Statistical Treatment of Light-Ray
Propagation in Beam-Waveguides

By D. MARCUSE
(Manuseript received July 15, 1965)

1t is well known that uncorrelated, transverse displacements of the lenses
of a beam-waveguide cause the light beam to deviate from its axis and that
the tolerance requirements on the accuracy of the transverse lens positions
are very stringent.

This paper extends the statistics of beam waveguides to include correla-
tions between displacements of different lenses and studies the effects of a
succession of uncorrelated bends.

It can be concluded from this work that the rms deviation of the light beam
18 proportional to the square root of the length of the waveguide if the corre-
lation between lens displacements extends only over a limited range.

The amplitude of the Fourier component of the waveguide axis whose
pertod equals the oscillation period of the ray has to be less than 0.2 micron
if the deviation of a light beam passing through 10,000 lenses of a confocal
waveguide s to be kept less than 2 mm. This requirement means that the
average radius of curvature of a waveguide composed of independent circular
sections of an average length of 20 m with lenses spaced 1 m apart has to be
more than 10 km. The comparison between two model guides, one composed
of circular section and the other of sections shaped like sin® Bz, indicates
that the beam deflection depends only on the average radius of curvature and
average length of the sections but not on their particular shape.

I. INTRODUCTION

Hirano, Fukatsu and Rowe' have studied the behavior of a light beam
in a beam-waveguide whose lenses are randomly displaced from a per-
fectly straight line. The first two authors considered also a waveguide
with sinusoidal axis displacements. The behavior of light beams in bent
lens-waveguides was studied in Ref. 2. These two papers represent two
extreme cases of completely uncorrelated departures of the waveguide
axis from perfect straightness on the one hand and perfectly correlated
departures from a straight line on the other hand.
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This paper describes the statistics of a light ray by introducing a cor-
relation function connecting different points on the waveguide axis.”

We show how the ray position at the nth lens depends on one Fourier
component of the curvature function of the waveguide axis, while the
rms value of the beam displacement depends on one frequency com-
ponent of the “power spectrum” of the curvature function.

The dependence of the ray position on the Fourier component of the
curvature function of the waveguide axis is analogous to the mode con-
version loss of multimode waveguides.?

The description of the beam deflection in terms of the correlation
function of the guide axis is used to draw some general conclusions. It is
found that the rms value of the light beam deflection depends on the
square root of the number of lenses in the guide provided that the cor-
relation length is much less than the length of the guide. This fact can
be used to deduce that the contributions of different, uncorrelated sec-
tions of the waveguide to the mean square of the beam deflection simply
add up, so that this value can be computed by computing the average
value of the beam deflection of one section only.

It is pointed out that apparently plausible models for the correlation
function can lead to widely varying results. For this reason no attempt
was made to describe the statistics of the waveguide in terms of the
correlation function model.

The results of this paper can be applied to alternating gradient focus-
ing systems since it is known* that the beam deviation in such systems
is of the same order of magnitude as that of a system of positive lenses.

The results of this paper are of particular significance for beam wave-
guides composed of gas lenses since such a waveguide would use closely
spaced lenses so that the number of lenses for a given length of waveguide
would be very large. The tolerance requirements are proportional to the
square root of the number of lenses in the guide so that the tolerances of
waveguides with closely spaced gas lenses become more stringent than
those of waveguides using lenses spaced far apart.

II. RELATION TO FOURIER BERIES

We use the ray description of Ref. 2 to study the statistical behavior
of a light ray in a lens-waveguide.

The position of the light ray is given by its distance r, from the lens
centers. The inhomogeneous difference equation®

Tay2 — (2 - ")'rn+1 + Tn = Yn+2 (1)
with
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(L = lens spacing, f = focal length) connects the ray positions at three
successive lenses. The quantity Y, ;s at the right hand side of (1) is the
distance from the center of the (n + 2)th lens to the point at which the
straight line through the centers of the nth and (n + 1)th lens intersects
the (n + 2)th lens (Fig. 1). If the lens spacing L becomes infinitesimal,
L — 0, Y/L* assumes the meaning of the inverse radius of curvature R
of the waveguide axis. However, even for finite lens spacing one can
define a radius of curvature R, ,, by the relation® (Fig. 1)
L2
Rap
so that Y, is a measure of the curvature of the waveguide axis.
The waveguide axis can also be described by the distance S, of the
nth lens from an arbitrary straight line.! Between S, and ¥, exists the
following approximate relationship which can easily be derived from
Fig. 1

