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Quantizing noise in delta modulation systems falls info two calegories,
granular noise and slope overload noise. Granular noise evists because the
decoded output signal can assume only a specified number of levels in the
range of interest. Slope overload noise occurs when the slope of the input
signal 1s greater than the delta modulator is capable of reproducing. When
the 8/N ratio is not too small, the noise power from these two sources is
additive.

A formula for the slope overload noise power for Gaussian input signals
is derived. This 1s used with an earlier result for the granular noise to give
over-all signal-to-quantizing-noise ratios. It is shown by computer simula-
tion that the assumptions employed in deriving these signal-to-quantizing-
noise ratios are valid and that the analytical results provide good estimates
of the true values of these ratios. Computer simulation of the Picturephone*
visual telephone, a low-bandwidth television system, illustrates that the
Jormulas derived for Gaussian signals apply quite well to video signals.
Estimales are given for the S/N ratios theoretically possible when a 4.5-me
monochrome television signal is transmitted by delta modulation.

The characteristics of delta modulation quantizing noise may cause it to
be subjectively less annoying than an equivalent amount of additive Gaus-
sian noise.

I. INTRODUCTION

Delta modulation (AM) is one way in which an analog signal may be
converted into pulses suitable for transmission over binary channels.
Since the modulation process may be simpler and cheaper for AM
than for standard pulse code modulation (PCM), there is considerable
interest in determining how the performance of AM relates to that of

o Picturephone is a service mark of the Bell System.
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standard PCM. Digital transmission of an analog signal is one way
to effectively trade bandwidth for noise immunity in the transmission
medium. Indigenous to this trade, however, is the introduction of
quantizing noise in the encoding and decoding processes. Bennett! has
studied this problem for standard PCM. De Jager® and Van de Weg?
have studied quantizing noise for AM, but their results are somewhat
restricted due to the difficulties encountered in analyzing a nonlinear
feedback system such as AM. Zetterberg* discusses AM through the
discipline of information theory.

This study was initiated primarily to determine what kind of per-
formance could be expected if AM were used for narrow-band television
signals such as Picturephone signals, but more general results are also
presented. The metric used as a figure of merit is the ordinary signal-
to-quantizing-noise ratio 8/N. Recently, the concept of delta modula-
tion” has been subject to a rash of embellishments and modifications,
some of which may improve its ability to transmit television signals
and all of which add equipment complexity. This study, however, is
limited to the simplest type of single-integration AM system with a uni-
form constant step size. Formulas for S/N ratio are found which apply
when the S/N ratio is large, which is the region of greatest interest.
The formulas derived apply to Gaussian signals with arbitrary spectra.
The results are verified by simulating various AM systems on an TBM
7094 digital computer and analyzing their performance with Gaussian
input signals. A practical AM system designed for the transmission of a
Picturephone signal is simulated, and the results illustrate that the
formulas derived for Gaussian signals apply quite well to monochrome
television signals.

II. THEORY

Delta modulation is a simple type of predictive quantizing system.®:°
This means that the value of the signal is predicted at each sample time
and only the difference between the actual signal value and this pre-
dicted value is transmitted. At the receiver, the value of the decoded
signal at every sample time is predicted to be the same as that at the
previous sample time. At each sample time, the transmitted signal is
simply a correction which, when added to the decoded signal at the previ-
ous sample time, gives (to an approximation) the signal at the current
sample time. Systems of this kind are also called differential feedback
PCM systems.

The basic single integration AM system is shown in Fig. 1. The adder
and delay element in the feedback loop around the quantizer simply
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Fig. 1 — Basic binary AM system.

form an accumulator. The transfer function of the feedback loop is
D/(1 — D) where D is the unit delay operator ¢ and represents a
delay of one sample interval r. Since

D/1—D)=D+D+D"---,

the signal being fed back is simply the sum of all previously transmitted
samples. It is also identical to the decoded signal at the receiver and
represents the signal value predicted for the next sample time. The
difference between the input signal and this predicted signal is quantized
and transmitted through a discrete channel. In practice, it is necessary
to insert a leak, or amplifier with gain less than one, in the feedback loop.
Systems with leak are discussed in Section VII.

