = j and g = 1 in Theorem 1; for
the second, use the basic lemma and b; < a’/jl.
Corollary 1: Let (v,R) and (',R") belong to S, for some inleger w, with

both v and v one-sided. If v is nonblocking until w calls are in progress,
then with a = IAT"

2 jb;
m(»,R) € m(\R') = L_IT— < a[l — E(w,a)l.

1+ 2b

=1

The following properties of the Erlang loss function

c

a
|
E(ca) = == -
>4
3=0 j'
are used:
c i

FIN = Eea)),

c

a

F 0 gl — E(e)] — aEE(c,a)[ -1+ E(c,a):|+ a’[l — E(c,a)l,
(a + a>)[1 — E(c,a)] — acE(ca).

Theorem 3: Let v be a one-sided network of T terminals. Then for w =
w(v), a = I\T*, and any R such that (v,R) € 8w,

(5, 2032

Efayz e 2 = - ==
1+ ZL b;
£

a’
il

w
=0

~

Proof: The first inequality follows from taking f = 1 and ¢g(j) = a,
in Theorem 1; the second, from the basic lemma. The last term on the
right is expressible in terms of Erlang’s loss function as

(g) — a(2T — 3 + 20)[1 — E(wa)] — 20w0B(w,a).
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X. APPLICATIONS TO ESTIMATING THE ‘‘FINITE-SOURCE EFFECT”

It is reasonable to expect that in a telephone system with a large
number 7' of terminals, each one contributing only a small amount of
traffic, the “finite-source effect” will be small. Since the finite-source
effect is a diminution of the instantaneous calling rate due to busy
terminals, it is properly measured by the fraction of busy terminals,
i.e., in our model, the quantity

g = 2m/T = load per customer’s line in erlangs.

When 7T is so large and A so small that ¢ is very small we might with
justifiable confidence replace our finite-source model with an infinite
source model. One way of doing this is to consider a sequence of con-
necting networks which concentrate traffic from more and more termi-
nals into a sub-connecting network of fixed structure. However, we do
not here digress into a detailed consideration of this transition; the basic
idea has been at the heart of applications of the Poisson arrival process
in telephone traffic theory since its beginning. Instead, we obtain an
~ upper hound on ¢ in terms of 7" and A; this bound provides a conserva-
tive estimate of the negligibility of the finite source effect.

Corollary 2: With a = INT", E(c,a) the (first) Erlang loss function, and
bo, b1, * -+, by as in formula (8),

Jb;

M

i
0

< 201~ Bwa)) (0 = maz |z )

<
IIA
3|

M

b;

-~
I
=]

IA
QJM
e
N
—
|

o
2| 4
B
Sa——’

A

Proof: The first inequality follows from Theorem 1, the second from
the basic lemma, and the third from

a
w! e "a"”
Elwa) = W >
H w i= |
a w.
=0 J!

Alternatively, since the finite-source effect is a diminution of the
calling rate due to busy terminals, one can also estimate it in terms of
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the difference between the maximal calling rate R(g ) when no terminals

are busy and the average calling rate

Mt =2 3w (75 %),

=0
This estimate is covered in the

Corollary 8: The average diminution
D= (3) - Mela]

in calling rale due to busy terminals satisfies the inequality
D = 2@T — 3 + 2a)[1 — E(w,a)] + MawE(w,a)
=0(T") as A—0, T— w, a=3iT"
Proof: Theorem 3 and the known properties of E(-,a).

XI. ESTIMATE OF THE CHANCE OF MORE THAN k CALLS IN PROGRESS

The chance Pr{|x,| > k} is a quantity that is useful in estimating
the extent of the finite source effect, and the error incurred in ignoring
states with more than % calls in progress in calculating loss. (See Seec
tion XII.) Upper bounds for it are given in

Theorem 4: If v is one-sided, w = w(v), and a = INT?, then

1w

2 b

Pri|a.| >k} £ T 5—

1+ 2 b
=1
<1 _ Ok E(ka)
= Twl E(wa)

Proof: For the first inequality, choose
i@ =[0
1 g
d

and g(-) = 1 in Theorem 1; the second follows from the basic lemma.

