Spectra for a Class of Asynchronous
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The spectral density of a frequency modulated carrier is evaluated for the
case when the modulating baseband wave is a “‘quantized’” random facsimile
signal. By this nonsynchronous form of modulation we mean holding one
of the allowed set of transmitted frequencies for a finite, but randomly dis-
tribuled, time before switching to another frequency while maintaining phase
conttnuity. Emphasis 1s given to the Poisson case of erponentially dis-
tributed intervals belween transitions, and some typical curves for discrele
level and continuous level situations are included.

I. INTRODUCTION

In facsimile data transmission systems, printed or pictorial informa-
tion is converted into electrical signals by optical means. At any instant
the signal corresponds to a definite grey level of the facsimile copy. The
resulting electrical wave is an analog signal and can be transmitted as
such, In some applications only black-and-white images need be trans-
mitted and therefore the electrical signal may be quantized into only
two levels, If more detail is desired, multilevel quantization can be
applied.

It is possible to model such a quantized signal by considering a random
sequence of points on the time (f) axis. At each point a transition may
occur in the signal. The value of the signal between transitions is a
constant, taking on one of N different values. For the black-and-white
case, there are only two permissible values, either 4-1 or —1. The quan-
tized facsimile signal is statistically characterized by specifying the
distribution of the points on the ¢ axis and the distribution of the ampli-
tudes between transitions.

In this paper we concern ourselves with the spectral density of a car-
rier wave whose frequency is modulated by quantized facsimile signals.
The spectral density is a useful item in the statistical description of such
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a signal in that it furnishes an estimate of bandwidth requirements. It
often is also used to evaluate mutual interference between channels.

So far as is known, the amplitude modulation case is the only one
hitherto covered in literature. However, we were prompted to examine
the FM case as FM is currently used in facsimile data sets. From a
practical point of view the most interesting case is that in which the
phase is continuous at the transitions, as may be obtained from keying a
single oscillator. This case differs from previous results' in that the
transitions occur at random times.

The present paper gives a complete solution for the spectrum for an
arbitrary distribution of the interval between transitions as well as
arbitrary distribution of amplitudes. We treat an important special case
of Poisson transitions, for which we present our results graphically in
terms of the important parameters of the process.

An interesting feature is the rapidity with which the spectral density
falls off with frequency measured from midband as compared with the
AM case. The extent to which spectral peaking occurs at the average
signaling frequency for some range of parameters is another curious
feature. As would be expected from the asynchronous nature of the
modulation there can be no steady sine-wave components in the process
and therefore there are no discrete components in the spectrum.

11, ANALYSIS

The baseband facsimile signal is constructed in the following form.
Pick a finite set {t} at random and arrange the points such that

O=tu<t1<t2<tN=T (1)
Define a set of functions

Lt St St
10, elsewhere

ga, (t — a) (2)

where
An = 1ﬂ+1 - tﬂ .

In terms of (1) and (2), construct the baseband signal z () as the fol-
lowing time series

n=N—1
) = 2 st~ ba) 3)
e
where a = (ao, @1, -+, Gy—1) is an additional arbitrary set of iden-

tically distributed random variables.
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The instantaneous phase ¢ (f) is represented as follows

1A

t
WO =wttw [ o) +o=wD)+e O0SIST (4)
0
where ¢ is uniformly distributed on [0,27], giving the value of the phase
at { = 0. The instantaneous frequency is dy(t)/dt = w. + wax (1),
where w, is the angular carrier frequeney and w; is the minimum angular
frequency deviation.
The I'M wave whose spectrum we wish to examine has the following
representation
S(t) = A cos [y (1)]
(A/2) exp {ip ()} + (4/2) exp { =g (1)},

where A is a real amplitude. The spectral density of S(t), G (w), defines
the average power in a unit bandwidth. Formally, it may be obtained as

Glw) = lim @/T) (| ST) ), o> 0,
T—e

Il

(5)

where S(w,T') is the Fourier transform of S(¢) given by
T
S(e,T) = [ S(t) exp (—iat) dt 7)
Yo

and the symbol (-} denotes the ensemble average over all the random
variables in S(w,T).
One may write S(w,T') as

S(w,T) = (A/2)e“ Wy (w,T) + (A/2)e *W(w,T) (8)

where W, and W, are the Fourier transforms of exp [#¥,(¢)] and exp

[—iy1 (1)] respectively.
The ensemble average of | S(w,T') |* over ¢ is readily carried out to
obtain

(18@T) e = (A%4) [ Wilw,T) [ + (A4%/4) | Walw,T) . (9)
We proceed to evaluate (| Wy (w,T) |2>:

Wiw,T) = A exp i{¢1(t) — wtldt
(10)

k=N—1

= 2 frf exp 7{¢a(t) — wi}dt.
=0 Y

We observe from (4) that in the interval [t , fx41],
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n=k—1

) = @i D, @l + waa(t — &) + o (11)

n=

Inserting this expression into (10), and using

n=k—

1
tl: = Z:O An;

we find that
kNS n=k a=k—1
Wi, T) = >, — [exp {z' > A,.A,,} — exp {z > ?\,.A,.}] (12)
=0 Ak n=0 n=0
where

A = Wally — w + wg .