For the most part we restrict ourselves to 2-level quantizers whose
outputs can assume only the levels £k, where £ is called the step size.
In this paper, the term delta modulation (AM ) when used without qualifi-
cations implies a 2-level quantizer. The extension of our results to multi-
level quantizers is simple and is covered in Section X. Systems with 2-
level quantizers are of greater practical interest because, in this case, the
equipment required for AM is simple and cheap compared to standard
PCM systems. Since the quantizer levels are 4k, the decoded output
before filtering Y () can assume the values &2k, 2 =1, 2, --- .

We assume that the input signal x (¢) has zero mean, unit variance, and
is bandlimited to the frequency band (0,f,). The sampling rate f, is
typically many times the bandwidth and, for a 2-level system, is identical
to the bit rate.

In AM systems there are two types of quantizing noise, granular noise
and overload noise. Granular noise is similar to the quantizing noise of
PCM. It is caused by the fact that the output samples can assume only



120 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1966
discrete values which in AM are multiples of the step size k. Overload
noise is a result of the fact that the maximum slope a AM system may
reproduce is limited to Ef. .

Typical signals in a AM system are shown in Fig. 2. Y (¢) is the re-
constructed output signal before filtering. The noise is defined as

n(t) = () —y ), (1)

where z(t) is the input signal and y(¢) is the output signal. In the
example illustrated in Fig. 2 the noise n(t) is granular before time £, .
At time {, the slope of the input x(¢) exceeds that which the delta
modulator is capable of transmitting. The period of slope overload in
the case shown is from ¢, to £, and the noise during this period is
n(t) = x(t) — yt) + ¢ — )] L=t<h,

where z, = kf, is the maximum slope the delta modulator is capable
of reproducing,.

The quantizing noise is not independent of the signal. Fig. 2 illustrates
that granular noise is determined by the instantaneous amplitude of the
input signal and overload noise is determined by the slope of the input
signal. For very large step sizes almost all of the noise is granular. As
the step size is decreased the output signal loses its ability to rise and fall
rapidly and overload noise becomes dominant. As the step size ap-
proaches zero so does the output y (¢). Due to the definition in (1) the
noise n(t) approaches the signal xz(¢) and the S/N ratio, which is 10
log z2/n?, approaches zero db as the output y(t) approaches zero.

L FiLter inpuT Y ()
————— OUTPUT Yy (t)

INPUT X (L) REGION
OF SLOPE
OVERLOAD

i STEF;(
5 SIZIE
gl
Y TRANSMITTED
! " PULSE TRAIN
L1l 11 L it | |
o] T TTT 1T 1 11T 1
_‘4 L“_T—V"Fs
1 |
to t

TIME =—>

Fig. 2 — Signals in a AM system.
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Clearly, this definition of the noise and of the 8/N ratio must be used
with discretion when the S/N ratio is small.

Any plot of S/N ratio versus step size will show a general tendency
to approach the three asymptotes shown in Fig. 3. In Appendix A,
S. 0. Rice has computed an approximation for slope overload noise
N, for Gaussian input signals. This approximation is valid only when
the maximum slope z, is somewhat larger than the rms value of x ().
In a previous paper’ Van de Weg has found an approximation for the
granular noise N,, and his expression for N, is used in this paper. If
the overload noise is small it occurs in short bursts. During a burst, the
overload noise is the dominant source of noise. When there is no over-
load burst all noise present is granular noise. The total noise power N
can, therefore, be approximated by the sum of N, and N, . If we normalize
our results so that the rms value of the input x(¢) is unity, then our
approximation for the total noise power is

N =N,+ N,, (2)
~ 3 /b2 [ 1k 5
Ne= WVan (b_) (\/b) xp( 2b) (3)

8k _ gy 8D 27n/F, 1
v [t BB VU

exp (—%,j—f (1 - an))];

(4)
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where

fs = sampling frequency

F, = {./f, = sampling frequency as a multiple of the bandwidth f,

an = Y (n/f.) where ¢ (r) is the autocovariance function of x(¢)

k = step size

b, = variance of z’ (t)

b, = variance of =” (t).
Equation (3) is obtained by substituting f.k for z, in (22) of Appendix
A. Equation (4) is taken from page 382 of Ref. 3. These equations
show that the noise power is a funetion of the power density spectrum
of the input signal x(f) since b, , be, and ¢(r) are determined by this
spectrum. Since (2), (3), and (4) apply to an input signal with an rms
value of 1, the rms signal to rms noise ratio in db is /N = — 10 logio V.