XII. APPROXIMATION THEOREMS FOR THE PROBABILITY OF BLOCKING

In any telephone system that provides adequate service the proba-
bility of a substantially larger than average number of calls in progress
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will be small. Thus, in using the formula for probability of blocking,

2 PB:
Pr{bl} = Z=

- Z Doz ’

zeS

it should be possible to omit states with more than & calls in progress
from the sums, without incurring too much error. It is the purpose of
this section to examine this possibility rigorously. In particular, we wish
to answer the following very important question: If p is a given posi-
tive number, how large must k& be so that the omission of states with
more than & calls in progress, i.e., the approximation

> pB.
Pr{bl} a 1zl=k

results in an error of at most 100p per cent?
In what follows we shall make systematic use of the following ab-
breviations:

r = pas(x) (9)
BEL

s = Ptz (10)
Iz =k

u = pes(x) (11)
lz| >k

v = Prtz .
lz| >k

(The notation b for the probability of blocking, used in Ref. 3, e.g., is
being avoided in favor of Pr{bl}.) It can be seen that

success rate m

r+u=————h =X
s+ v = attempt rate
A
T+ u
1—Pr[bl}—s+u.

Thus, omitting states with more than % calls in progress in calculating
1 — Pr{bl} is equivalent to approximating it by

r/s. (12)



1962 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1965

We note that
v/ (s + v)
is the fraction of attempts made with more than k calls in progress.
Lemma 4: v/(s + v) < Pri|a| > Kk}.
Proof: We have

> pea

v 1z >k

S+!?_ prar"" Zrzax'
lz| =k 1z1 >k

Let @ = max{a,: | ¥ | = k}. Then because a., is antitone on S

v v
s+v= aPr{|zl =kl +0°

Since for p > 0 ¥

d

u
t_t B 0
dtp +t (#+t)2>

we can replace » in the last inequality by its majorant
o Prl| x| > ki,
which proves the lemma,

Also, it is seen that
20z
v— U _ |z|2>k P

s+ov—r—u Y pp.

red

is the fraction of blocked attempts that occur when more than k calls

are in progress.

Theorem &: If, simultaneously, the fraction of attempts that are blocked
with more than k calls in progress is at most p/ (1 + p), and Pr{| x| > k} =
p/ (1 + p), then omitting states with more than k calls in progress when
using (1) for Pr{bl} will not result in an error of more than 100p per cent.

Proof: It suffices to show that

|1'+'u. r
Is+uv 8
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The hypothesis and Lemma 4 imply that

A
s+v - 1+0p
and hence that
v = ps,

v(l—g)é'p(s—?')

(1+p)(r+v)gp(s+v)+’s.‘(s+v).

Since u = v, we have

1+ p) (?‘+u)§(p+:)(s+v)

or

r+u 7 rtu
s+v_.§§p(1 s+v)’

which is one half of the requisite inequality. For the other half, the
hypothesis gives

V=1

<
s—r =P
v—u=p(s—r)
~v=u+p(s—r)
<

pw+ 1—pu+pls—r)
=u4+pls+v—r—u)
so that

@ |
lIA

r—u ( ?‘—l-u)
N
s+ o s+ v

or

V

rtu v (1_r+u)
s+v s p s+v/’
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Since 8 < a,

v — u < o Prff o | > .’c}.

s+v—r—u- s+v—r—u

Hence, the hypotheses of Theorem 5 are satisfied if both

Pri| x| >k} —P—

1+9p
and
. ] < p S+UMT—u= p_ Pr{bl}
PI‘{|MJ>”=1+,p Q1 p+ 1 ara/(s + )
or if both
Pr[|-’t‘:|>k}§1_j,_—i, ]
T—2k—2 ;o)
Pr[b]]é( 2 ) [
s H4v ' J

We now show that the first inequality in (13) is easily met by a choice
of k that depends very simply on p and on the carried load m, and that
with this choice of &, the second inequality holds for virtually all cases
of interest. By Chebyshev’s inequality, the first inequality is satisfied if

k;p_-_;tlm—L

for then

Pr{|r1]>k]§k =<

+
[

+

=

As for the second, we have
S+1J=(-T _22’" + 2%,

0<4/T" £ 1.