Multiplying (12) by its complex conjugate we obtain
kSNZ:_l 1 — exp iMAx

=0 A

| Wilw,T) [F = 2Re[

N—1 k k—1
—|— E 1 (e‘:p{% E huan}"_ BXD{ZZ AHAH} (13)

k,g=0 Aehg n=sg+1 n=g
k>s

n=k—1 n=k
— CeXp {T, Z }\I.Au} - EXP {?’ E )\JLAR}):I ]

n=g41 n=g

where Re(-) denotes the real part.

At this point we must specify in more statistical detail the sets of
random vectors A = (A, As, -+, Ay)and X = (A1, e, -+, Ax). In
our original representation (3), the A,’s are the intervals between transi-
tions. We adopt the reasonable assumption that these intervals are in-
dependent. On the other hand the random variables N, which are re-
lated to the amplitude a, by (12) are not independent if we consider
only observable transitions. Clearly for observable transitions one in-
sists that @, @, , and thus adjacent amplitudes are dependent. To
remedy this awkwardness in the analysis, we construct an alternate
random process with independent a,’s by admitting virtual transitions.
That is, we do not require that the signal change at every ¢, given in the
sequence (1). We will show later how such a process, entirely equivalent
to the original, may be constructed. For the present, we shall merely
assume that the A\,’s are independent.

Tor fixed N the average of (13) with respect to A and X becomes
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— 2Re [N <ﬁ/ N &exp mA\

| o Fna
()

a+1
+ K a=0 AsAk
k>s \
/ k=l \
/ expi Z A,
+ \ 8 ( 14)
\ AaA.k

k—1
( exp i 2 A, \
_ a+1
\ Ak /
/ k \,
/ exp Z A, > :|
3 .
\\ Aahi /

The respective averages in (14) may be expressed in terms of the char-
acteristic function of A. A typical caleulation yields

/ k \ _
/exp i 2. AA, > /1T
a1 :\,,A =

H exp 'i?\nA;x\ A
\ —AaAk / \A AL n ]

a\k n=s+41

AW DA
- \mk AL et ) ), (15)

n=k

o)\
A ?U. nl;l-:l-l CA(A")/ %
<l\ <C“(")> NS N

N/ A

where Cy (A\) = (exp (7AA))a is the characteristic function of the random
variable A.
Using the same procedure as above on every term in (14) we obtain

(| Wilw,T) [)as = 2Re [N <1 = ; ")\

(<1 — 0 x)>) > p,._._l] (16)

k>a
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where
p=(CaA)h.

Since | p | < 1, the series in (16) can be summed. If we designate the
average of N by N, divide (16) by T and take the limit as T — =« such
that

y = lim (N/T)

T—x
we obtain

lim _1{ ( Wilw,T) [) ann
>0

<= oRe [1 —)g,s(;\)>R B (<1 - )(\JA()\)>1)21 i ,,]1

where we made use of the identity

(17)

N—1 N—1

> T =2 (N = m)"
k,a=0 n=l

k>a

We can repeat the identical operations on Wi(w,T') in (9) that we
have just concluded on Wi(w,7) and obtain an identical expression
except that w — w, in Wy will be replaced by @ + w. .

Combining (17) with (9) and (6), we write down the positive image
spectrum as our general result, namely

Go(w) = A%

Re <[1__%1@>1 T 1- (leA(R))x . (<1 - fﬂ()\)>")2:|-

This result is general and applies when the choice of amplitudes is
made independently at every ¢, point. As remarked earlier, in a real
facsimile process the choice of amplitudes is constrained. If a transition
is to oceur at every {, point, the adjacent amplitudes must be correlated.
We now show that the real process can indeed be represented in terms of
independent amplitudes by the expediency of introducing virtual transi-
tions. We write down the following equality

n=~N-—1 n=N’—1

E a'ngA,.(t - tu.) = Z bugA"n(t - tn’)- (19)

n=0 n=0
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The process on the left is the artificial process with independent a,’s and
A,'s, whereas the process on the right has the b,’s correlated, as observa-
tion would require, and a different set of £,"’s representing the real process.
Clearly the two processes are equivalent if one can find a transformation
from the primed set of variables on the right to the unprimed set on the
left.