1II. FLAT BANDLIMITED GAUSSIAN SIGNALS

For flat signals bandlimited to (0,f,) the expressions for b, and bs,
which are computed from (17) in Appendix A, and ¥(r) are

_(2nf)’
b= T
_(@2nf)!
by = =
_sin 2 for
Y(r) = ot (5)

Fig. 4 shows plots of S/N ratio for a flat bandlimited Gaussian input
signal. Points from some simulated delta modulation systems are also
illustrated. Sampling rates of 4, 8, 16, 32, and 64 times the bandwidth
are shown. The 8/N ratios are plotted as a function of the quantity
kf./f. = kF, which, for any given sampling rate, may be thought of as
the normalized step size. As an example of the use of these curves, we
see that for a sampling rate of 32 times the bandwidth the maximum
S/N ratio is about 29 db and it will occur when the step size is about
12/32. If the rms value of the input signal were not 1 but ¢ then, of
course, the maximum S/N ratio of 29 db would occur when the step
size is 12¢/32. To the left of the S/N peaks the noise is primarily over-
load noise N, while to the right of these peaks the noise is primarily
granular noise N, . The optimum value of kF, maximizes the S/N ratio
by providing the proper balance between N, and N, .
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Fig. 4 — S/N ratio for bandlimited flat Gaussian signals showing theoretical
curves and results of computer simulation. (F, = f./f. is the ratio of sampling
frequency to bandwidth.)

IV. RC SHAPED GAUSSIAN SIGNALS

If a flat Gaussian signal bandlimited to the frequency range (0,f,)
is passed through a low-pass RC filter, then the one-sided power spec-
trum of the output is

2ma

- X |
F(f) B tan“l (@) X (l—)d‘n'l'f)2 + o? 0 < f < fo:

(6)

where we assume a mean square value of unity and @ = 1/RC. The RC
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spectrum given by (6) is relatively flat from f = 0 to a corner frequency
f» = a/2r at which it rolls off to assume a slope of —6 db/octave up to
the cutoff frequency f,. It is shown in Appendix B that if « is small
enough then we may approximate the autocovariance function ¥(r) by

ge_af — ar (GOS 2a for + Si (2rfr) — T—r)

27 for 2

Y(r) = r =0,
r__ 2 (7)
2 2 fo

p(—7) = (7).
The values of b, and bs for this RC Gaussian signal are found from (17)
to be

27 focx 2
by =" "J75 v — o,
tan—l (21rfa) (8)

(27 f.)%e — 67 f.0 4
bg = + .
3 tan™ (—2’;f ) (9)

Using the above expressions we can find the S/N resulting when an RC
shaped signal is transmitted through a AM system. Figs. 5 and 6 show
S/N versus kf./f, = kF, for « = 0.25 f, and « = 0.068 f,, respectively.
These values for a were chosen because this causes the signal spectra
to have roughly the same shape as the envelope of a Picturephone signal
(using current standards) and a black and white entertainment TV
signal (FCC standard), respectively. We assume here that the Picture-
phone signal would be bandlimited to 375 ke before encoding. Computer
analysis of a composite video signal with current Picturephone stand-
ards indicates that the Picturephone spectrum has a corner at about

0.25 X 375 ke/2r =2 15 ke.

In the U.S., standard entertainment black and white TV is approxi-
mately bandlimited to 4.5 me and has a corner at about 0.068 X 4.5
me/2r = 49 ke." These corner frequencies are slightly dependent on
picture material. Although television signals have strong periodic com-
ponents, the frequencies involved are so low that their periodic nature
does not influence the 8/N ratio. The spectrum of the quantizing noise,
however, is affected by this periodicity, for, in general, periodic sampling
of periodic signals produces quantizing noise which has periodic com-

% An unpublished study by W. N. Toy shows that this corner frequency may
lie between 40 and 60 ke depending on picture material.
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Fig. 5 — S/N for RC shaped Gaussian signals witha = 0.25 f, .

ponents. Although Figs. 5 and 6 apply specifically to Gaussian input
signals, they give estimates of the performance of basic AM systems
when used to transmit Picturephone signals and standard TV signals
respectively. Fig. 11 which compares four of the curves in Fig. 5 with
a computer simulation of an actual Picturephone visual telephone sys-
tem using typical picture material shows that these estimates are good
ones.