T—2k—2\ (T—2k—2 T — 2m
2 - 2 2

s+ v (T—‘)Zm) (T—zzm)Jr%Tz

1A

Thus,

&
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Since m >> 2p, choosing & = m + (m/p) — 1 makes the first factor
greater than unity. The second factor is, with ¢ = 2m/T = line usage
1 1 1
1t T 1
e 1+ I+ ——+o(1)
(T - Zm) q)*
2

(T —2m)* — T + 2m (1—ygq)
as T becomes large. As g assumes values in the representative range 0
to 0.2, the second factor varies between 0.5 and about 0.39, if the o(1)
‘term is ignored. The strongest form of the second inequality in (13) is
then roughly

1+

Pr{bl} = 04,

and is virtually always fulfilled in cases of practical interest. Thus, for
example, to obtain an error of at most 25 per cent, it is sufficient to
consider only states with at most

bm — 1
calls in progress. For a 50 per cent error, only states with at most
am — 1

calls in progress need be considered.

In many cases, especially in those in which very little is known about
the actual value of the probability Pr{bl} of blocking, it may be de-
sirable to assess the effect of neglecting states with more than k calls in
progress on the absolule error rather than the percentage error. This
situation is covered by the following simple result:

Theorem 6: Let ¢ > 0 be any positive real number. If Pr{| x| > k} < ¢,
then omitting states with more than k calls in progress in calculating Pr{bl}
by (1) will not result in an absolule error of more than e.

Proof: 1t is sufficient to establish that

7'-4—14_1‘ <
s+ s/ =°€
By Lemma 4, we have
v S Prilz]| >k} £«
s+ v - -

and hence, using u < »

’
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v 7 r
< - —_
s—i—v_sqi_E s+ v
T+u—f5¢-:.
s+ v -
For the other half of the requisite inequality, we observe that
u r
> en
E+s+v_es
U ro,r
% 4l —= > —
s+ s+s( )z —e
From the hypothesis we have
v
<
s:—I—au=e
s
=z1—
s+v— ¢
r T
=-(1—
s—l—v_s( )
and hence,
r—t—u_fg_e’
s+ v 8

which proves the result.

XIII. THE SIGN OF THE ERROR

In the two preceding theorems we have studied the approximation
1 — (r/s) to Pr{bl} (obtained by omitting from the sums in (1) states
with more than k calls in progress) without considering whether this
approximation will tend to overestimate or underestimate Pr{bl}. This
question is now taken up.

Various intuitive arguments why 1 — (r/s) should lie on one side or
the other of Pr{bl} come readily to mind. The number 8. of blocked idle
inlet-outlet pairs in state z tends first to grow with |z |, but then as
| | becomes large enough it must again decrease to zero, because
8. < a. = number of idle inlet-outlet pairs in state z. However, if the
network cannot carry more than w calls with w < 37T, it is possible
that 8, is actually monotone increasing (or isotone) with respect to the
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partial ordering = of S; since «, is definitely monotone decreasing (or
antitone) on (S,=), one might in this case expect that omitting the
states where 8 is largest and «. is smallest would tend to make the
congestion seem to be less than it actually is.

Similarly, viewing (r/s) as an approximation to

Z PzS(I)
“—"Z-—pT =1 — Pr{bl} (14)

zeS

and noting that s(-) is antitone on (S,=<), one might expect that
omitting the states where s(-) is smallest would tend to make 1 —
Pr{bl} larger than it is.

In fact, neither of the above intuitions is always correct; omission of
states x with more than k calls in progress from the sums in the ratio
(14) defining 1 — Pr{bl} sometimes gives an underestimate, and at
others gives an overestimate. Roughly, if & is large enough, 1 — (r/s)
will be an overestimate of the loss, whereas if it is too small, it will be an
underestimate.

Theorem ?: If the fraction of hangups made with more than k + 1 calls
in progress exceeds the fraction of attempts made with more than k calls in
progress, then omitting states with more than k& calls in progress in the
calculation of Pr{bl} results in an overestimale; in the opposite case, the
omission resulls in an underestimate.