We observe the following characteristics of the two representations,
The representation on the right demands that a transition oceur at every
t = ¢, for all n. To accomplish this b, must be different from b,_, , thus
restricting the choice of the b,’s. The representation on the left admits
independent choices of the a,’s, thus giving rise to masking of some
transitions, since in fact, if a,_; = a, there cannot be a transition at ¢, .
Furthermore, the set of #,’s is a proper subset of the set of ¢,’s. To make
the representation on the left useful, we must find how the two parameter
sets transform. Toward this end define the following set of random
variables

1 n = n—.
Xn = f(a‘u y arl-l) = {0, : = Z _: (20)

forn=1,2,3:--

Let I’; be the probability of obtaining a sequence of exactly jX’s out
of N + j taking on the value unity. Then the probability P(N) of
obtaining exactly N real transitions in 7' seconds in the process on the
left of (19) is

P(N) = Jgf(N +)P;, (21)

where f(N + j) is the probability of exactly N + j transitions in the
process on the left of (19). Equation (21) is a linear summand equation
from which we would like to find a suitable f(-) from the knowledge of
P()and P;.

Not intending to make a general study of solutions of (21), one simple
solution is presented in the next section for the case of exponentially
distributed intervals A. In preparation for this discussion, we point out
that if @, is a discrete multilevel random variable with equally likely
probabilities the set of random variables | X,} in (20) is independent and
therefore P; is the binomial probability distribution. To demonstrate
that indeed the set | X,} is independent we have to show that the condi-
tional probability distribution of X, given X,_, does not depend onX,_; .
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With this in mind consider the joint characteristie function C'(w; , we) of

X, and Xn+1 :

C(cm y mz) = (exp (’!:OJ;X,, -I- T.(l.,'2Xn+1))Xﬂ.Xﬁ+l (22)
= (exP {?‘.wlf (a‘ﬂ L] a’n—l)} ) exp szf(an 3 a‘ri-l-l)} )rr,z.a,,,l.aml g

From (20), fixing a, and averaging first over a, 1 and then over a,_; , we

obtain
C ("’l ) ‘-'-'2) = ((exp hIf-'-’J_T(au 3 a'n—l)i )u,,-. (23)
- <E)(p {zwf'f(a’ﬂ ) a‘ﬂ+1)} >ﬂn+1>ﬂn .

Since Pla, = g} = (1/M), k = 1,2, -+, M, independent of k we can
write the last equation as

C(wr,w) = (1/M) E!(exr) fianf (Y 5 @n-1)}a,s (24)
-{exp {iwaf (Ye , nsa )} Jap, -

Now

(exp {i61f (Yo s tnt) ay_, = ﬂ—li,exD (iw)) + (1 . ﬂl—[) (25)

and likewise

<EXD ‘uﬂ‘_'j(!lﬁ ] (l"+1)}>a"+1 = Ili exp (3(.02) + (1 - %) .

Since neither of the above averages under the summation sign in (24)
depend on k, the joint characteristic function €' (w , we) = C'(w1)C (w2)
which says that the random variables X, and X, are independent
for all n. Clearly the above arguments still hold if a, is allowed to
take on a continuum of values.

I1I. POISSON TRANSITIONS

As a special case we assume that the number N of ¢ points in a fixed
interval T obeys the Poisson probability law; consequently the prob-
ability density of the intervals A between transitions is exponentially
distributed, namely

0 op
0. (26)

AV

P(a) = {0 2
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The characteristic function of A is then

Ca(\) = {(exp irAd) = [/ (v — \)]. (27)
In particular it follows from (27) that
_ Jj(ja()\) — 1
A= PTG (28)

When (28) is substituted into (18) we obtain a very simple result for
the spectrum, namely

A (Cald)n

where we made use of the fact that

TEEmh -G

which is purely imaginary.
For black and white transmission a, = =1 with equal probability,
and the spectrum reduces to

1 v + 1 v
2 - - =
Go(w) = A Re 2y —iM o 20 — ik , (30)
v | — 1 v _ 1w
2 vy — lhl 2 Vv — ’Ehg
where \y = wg — w + weand s = —wy — @ + w, from (12). By algebraic
manipulation (30) is reduced to
AE V‘lwdﬂ
¢ = "— . 31
() v [we — (0 — @) + o — w)? (31)

We see from this expression that the spectrum falls off as the fourth
power of frequency. In a forthcoming section we shall present graphs of
the various spectra.

It is instructive to examine the physical meaning of the parameter v.
This parameter is the average number of transitions per unit time of the
virtual process. In fact the average number of transitions in the real
process is »[1 — (1/M)), with the Poisson form of the density being
preserved. To show that this is so, we observe that a solution of (21) is
a Poisson probability distribution. In general, for M levels with Pr
la, = k] = 1/M, k = 1,2, ---, M we have, from the previous section,

D (N +J j( )"
Py = T(u) =)
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If f(N 4+ 7) is assumed to be

e—vVN-I-j
f(N+j) = NE (32)
we find from (21) that
PN) = Z IV + )P = e (33)
where », = »[1 — (1/M)]. Thus Poisson transitions with parameter »

in the simple representation correspond to Poisson transitions with
parameter » in the real process.