V. COMPARISON OF PCM AND AM FOR GAUSSIAN INPUTS

In Fig. 7, the S/N ratios for standard PCM and optimum basic AM
systems with Gaussian input signals are compared. Bennett! showed that,
under conditions usually encountered in practical systems, the rms
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Fig. 6 — 8/N for RC shaped Gaussian signals with « = 0.068 f, .

value of the quantizing noise for Nyquist rate sampled PCM is E,/4/12
where E, is the step size. If n, the number of quantizing digits, is not
too small, then E, is equal to E,/2", where I/, is the peak-to-peak value
of the incoming signal. Therefore, the rms S/N ratio in db for PCM is

D = 20 log (Ei \/12) + 20 log 2",
»

where o/, is the ratio of the signal’s rms value to its peak value.
If we encode only the values of the signal which lie between —4¢ and



DELTA MODULATION QUANTIZING NOISE 127

" w |
STANDARD PCM
40 LOADING /
60
AM
| RC SIGNAL
a=0.068T,
wn 50
o RC SIGNAL
o a=0.25f,
(U]
a
240
o FLAT
e SIGNAL
&
30
4
~
wy
3
o 20/ / 7
10 ///
(o]
2 4 8 16 32 64 128 256

BIT RATE / BANDWIDTH

Fig. 7 — Comparison of AM and standard PCM for bandlimited Gaussian signals.

4¢ and neglect values outside of this range then K, = 8¢ and the formula
for 8/N ratio in db becomes

D= —-73 + 6n.

This is called 4 loading. Although 4 loading is used for comparison
in Tig. 7, this is not optimum loading. For PCM, the loading which gives
the highest value of S/N is dependent on the number of digits, n, used
to encode each sample value. PCM with a fixed amount of loading
(regardless of n) provides a realistic comparison with AM in systems,
such as television, where no amplitude overload is allowed. For other
applications, however, restricting the PCM system to a fixed amount
of loading may not provide a valid comparison between PCM and AM.

Although the curve shown in Fig. 7 for PCM is continuous, it is
actually defined only when the bit rate is an even multiple of the band-
width because we have assumed that the sampling rate is always twice
the bandwidth.

VI. COMPUTER SIMULATION WITH GAUSSIAN SIGNALS

The basic AM system of Fig. 1 was simulated on an IBM 7094 digital
computer and the resulting S/N ratios are shown as points on Figs. 4,
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5, and 6. Flat bandlimited signals sampled at the Nyquist rate were
easily simulated by simply using independent random numbers with a
Gaussian distribution and unit variance. For convenience, we assumed
that fo = 1. A flat signal sampled at R times the Nyquist rate is simu-
lated by filtering the random samples with a digital filter whose eutoff
frequency is 1/R. A discussion of sampled data filters is given in Ref. 7.
Digital sharp cutoff filters, like their continuous counterparts, are not
easily realized. The filters used all had the general shape given in Fig. 8.
The filter shown is down 3 db at 0.25 and we call the bandwidth 0.25
for this reason. This filter would be used when simulating AM systems
whose sampling frequency is 8 times the bandwidth (4 times the Nyquist
rate). Other filters used had exactly the same shape when plotted on a
log scale but, of course, had different 3-db points. These low-pass filters
were nonrecursive filters which were simulated by finding a sequence of
numbers whieh represented the filter’s impulse response. Filtering was

\

FILTER POWER GAIN IN DECIBELS
&
=]

-100 1 | |
0.01 0.02 0.04 006 008 O 0.2 03 04 05 08 10
FREQUENCY AS A FRACTION OF f,

Fig. 8 — Power spectrum of low-pass filter with a bandwidth of { f. or § f, .
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accomplished by convolving the samples representing the signal with
this sequence.