(3)

I'"+2 =

Yije= —Sujpe + 2800 — Sa. (4)
The solution of (1) can be given in the form*
fao= 1 4ot (5)
with the solution of the homogeneous equation
" = 7o cos nf + E—_M sin nf (5a)
sin 6
and the definition
cosfl =1 — %« 6)

and the solution of the inhomogeneous equation

; 1 &, .
. —— —_ = .
Tn e’ qul Y,p sin (n — »)8, n=2 (7

We will calculate the ray’s departure r, from the axis at the end of
the waveguide assuming that the ray entered the waveguide on-axis,
To=nrn = 0.

Equation (7) can be rewritten

n—1 n—l1
Te = s%—ﬂ {sin nd Y., Y,coswd — cosnf p Y, sin vﬂ}. (8)
v=1

v=]1
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Fig. 1 — Definition of various parameters of the beam-waveguide.

The sums in (8) are Fourier coefficients as can be shown in the following
way. The N-discrete points ¥, can be represented by a Fourier series

(N—1) /2

You= 2 ayexpli(2r/N)w] »v=12,---,N. (9)

p=—(N—1)/2

Equation (9) is a system of N simultaneous equations for N unknown
quantities @, . The Fourier coefficients a, can be caleulated by multi-
plying (9) by exp [—%(2r/N)ov] and summing over » from 1 to N

a;, = %I i Y, exp [—i(2x/N)ov]. (10)

v=1

The representation (9) works if N is an odd integer. Separating a, into
its real and imaginary part

a, = ac + 18, (11)
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we obtain

a, = % > Y, cos (20/N)ov (12a)
y=1
1 N

B = =y Zl Y41 sin (27/N)ov. (12b)

If we choose ¢ such 6 = 2ra/N (this may be possible only approximately
but 2o /N will approximate 8 closely if ¥ is large) and denote the cor-
responding values of « and 8 by a, and B, we get from (8)

_n—1

Tn . {ap sin nf + By cos nd}. (13)
sin 6

This is an oscillatory function with an amplitude 7., which is a slowly
varying function of n,

— 1 —
Tmax = n A% a62 + 632 = n- 91 |aﬂ !' (14)

sin 6 sin

The maximum deviation of the ray in the vicinity of the nth lens is
determined by the magnitude of the Fourier coefficient of ¥,,; belonging
to the frequency 6. The amplitude | ay | has to be extremely small to
keep rmax Within reasonable limits.

If 8, is strictly a sinusoidal function

S, = A sin 6v (15)
we obtain with the help of (4)
Y,=kAsin® (» — 1) (16)
and from (10) with N > 1
|as| = Y5 «A.
Equation (14) leads to
rawe = A= 1) (17)

Using (3) we can also write
S L'(n — 1)
"X T O Rsin @

where R is the minimum radius of curvature.
If we take x = 2, L = 1 m, n = 10,000 we obtain a waveguide of 10
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km length. Requiring 7max < 2 mm we find that the amplitude 4, the
maximum departure of the waveguide from a straight line, has to be

A = 0.2 micron
or
R = 2500 km.

These numbers show how extremely small the 8-Fourier component has
to be!

If we take ¥, = B sin d» and substitute into (10) with § = (2x/N)e
we get nonvanishing values for | a, | even if ¢ = @ and N — . These
nonvanishing values appear for all ¢ values satisfying the equation

It appears, therefore, as if we obtain Fourier components as for all
harmonics & = 6 + 2rp. This apparent discrepancy is resolved if we
consider the period length Ay = 2xL/# of the oscillation sin (¢/L)vL.
The above equation leads to the solutions for the period length

Lg _ {)\8 ifp=20
L+pv» <L ifps=#0

with Ay = 2xL/6. The period length A, is therefore either equal to A,
the natural period of the ray oscillations, or it is less than L. Since the
lenses are spaced a distance I apart a period of length less than L is
meaningless!

Ao =

III. RANDOM DISPLACEMENTS OF THE GUIDE AXIS

Our considerations so far have been limited to a definite shape of the
waveguide axis. However, they can easily be extended to a statistical
theory. Equation (14) can be used to obtain the rms value of the maxi-
mum beam displacement.