IV. GRAPHICAL REPRESENTATION

In this section we present graphical results for the case of Poisson dis-
tributed transitions. It is important to bear in mind the distinction be-
tween the parameters for the virtual transitions, with which the calcula-
tions are done, and the parameters of the real process, for which the
results are reported. Here, we shall reverse the convention of (19) and use
primes to distinguish “virtual” parameters. Frequency and fequency
deviation are normalized to the average transition rate, i.e.,

::ﬂf—].ﬁ:ﬂff—lw—mc

B

M M 2w
M 1 M 1 (34)
M — —las
K = M L M m

The normalized characteristic function, with A, defined as in (12), may
then be written as

Cala) =, _ 4. (laK’ 6)- (35)

As our first example we consider a to be a discrete random variable
taking on the possible values 2n — (M + 1), n = 1,2, .-, M with
equal probability (1/M). Using these facts

(Ca(a))a = #(1 — iZxf) + ixk'y, (36)

where

z 1 1
—7; aﬂKf ’2’
L+ 4n (T — 8
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g = 1 =E a,
M= | + 42 (a,:)K B ﬁ’)-

4

where we let a, = 2n — (M + 1). Using (36) in (29) we obtain, for
the virtual process

vG (B) 1— & .
= -1 :
A? (1 — &) + m(238" — K'y)? ’ (37)
and for the real process
WGu(B) _ M — 1 G, (8 (38)

A2 M A?

We have plotted this normalized spectral density (38) as a function

1.0

K=o0.25

0.9

0.5

i\
\

0.7 \
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0.3

|
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=N QNB=E

o] 0.5 1.0 L5 2.0 2.5 3.0 3.5 4.0

NORMALIZED FREQUENCY

Fig. 1 — Spectra for 2-level FM FAX signals.
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of the normalized frequency g for several values of normalized frequency
deviation. Only the positive spectrum is shown since it is symmetrical
about the normalized carrier, 8 = 0.

The binary case is shown on Fig. 1. We note that these spectra con-
tain none of the spectral lines which appear with synchronous modula-
tion. There is, nevertheless, a tendency for the spectrum to be concen-
= w, =

trated about the frequency 8 = k/2. Unnormalized, this is «

Kwv.

Higher level cases, M = 4 and 8, are shown in Figs. 2 and 3, respec-
tively. These are similar to the binary case except that they have M
levels and therefore M frequencies where concentration tends to occur.
These frequencies are approximately 8 = 2n — 1)K/2,n = 1,2, -+,

M /2.
1.0
0.9
K=o0.125
0.8
r o7
z
% 0
®
E o \0.25
% 0.4 \
L
X/ \\/ \\ /f\;
i .
AN 7N
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

NORMALIZED FREQUENCY

Fig. 2 — Spectra for 4-level FM FAX signals.



NORMALIZED SPECTRAL DENSITY

ASYNCHRONOUS FM SPECTRA 2161

0.9

K=0.0625

0.8

0.7

06—
\o. 125
0.5

LU

.3
e
0.2

/N /N0

TR N RO

1.0 1.5 2.0 2.5 3.0 3.5 4.0
NORMALIZED FREQUENCY

Fig. 3 — Spectra for 8-level FM FAX signals.

As a second example, we shall retain the Poisson distribution of transi-
tions times, but allow the amplitudes to be continuously distributed over
the interval [—rr]. This is not true analog representation, but corre-
sponds to “sample-and-hold” operation with exponential holding times.
For this case the probability density of a is

Pla) = 1/2r, —r=a

IIA

r (39)

and the expected value of the characteristic function becomes

r

v da
(O = 2 -[-r v + Tw — twad

_ ;7 hlv—l-iw — Twar
Orwg v + 1w + twer
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Tig. 4 — Spectra for continuous distribution FM FAX signals.

Inserting this into (29) we obtain

(}-J-(ﬁ) — Rg + {WD + 27!'1()900 (41)
A? R + (@0 + 27K)*’

where

1+ (2eB - TK)Q]“
B =] TG T TR

oo = arctan (2m8 — vK) — arctan (278 + =K).

The normalized frequency deviation K is now modified to include r,
namely

K = rwg/7v. (42)
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FFor this continuous case, spectra for various K are shown on Fig. 4.
The shape of these is very nearly rectangular, with height of 1/2K
and width of K/2, for the displayed positive spectrum.

Considering the above results, together with results from a previous
study on digital FM,! it is interesting to observe that in all the plots
the shape of the spectrum is approximately the same as the first order
probability density function of the baseband modulation process when
K is large, in accordance with the adiabatic theorem.?
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