The RC shaped signals were simulated by passing the random sam-
ples representing flat noise through a digital simulation of a low-pass
RC network.

VII. SIMULATION OF THE PICTUREPHONE SYSTEM

The basic AM system shown in Fig. 1 is impractical because errors
introduced in the transmission medium will not decay out. To prevent
the accumulation of errors from severely degrading the signal and to
improve the operation of the system even when no errors are present,
it is necessary to place a leak in the feedback loop represented by an
amplifier with gain g less than unity. The AM system with leak added
is shown in Fig. 9. This system was simulated on the computer and a
signal similar to the Picturephone signal was encoded and decoded by it.

The input signal used was a television-like signal obtained by seanning
a square slide with a slow-speed flying spot scanner, sampling the out-
put, and encoding the samples into 11-bit PCM. The PCM samples
were recorded on magnetic tape suitable as an input to the IBM 7094
digital computer.® The sampling frequency was synchronous with the
line frequency. The slide used to produce the signal was a head and
shoulders view of a girl similar to what might be expected on a Picture-
phone call. In this way, a signal was produced which represented a
Picturephone signal. Current standards for the Picturephone system
produce a 271-line picture with 2-to-1 interlace. The frame rate is 30
per second. The horizontal and vertical blanking pulses are 21 and 1000
usec, respectively, The simulated signal was subjected to filtering so

ENCODER | DECODER
) o avpLE BINARY chan TN ylt)
INPUT QUANTIZER NEL FILTER
+

|
|
|
|
i OUTPUT
1
|

Fig. 9 — AM system with leak 8.
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that it was equivalent to a Picturephone signal which had been passed
through a sharp cutoff filter with a bandwidth of 375 ke. The band-
width then is considered to be 375 ke and sampling at E times the band-
width means sampling at a rate of R X 375 X 107 samples per second.

The power spectrum of the composite signal (video and blanking
pulses) on tape was found by computing the Fourier transform of its
autocovariance function. The envelope of the power spectrum could be
roughly approximated by the spectrum of (4) with an « of about 0.25.
The spectrum, however, had the irregularities typical of a TV signal.

The slope overload produced by AM for smaller step sizes, occurs
primarily during blanking intervals, and is not visible on the picture
tube. For this reason, S/N ratios were found both for the composite
signal and for the video part of the signal. In the region of interest, the
S/N ratios for the video part of the signal are a few db above those for
the composite signal. '

Fig. 10 shows S/N ratios obtained from the simulation using the
Picturephone signal on magnetic tape. The scale on the left of Fig. 10
gives rms composite signal to rms noise ratios. The scale on the right
of Fig. 10 gives peak-to-peak composite signal to rms noise ratios
because this is the quantity usually measured in television systems.
The peak-to-peak composite signal to rms noise ratios are 11.6 db greater
than the rms signal to rms noise ratios because the peak-to-peak value
of the composite signal used is 11.6 db greater than its rms value.
The relationship between three metrics associated with the input are
as follows:

relative value db
peak-to-peak of composite signal 3.79 11.6
rms of composite signal 1 0
rms of video part of signal 0.512 —5.8

For each sampling rate in Fig. 10, there are two curves. In the solid
curves the rms value of the noise in only the video part of the signal is
used. The dotted curves use the rms value of the noise in the whole
composite signal (video plus sync). Using only the noise in the video
part leads to a better metric of picture quality because, as long as syne
is maintained, noise in the sync pulses does not degrade the resulting
television picture.

In Fig. 10 the actual bit rates are shown. For example, a bit rate of 6
megabits means sampling at 16 times the bandwidth since 16 X 375 X
10° = 6 X 105 The S/N ratios of the video signal varied only slightly
with leak factor, 8, as long as 8 was near 1. The values of 8 used were
those which gave the best S/N ratios. These values are shown on Fig. 10
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Fig. 10 — Simulated Picturephone systems. (Scale on the right assumes a signal
whose peak-to-peak value is 11.6 db higher than its rms value.)

and also apply to the points on Fig. 11. It will be shown in a subsequent
paper? how the optimum value of 3 is related to the covariance between
adjacent sample values.