V Tmnx \V <| fIa (18)

The symbol ( ) designates an ensemble average. The quantity ( | ao |*)
is the expected value of the # component of the “power spectrum” of
the waveguide curvature. It is also possible to express A not by means
of the power spectrum but by the correlation functions of ¥, . For this
purpose we write, with the help of (10),

sin 6

darl) = =4 5% W) exp e =), (19)
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It is reasonable to assume that (¥,,Y,.,) depends only on the difference
g — v so that we can write

<Yr+er-|+1> = fu—s (20)
and to assume, furthermore,

Juer = Jrs . (21)

The factor fy is the correlation function of the curvature function of
the waveguide axis.
Equation (19) can be rewritten in the following way:
fN=1)  N—la|

Qo) = po{ 3, 3 f™

a=—f(N—1) t=3|+1
HN=1) N4l—|a]|

+ 2. 2 fuaexpliB(2s — 1)]

=1 t{=|a|+1

+ Z Z faey1 exp [#8(2s + 1)]

—(N—1) N+1—|s]
s=—1 i=|s8|+1 ’

The summation over ¢ can be carried out since the terms under the sum-
mation signs are independent of ¢. Using (21) to simplify our expression
further we obtain

N—1)
{as [y = Alrz {Nfu + 2 (; (N — \)f cos )\9} (22)

so that (18) becomes

n—2 L]
Az_.___""_l{fo+22(1 —ﬁ)_ﬁcos)\ﬂ}. (23)

sin 6 A=1

If f\ decreases with increasing A so that the upper limit in the sum of
(23) becomes immaterial the equation shows that A is proportional to
4/n — 1 and not to n — 1 itself as one might have suspected by looking
at (18). If the waveguide’s curvature contains a sinusoidal component
which persists throughout its length, so that no correlation length less
than n exists, then the sum is proportional to its upper limit » and A
becomes truely proportional to n itself.' Equation (23) expresses the
rms-beam deviation in terms of the correlation function fy of the curva-
ture of the waveguide axis. It is easy to rewrite this equation as an ex-
pression depending on the correlation function of the waveguide axis
displacement itself. The displacement of the nth lens from a straight
line is S, . Defining

(8,8,) = G, = G, (24)
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we get with the help of (4) and (20),
f;\ = GG;\ - 4G‘,\g1 —_ 4GA+1 + Gh—ﬂ + G)H.z . (25)

Substituting (25) into (23), rearranging terms leads to

A= _\_/”_'—1"{(;0 4+ 22 [1 =2/(n—1)]Gyrcosrd
sin @ A=l

2
(n— 1)

= 4
— 4k — 32 D Gy sin )\B:I}
A=l

where we assumed that the correlation length A < n. If we assume that
n >> 1 (26) simplifies

+ [2(1 t— WG — (2 — 06

e EH
A%ﬁK{Go+2EG).cos)\8}. (27)
sin 6 A=1

This approximate equation shows that A is very nearly proportional to
the # component of the Fourier coefficient of the correlation function.

If the lens displacements S, are uncorrelated, G\ = 0 for A = 0, we
have

A=2 —"’-(a\/ﬁ, (28)

with
6 = \/é-ﬂ =V (Sn2>‘

Equation (28) differs from Ref. 1 (17) (for large values of n) by a factor
of 4/2. The reason for the oceurrence of this additional factor in our
theory is that our A is the rms value for the amplitude of the oscillatory
beam trajectory while (17), Ref. 1 describes the rms value of all points
of the oscillatory beam trajectory.

Let us assume that the waveguide axis is composed of sections of a
given average length and that the curvature function of one section is
uncorrelated to that of any of the other sections. All sections are assumed
to be of the same type. For example, they may all be circular bends which
differ only in length and radius of curvature. A waveguide of this type
has a finite correlation length and if n, the total number of lenses, is
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large we get from (23)

o

A = An (30)
with

sin 6

A = (_L) {j[, + 2 if; coshﬁ} . (31)
A=t

Adding one more section with m lenses changes n to n + m in (30). The
increase of A” due to the addition of a section with m lenses is given by
A’ = Am so that we get

An+m2 = An2 + Am2 (32)

for a guide with n 4+ m lenses.
Each section of the guide can be thought of as such an additional sec-
tion so that

) M
A.' = Z: Am,z
r=1
with A, * being the contribution of the »th section and M the number of
sections, Introducing the average value A,’, we obtain

A=AV M. (33)

The rms beam deviation of a waveguide composed of sections can be
obtained by calculating the contribution of the rms beam deviation of
each section, computing their rms values and applying (33).