Proof: Tor t € [0,1], let

_r 4+ ul
Ult) = Py

so that U(0) = r/sand U (1) = 1 — Pr{bl}. It can be seen that

2 gpi 2 s(@)ps

P>kl _ lzl>k u

T

Ear-;;: S+U’

ze8S

and that the following inequalities are all equivalent:
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TV = US
r(s+v) +ut(s+0) =str+u)+wwlr+u)
u)z U1)
v u
s+v_rd4u’
Theorem 8: If the fraction s/ (s + v) of atlempts made with at most k calls
in progress is al most

l —_ E(k + l,a) E(w,a) w! ak+[_w
1 — E(wa) E(k + la)k+ 1!

then omitting states with more than k calls in progress in calculating Pr{bl}
results in an underestimate:

Pribl} =2 1 — (r/s).

v

(15)

Proof: It can be verified that
1 — E(k + 1,0,) E(w,a) w! ak+1_w

1 —
1 — E(wa) E(k + lLa)k+ 1!
. (Lj = . - .
2 iw 2 gby o 2 dp N 2 pas(a)
— j=kt+2 ]! > =k+2 > i>k+1 — |z|>k = _1.." .
w ] a.’i = w . - 3 m m
ZJ = Zjbj Z JPi
=0 ! =0 i=0

The first equality follows from known properties of Erlang’s function,
the two inequalities follow from the basic lemma with ¢ = 1 and

fi=[0 isk+1
1 j>k+1,

and the last two equalities follow from (6) and the definition (11) of
u, respectively. Thus the hypothesis gives

v U

s+v>)\—
U 1 m _r+uw_ .
;<Xs+v_8+v_l Prbll,

and the argument now proceeds as in Theorem 7.

Remark:
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E ajbj E a.f 'q‘

s < >k
s+v - &
2 ajb; Zm
=0 =0

Proof: Basic lemma, with A\; = a;b;.
It follows that

Z a;b; Z 0‘1

v 8§ k
e e R 2=
8 v S v
2 b g%
i= =

Theorem 9: If the fraction Au/m of hangups made with k + 1 or fewer
calls in progress is at least

k—w fwl E(wra)

L= Eha)
(g)'_ a(2T — 3 + 20)[1 — E(ka)] — 2akE(ka) (16)
(g) - G(ZT - 3+ 20}){1 —_ E(w’a)] _ QG,wE(,w’a)’

then omitting stales with more than k calls in progress in calculating Pr{bl)
results in an overeslimate:

Pribl} =1 — (r/s).

Proof: 1t can be verified, using the formula, for integers ¢ < w,

; T—zqw
5("2);

o g) — a(2T — 3 + 2a){1 — E(ca)l — 2acE(c,a)
== c— _— )

! E(c,a)

that

w
@
@5 =7 ) Z a;b;

:
T
1
'*.:
~

v
I
1
b
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where the first equality follows from the stated formula, the two in-
equalities follow from the basic lemma, and the last equality from the
definitions of s and ». Hence, the hypothesis implies

ey o

m — s+

u v
r+u- s+’

and the argument again proceeds as in Theorem 7.

v

XIV. OTHER APPROXIMATIONS
Since
w

1—hwu=xﬁ‘ , (17)

one can envisage an approximation

Pr{bl} &~ 1 —

= (18)

obtained by omitting states with more than k& calls in progress from the
sums in (17). The basic lemma implies that this approximation is
always an overesttimate. We have

Theorem 10: For eachk = 1, -+ , w,
k
At lepj | |§ ) s(x)p.
1 — Pr{bl} = i = =& .
ia_ _ > amp:
= iPi |zl <k
Proof:
1 ;ij
1 — Pr{bl} = - =
A
Z Dicj
=0
k
ijJ
> _ =

>/|.-n
=~
-

Z Diaj

=0
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the inequality following from the basic lemma. We now use formula (6):

..7.'.r").1'=A EvaS(y), j=1:"')w'

lul=i—

We note that the bound given in Theorem 10 is exactly the estimate
r/s of (12) with the top term in the numerator sum omitted. This term
is just ™' (k 4+ 1)prs1, and we have shown that

Pribl] — 1 + "
8
< (k + l)pk+1
- As
(k 4+ 1)bipr

k
A E bia;

=0

k
a
| 2
SEa— J.k' —, (witha=5£>
i=g! 2
< ak(k,a)

X (,T) + xak = xa(2T = 2a° + 3a + k)1 — E(k,a)].

The last bound goes to E(k,a) as A — 0, T — o, with 2a = AT".

In this limit, then, if 1 — r/s underestimates Pr{bl} at all, it does so by
at most E (k,a).