For the video, the optimum step sizes yielded peak-to-peak signal
{o rms noise ratios of 48.0, 40.8, 32.5, and 23.7 db for sampling rates of
16 f,(6 mb), 8 f,(3 mb), 4 f,(1.5 mb), and 2 f,(0.75 mb), respectively.

Fig. 11 was plotted to show the close agreement of the simulated
Picturephone video results (with leak) to the theoretical results (without
leak) for RC Gaussian signals with the same spectrum envelope as a
Picturephone signal (@ = 0.25 f,). The points in Fig, 11 are the same
as those in Fig. 10 connected by the solid curves. They have been trans-
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Fig. 11 — Comparison of simulated Picturephone video signals (points) to
theoretical Gaussian results (solid curves) for @ = 0.25 f, .

lated vertically by 5.8 db because the rms value of the video is 5.8 db
less than the rms value of the composite signal, and they have been
shifted to the right by a faetor of 1/0.512 because the normalized step
size is expressed in terms of the rms value of the signal. In previous
figures, the rms value of the signal meant the rms value of the composite
signal which is 1, but in Fig. 11 we are dealing with the rms value of
the video which is 0.512.

In Fig. 12, the peak-to-peak composite signal to rms noise ratios for
the simulation of AM are compared with those for standard PCM sys-
tems. For n-digit standard PCM, the ratio of peak-to-peak signal to
rms noise in db is

D,, = 20 log v/12 + 20 log 2"
=~ 10.8 4+ 6n.

In PCM, about 3 db ean be gained by assigning only one or two levels
to the syne pulses and using the remaining available levels to encode the
video part of the signal. This has not been taken into consideration
in the above formula or in Fig. 12.
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Fig. 12 — Comparison of simulated AM Picturephone system to standard PCM.

VIII. ESTIMATES OF S/N RATIOS FOR AM OF ENTERTAINMENT TELEVISION

The curves of Iig. 6 allow us to obtain a rough estimate of the S/N
ratios possible for monochrome entertainment television systems (FCC
standard). For the Piclurephone signal used in the simulation, the rms
video was 17.4 db below the peak-to-peak value of the composite signal.
A comparison between Picturephone standards and entertainment tele-
vision standards suggests that this is also a reasonable number for
entertainment television. Moreover, since this number is dependent on
picture material, we can rest comfortably in the knowledge that we can
surely find a picture whose rms video is 17.4 db below its peak-to-peak
value. It should be possible to transmit such a picture with peak-to-peak
composite signal to video rms noise ratios of about 54, 46, 38, and 29 db
at bit rates of 16, 8, 4, and 2 times the bandwidth, respectively. These
ratios were found by adding 17.4 db to the peak values of the curves in
I'ig. 6. ’

IX. INTERPRETATION OF S/N RATIOS FOR TELEVISION SYSTEMS

It is well known that the quality of a television picture cannot be
judged by its 8/N ratio alone. In fact, such a judgment may be quite
misleading. The quality of a picture contaminated with additive flat
Gaussian noise may be quite different from that of the same picture
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contaminated by AM quantizing noise even if the S/N ratios are iden-
tical.

Quantizing noise in standard PCM exhibits itself in television pictures
as contouring. If the number of digits used is high enough, typically 7 or
8 for monochrome entertainment television, then the eye cannot detect
contouring and no degradation due to quantizing noise is noticeable.
In AM, quantizing noise in television signals exhibits itself subjectively
in four ways — as grainy noise, slope overload, contouring, and edge
busyness. The fact that the noise is present in four subjectively different
forms may be a significant advantage for AM. An observer normally
judges the quality of a television picture by the most severe degradation
that he sees rather than by jointly considering several different types
of degradation. AM takes advantage of this. In a subjectively optimum
AM system the step size, sampling rate, and filter characteristics are
chosen to spread the degradation into these four categories to produce
the best subjective picture. In earlier computations, we considered all
noise to be either granular noise N, or overload noise N, . In this section,
we have further divided granular noise into three different categories

— grainy noise, contouring, and edge busyness—because this N, exhibits
itself as three subjectively distinguishable phenomena. Granular quan-
tizing noise tends to have a rectangular amplitude distribution and is
likely to be less annoying than an equivalent amount of additive noise
with o Gaussian amplitude distribution.