1IV. EXAMPLES

As a first example we consider a waveguide composed of circular sec-
tions which are connected so that the first derivative is continuous. The
departure of the light beam which goes through the center of the first
two lenses of one of the circular ares is given by (7)

sin n%sin (n —1) g
™ = Y (34)

. . 0
sin @ —
111 O S1n 2

with ¥ = Y, = const. If the circular sections have an average number
of m lenses which vary with a Gaussian distribution with variance o, we
get with the help of (33)
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VEM(Y?)

sin @ sin —
2

A= {l—l— cos 0

— 2 cos ; cos (m — }) 8 exp (36°0n’) (35)

]
+ 1 cos (2m — 1)8 exp (—202%2)}

with M eircular sections per waveguide. It was assumed that ¥ and m
are statistically independent.

The validity of (35) was checked by a computer simulated experi-
ment. We constructed 30 different waveguides composed of a series of
circular arcs. The quantities ¥ and m were computed as Gaussian ran-
dom variables with mean value (Y ) = 0 and (m ) = m. Each wave-
guide contained 10,000 lenses. One light ray was traced through each
guide with the use of (1) and the rms value of the values r, with n =
10,000 was computed which, multiplied by /2, should equal the value
A of (35). This experiment was repeated three times with different
values of m. In all experiments we considered the confocal case, x = 2,
cos 8 = 0.

Table I shows how (35) compares to the computer results. The o
values in Table T were chosen for the convenience of the computer
calculations.

The agreement between the theoretical and experimental values is
quite good considering that the rms value was computed from only 30
samples.

We can relate ( Y* ) to an average radius of curvature R since ac-

cording to (3)
(Y% = <R2> RE' (36)

TasLE 1
n = 10,000
o . i (equation (35)) Computer
) V(v V(¥ Experiment
3 0.92 7.9 p_
20 6.1 22.4 21,0
100 30.0 10.0 37
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TasLe 11
m { R
3 39 km
20 11.2 km
100 5.0 km

We may allow A = 0.2 ¢cm at the end of the waveguide of 10 km length
(L = 1m). The permissable values of R, computed from the theoretical
values of Table I, are listed in Table II.

As a second example we consider a guide which is built up of sections
of tapered bends formed according to Fig. 2

S, = A sin® (r/m) (v — 1) y=12---m. (37)

The amplitudes A and the number of lenses m are random variables.
Substituting (37) into (4) and (7) we obtain

. 2T
s —
m

sin @

- 21I' . 27r (38)
sinfn )| cos— — cosf | + | sinf )| cos —n — cosén
) m m
. [/} T . [8 T
2 sin (5 — ;1) sin (2 + ﬁ)

The lens numbered n = m + 1 is the last lens on the bend. According
to (5a) the amplitude of the oscillations is given by

Tmnx2 = ?'Ug + (w) . (39)

gl = —

sin @

We restrict ourselves to the confocal case x = 2, cos § = 0 and set ry =
Tm, 1 = r'ms because the oscillation caused by the bend is taken as the

Fig. 2 — Beam-waveguide composed of sections of tapered bends.
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initial condition of the ray. We obtain from (38) and (39)

(sin' TL) (1 + cos’ %ﬂ') (1 — cosgm)
rmnxz = Az = 1 1 1 1 5 " (470)
2 [sin (— — ——)n’ sin (— + —) 1r:|
4 m 4 m

To compute A we must average rmax over A” and m. We assume that
A and m are uncorrelated and that m follows a Gaussian distribution
with average value m and variance o, . To simplify the averaging =/m
is replaced by =/m and these terms are taken out of the integral. This
procedure is valid only if #/m < 1 so that we may also take sin r/m =
«/m and cos 2r/m = 1. Remembering that M = n/m, we obtain from
(33)

A wz\/ﬂ 1/1 — cosgmexp (— %‘n‘”o'm"")
Viay © 2.(1 1) .(1 1)
m-sin|>— —=)#xsin|-+— )=
4 m 4 m

with » being the total number of lenses of the guide and m the average
number of lenses per section.

The equation (41) is valid if m > 1 and o,,/m < 1. It shows that
A decreases as the number of lenses per bend is increased.