Another result of the same character is

Theorem 11: Witha = IAT* and k 4+ 2 < w,

r k42 Ek+ 2a)
Privy = 1=+ =~ IRk + 20)°

Proof:
w k+1
| 2Py 2P
S T =
a;p; a;p;
7=0 =

7
§ + araPryr

the inequality coming from the basic lemma, and the second identity
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from formula (6) and the definitions (10) and (11) of r and s respec-
tively. Writing the last term on the right as

r § _r. ( s dian) )
8 8+ arp1Prl 8 St app1Prt

we find, since /s < 1,

r Qg 1Pk41
1 — Pribl] — <= — 55—
E a;pj

j=0

The basic lemma gives, using jb; = Aajibja,

Qp1Prtt o Qb _ (k + 2)bese

k+1 = ktl =
g a;p; ; C!jbj Z:;JbJ
ak+2
T +2) k+2 Ek+2a)
< =
=(Ic+2),§'aj a 1—E(k+2a)
=Nl

Theorem 12: Let K be a sel of integers j all satisfying j > ha;{1 — Pr{bl}].

Then omission of all the states in U L; in the caleulation of Pr{bl} as
jeK

defined by (2) results in an overestimate.

Proof: Let £ = (&, -+, £w) be a (w + 1) dimensional vector variable

taking values in the positive orthant, and consider the function V(£)

defined by

I3,

1 =
IY(E) = X le .
_Z ajt;
=0
It is apparent that if £ = (po, --+, po) = p = distribution of the

number of calls in progress, then
V(p) = 1 — Pr{bl}.
Now,
WV Lj— V()
A Zw: aif;

=0
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Hence, V(&) < V(p) and j € K imply

av
9%, > 0.
Consider a path of integration T along which
tgi=pi JeK

and which runs from the point £, with coordinates

0, for jeK
pi for je¢K

to the point §¢ = p in such a way that d¢;/ds > 0 for j ¢ K along T.
V (&) is the approximation to 1 — Pr{bl} resulting from omitting from
(17) states having j calls in progress for j e K.

It is apparent that there is a segment of T' in the neighborhood of
p on which V() = V(p). Since V(-) is continuous the set
A = {£:V(E) £ V(p)}is closed. If T first intersects 04 at some point
g # p we have

p ‘A

which is impossible since the integral does not vanish. Thus
Vi) = Vip).
Tt is easy to see that the condition j > Aa,[1 — Pr{bl}] in Theorem 12
oceurs for relatively low values of j. For it is enough that
. _AT? : m
1 — Pribl}] =
J>— 1 ribl}] A= gF =TI = ¢) + 4T’

and thus it suffices that

. m
> .
RGN e Ry S g

The second term in the denominator is negligible for all but uninterest-
ingly small values of T, so roughly j can be any integer larger than

m

(1—¢)?
With ¢ = 0.1 erlang, a representative value, the condition is approxi-
mately 7 > 1.22m.
The method used in Theorem 12 also proves
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Theorem 13: Let X be a set of states such that x ¢ X implies
s(z) > 1 — Pr{bi}.
Oz

Then the approximalion

> s(z)p.
Pribl} ~1 — 22X

E Cz Pz

reS—X

18 an overestimate.

XV. INEQUALITY FOR PROBABILITY OF BLOCKING

Last, yet we hope not least, we give a basic inequality for the proba-
bility of blocking itself. The result to be given clearly shows how com-
binatorial knowledge about the connecting network of interest (in this
case information about how fast the number of blocked pairs goes up
with the number of calls in progress) can be used to give an upper bound
on the loss.

Theorem 14: Let 8z = fz for nondecreasing f(-). Then

Pribl} = =2

Proof:
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with @ = IAT". The first inequality follows from the hypothesis and
the assumed one- or two-sided nature of the network; the ensuing two
inequalities follow from the basic lemma.

The foregoing theorem makes it plain that much is to be learned about
congestion in a connecting network from a study of the rate at which
the special function {8, , x € 8} changes with | 2 |. The search for bounds
of the form

Bz = fizi s velS

(with f; inereasing) for various kinds or classes of connecting networks
‘now becomes one of the next most important problems in the endeavor
to bring, by purely analytical methods, A. K. Erlang’s dynamical
theory of telephone traffic to belated but final fruition. This problem is
beyond the scope of this paper; some elementary phases of it are con-
sidered in a later paper.’
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