Slope overload noise will appear subjectively like a loss of bandwidth
since the rise time of white to black transitions is increased. The snow
or salt and pepper effect so ubiquitous in TV systems is what we are
calling grainy noise. Contouring occurs since there are only a finite
number of steady levels or flat tones which ean be established by a AM
system (if the leak 8 is unity the number of levels is one less than the
peak-to-peak value of the signal divided by the step size). Edge busyness
exhibits itself as a busyness at vertical edges, i.e., vertical white to black
transitions, when the sampling rate and line rate are not synchronized.
Due to the lack of synchronization and the finite time between samples
these transitions do not occur in a straight line on successive lines and
frames.

X. MULTI-LEVEL QUANTIZING

It the quantizer shown in Iig. 1 is not a 2-level device, then the
formula for N, in (3) must be modified. If we define an n-digit uniform
quantizer to be one which quantizes its input into the nearest one of the
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2" levels =k, 3k, ---, £(2" — 1)k, then overload noise does not
occur until | 2" (¢)| becomes greater than (2" — 1)kf,. To modify N,
in (3) then to accommodate a uniform n-level quantizer we simply
replace k by (2" — 1)k. The expression for N, does not need to be
modified.

XI. SUMMARY AND CONCLUSIONS

An analytieal solution for the S/N ratio as a function of step size and
bit rate is presented for a signal with an arbitrary spectrum and Gaussian
amplitude distribution. The correctness of the solution has been demon-
strated by computer simulation of some delta modulation systems.
Computer simulations with low bandwidth television signals have shown
that the formula is accurate for actual video signals whose amplitude
distribution is not necessarily Gaussian. These analytical results will
allow us to predict what values of S/N ratio may be obtained at various
bit rates for many types of signals.

Some computer simulations demonstrated that properly designed
AM systems can transmit 375-ke Picturephone signals with peak signal
to rms noise ratios as high as 24, 32, 40, and 48 db for bit rates of 2, 4,
8, and 16 times the bandwidth, respectively. Estimates of the S/N
ratios possible for 4.5-mc black and white entertainment television are
about 29, 38, 4G, and 54 db for the above bit rates, respectively. These
8/N ratios are somewhat dependent on picture material. Although 8/N
ratios are an important indicator of system performance, final judg-
ments about a system’s ability to transmit television pictures must be
based on subjective viewing tests.

The quantizing noise in television AM systems distributes itself into 4
visually distinguishable categories. This suggests that AM quantizing
noise may be subjectively less objectionable than an equivalent amount
of noise introduced by other means.

Any comparison between the relative performance of AM and stand-
ard PCM depends on the characteristics of the signal to be transmitted.
Generally, however, for signals whose spectra decrease with frequency,
AM is superior by the S/N criterion to standard PCM when low quality
reproduction of the signal is allowed. For high-quality systems, standard
PCM gives better results than AM. This is due to the fact that in AM
doubling the bit rate gives only about an 8-db gain in S/N ratio. In
standard PCM, increasing the number of bits per sample by 1 increases
the S/N ratio by 6 db. The relative performance of AM and standard
PCM for two types of signals is illustrated in Figs. 7 and 12.
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APPENDIX A

Noise Burst, Steep-Slope Approrimation to A-Modulation Noise

When the step size is not too large, most of the output noise in a delta
modulation system is produced in bursts. The bursts occur when the
time derivative of the input exceeds the maximum slope permitted by
the system. An approximation for the average value of the power in
this type of noise is given here. It turns out that the analysis is quite
similar to that used to study the distribution of fade lengths in radio
transmission (see (1) of Ref. 10).

The material given here was worked out jointly by Mr. O’Neal and
myself. The concepts and approximations associated with the delta
modulation system are due to him. My part consisted chiefly in supply-
ing the steps suggested by the analogy with the fading problem.