Some numerical results are shown in Table III. The column labeled
“computer result” again contains data calculated by tracing rays through
simulated beam-waveguides. The waveguides were ‘‘constructed” of
arcs according to (37) with A and m being Gaussian random variables.
Thirty random waveguides were constructed for each value of m and
the rms values of the ray position r, with n = 10,000 was computed from
these 30 samples.

The computer results agree with the theoretical values to the order
of magnitude. The agreement in this second example is poorer than that
of Table I. However, the 30 values of ri 00 of this example scatter more
widely than those of the first example. Omitting the largest of the 30
values for m = 50 changes A by a factor of 0.65 which shows that the
statistics of these 30 samples is not very reliable. By comparison omitting
the largest value of the sample with m = 20 of the first example changes
A only by a factor of 0.95.

The results of Table III can be used to get an impression of the line
tolerances required for a nominally straight waveguide. Let us assume
that the 10,000 lenses of our model guide are spaced 1 m apart (L = 1m)

(41)
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TasLE III
n = 10,000
A
m | om ﬁ equation (41) Computer Result
10 2.8 7.70 12.6
50 15 1.12 10! 8.8 1071
250 | 77 2.00 103 2.7 1073

which results in a guide 10 km long. If this is a guide built of gas lenses
of 0.65 ¢cm diameter (about } in.) we might allow A = 0.2 ¢cm to be
reasonably sure that the light beam will get through the pipe. Fixing A
allows us to caleulate the rms value of the amplitudes 4/{ A?) of the
deviation from straightness and the average radius of curvature of the
guide. An average radius of curvature R at the peak of the arc of (37)
is given by

1__<’1_‘\~2#«/a?>
R \|R|/ ™

m?[?

 2A Vm Sin(l—l)WSin(l+l)w.
m m

VoLl 4 4

The second half of this equation was obtained by substituting (41) for
( A*)! assuming that }=’¢,," 3> 1. Table IV shows the values of the rms
amplitudes and the average permissable radius of curvature which were
computed from the theoretical values of Table III. The tolerance re-
quirements are rather stringent as Table IV shows. For short bends,
departures from straightness of only a fraction of a millimeter can be
allowed while this tolerance moves up into the meter range as the aver-
age length of the bend exceeds hundreds of meters. In case of uncor-
related random wiggles our present example of A = 2 mm and n =
10,000 lenses leads to an rms value for the position tolerances of § =
0.01 mm according to (28). This is a very real tolerance requirement

(42)

TaBLE IV
- V) R
10 m 2.6 107 em 19.4 km
50 m 1.78 em 7.1 km

250 m 1.00 10¢° em 3.16 km
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since there will always be random lens displacements superimposed on
longer bends so that the uncorrelated, random component of lens
displacements has to be kept below 10 microns.

A comparison of Table IT with Table IV shows that the average radii
of curvature permissable for our two examples are nearly the same. This
is true even though the waveguides of the two examples are of very
different construction. This may support the belief that the average
radius of curvature and the length of the sections determine the deflec-
tion of the ray regardless of how the waveguide is shaped in detail. The
agreement between the values of Table IT and IV is improved if one
corrects for the different length of the sections.

It may be in order to add a remark concerning models for the correla-
tion function Gy . Since the correlation has to be of finite length one
might be tempted to try a correlation function of the form®

A
amom(-B) @
with ¢ being the number of lenses within the correlation distance. The
correlation number ¢ must be of the same order of magnitude as the
average number m of lenses per section of our model waveguide. Sub-
stituting (43) into (27) we obtain

A=\/ﬁ"\/§u

sin @

(44)

exp (—1/q) — cos
.,‘/1 — 2exp (=1/0) 7574y — 2 exp (—1/q) cos 6

orif 1/¢g <1
\/ir_?,-'c Gy
= — —_— 4
A sin ‘/ g(l — cos 8) (45)

This correlation function is obviously a poor model for a waveguide
with random bends sinee A of (45) decreases with g only like ¢ while
A of (41) decreases like m_2._F01' g = 250 we obtain from (45), setting
VG, ~ V(A% (Gy = 3+/{A?) for the arcs of (37)),
A
V{42
which is three orders of magnitude larger than corresponding values of

Table III.
Another possible choice for a correlation function may be

G = Goexp (—N'/q’). (46)

= 6.4
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Using the identity”
2 exp (—N'/g) cos N0 = /7w q D_ exp (=m'¢[(6/2x) — »]) (47)
A=— p=—0

we obtain from (27)

A w*x\/ﬁ - 2 2 2
6= 5o Vg {exp | =='¢1(6/27) — 1]} (48)

+ exp (—1¢'0") + exp {—'¢’[(0/2x) + 1F'}}}
where all but three terms of the sum on the right hand side of (47) are
neglected which is justified if ¢ > 1.

The maximum rms beam deviation of (48) decreases with increasing ¢
like

Vg exp (—3¢'0)

that is much faster than (45). These two examples indicate héw criti-
cally A depends on the shape of the correlation function. It appears that
more insight ean be gained by choosing models for the random deviation
of the waveguide curvature rather than by trying to guess at model cor-
relation funetions.

The reason for the critical dependence of A on the shape of the corre-
lation function can be seen from the following argument.

In our second example, (37) we obtain Gy &~ 0.5 ( A*). However the
ratio A/A/(A?) is, for example, in the order of 0.1 according to the
second line of Table I1I. From (27) we obtain, with xk = 2 and n = 10,

A 2 = G
m%?l(ﬁ 1/0.5+2;(A—,§)cos)\8.

If A/A/(A?) is to be 0.1, the sum under the square root sign must be
very nearly equal to —0.25 so that the two terms under the square root
sign cancel to a term of the order of magnitude 107", A very slight varia-
tion of the value of the sum gives rise to a large variation of A.

As a last example we consider a waveguide with M random tilts, If
each tilt is located at a lens, Ref. 2 (31), gives for the beam amplitude
caused by one tilt with angle o

L
Fmax = 2o m (4’9)

so that (33) leads to

A =2(a) 77— VM. (50)
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If n = 10,000, L = 1m, x = 2, and M = 100 we find that
V{a?) £ 2107 radians = 0.0115°

if A £ 2 mm is required.

V. CONCLUSION

Is it more advantageous to space the lenses of a beam-waveguide
closely or farther apart? The answer to this question depends on our
ability to control tolerances. Equation (41) shows that the rms beam
deviation due to random bends decreases rapidly with increasing num-
ber of lenses, while (28) indicates that the rms beam deviation due to
uncorrelated lens displacements increases slowly with increasing lens
number. Only practical experience can tell how to compromise between
these two conflieting requirements.

APPENDIX

Equivalence of Two Representations

The problem of ray propagation in a bent lens-waveguide has been
treated in Ref. 2 and by Hirano and Fukatsu.' The treatments of the
problem in these two papers differ in the way the ray is described. In
Ref. 2 the ray position 7, is measured from the center of the lenses and
the position of the lenses with respect to each other is described by a
quantity ¥, (Fig. 1). In Ref. 1, a straight reference line is used to
determine the position p, of the ray as well as the lens displacements S, .
The ray position 7, at the nth lens in the representation of Ref. 2 is
given by

1 = .
™= ; Y,usin (n — »)8 n = 2 (51)
The values of r, at n = 0andn = larer, = r, = 0.

In the representation of Ref. 1 the solution of the inhomogeneous

difference equation reads

n—1
=X i — >
=5 ’=Zl S, sin (n — »)8 n=2 (52)

with po= pp = 0.
With the help of Fig. 1 it is easy to see that approximately



STATISTICS OF LIGHT-RAY PROPAGATION 2081

Sn+2 = 2»Sn+l - Sn - },vﬂ+2 \/ 1 - (S'!-H —_— Su)Z/IJZ, (53)

or if
Sn+l - Sn
I «1
}7n+2 = 2Sn+1 - Sn+2 - Sn N (53‘&)
and
Pn = Tn + lS'n . (54:)

The substitution of (53a) and (54) inte (51) leads to

1 & .
om = S. + G > (28, — 8o — S,) sin (n — »)8
b v=1

[

S, + —1 {S; sin (n — 1)8 — S, sinf — Sgsin (n — 1)
sin

n—

1
+ 2. 8[2sin (n —»)0 —sin (n — v + 1)8 —sin (n —» — 1)6]}
=1

which can be simplified to
pn = (8o — 8i) cos nd — (S — 81) cos 4 sin nd

= . (55)
+ e y;l S, sin (n — »)6.

The first two terms with Sy — S; are solutions of the homogeneous dif-
ference equation and appear here because 7, = 7, = 0 does not coinecide
with pp = p = 0if Sy and S are unequal to zero.

Since the first two terms can always be removed by adding a suitable
solution of the homogeneous equation the equivalence of (51) and (52)
has been shown.
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