The problem is the following. Let the input voltage be a Gaussian
process z(t) with (one-sided) power spectrum F (f). Let the output of
the system be y (). Most of the time y(t) will be equal to x(t). During
intervals of this sort, the ubsolute value of 2’ (1) = dx(t)/dt is less than
some given positive quantlty T . The intervals during w hth y(t) == x(t)
start at the instants | 2" (¢) | increases through the value x, . Let {, denote
the starting time of a particular interval of this typc and suppose, for
convenience, that 2’ (4,) is positive so that z "(t,) = x,. Throughout the
interval y (t) is defined to be x(t.) + (¢ — & Ya. , and increases linearly
with time. The interval lasts as long as x(!) exceeds y(¢). It ends at
time ¢, when 2 () and y(t) again become equal;

.l'{l‘-]} = .U”l) = -1'(1n) + (.[1 - lu)'rul- {10)

For intervals starting with x, (4,) = —x., y(t) is defined similarly by
p(t) = x(t) — (= t)x, .
The output noise is defined to be
n(t) = x(t) — y(l). (11)

* This appendix was written by 5. O. Rice.
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Since n(t) will be zero much of the time, the noise tends to occur in
short bursts. The average noise power is

T

20 = lim £~ [0t (12)
>0 T 0

We seek an approximation for #2(¢) which holds when z," is large com-

pared to the rms value of ' (2).

When z, is large, the interval t; — t, tends to be small and an ex-
pression for its length may be obtained by considering the expansion of
x(t) about t, . Here, and in much of the following, we take ' (£,) to be
positive:

w(t) = a(t) + (L — t)a + %t"—)?x”(ta)
+ (i%!t”lx”’(to) + - (13)
0= (tl—;,—f-)z (;v”(r,,) +h ; 2" (1,) ) (14)
tl—tt,:—:(){_—:f';:’—((;%—!—---. (15)

In going from the first equation to the second we have set ¢t = ¢ and
used the end-of-interval relation (10). When z, is large we can expect
" (4,) to be large and negative while x” (§,) remains of order 1. This is
shown in the following paragraph.

To begin with, consider the special case z = sin wf with ¢ near zero.
Then z and its time derivatives are such that @ &~ 0, 2’ &~ w, 2" & 0,
2"~ —u°, ete. Our Gaussian z(t) and its derivatives behave in some-
what the same way when 2 (1) is large. Let £ = 2'(8), 7 = 2" (1), { =
2" (¢) denote the first three derivatives at time ¢ of an x(¢) chosen at
random from the ensemble of x(¢)’s. It may be shown that their joint
probability density is

(2m)7%2 exp [_£_2 _n_ G+ bgbo_lé)ﬂ]
v b:.B 2b,  2by 2Bb, ! ’

where b, and b, are the respective variances of 2’ (1) and 2” (¢), and

(16)

b,

I

D)) Af,  mo= 0,24
j‘; rf n (a7

B = bby — by
where F(f) is the power spectrum of x(t). When 2’ (¢) is held fixed at
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the la1ge value L,,’, (16) shows that the average value of ()
is —byx, /b, . If @, is so large that this average value is large compared
to the standard deviation 4/ B/b,, we are led to approximate 2" () in
expression (15) in the interval {; — {, by its average value. Making the
further approximation of neglecting the higher order terms in (15) gives

3bx” (t,)
bglu

for the length of the interval during which @ () exceeds the output y (¢).
The noise energy in the burst corresponding to the interval t; — {, is

f:l n'(t) dt = f [(t) — y(O)I dt

a

(18)

h— 1, =

= [h [2() — a(t,) — (¢t — t)a, | dt
~ ftl [(t a. ”({ ) _|_ n)l .'U’”(&o)it dt

81 o
N@(bm) 1w (1)

In going to the last line, the approximation (18) for t, — ¢, is used and
2" (t,) is replaced by —bsx, /b, . It is helpful to make the change of
variable t — &, = ({§, — t.)z.

Expression (19) gives the noise energy in a burst for which the initial
value of 2" (t) is equal to 2” (4,). As we go from burst to burst, x” (£)
will fluetuate but it will always be positive for the type of interval
(z' (t,) = z, > 0) we are considering. This is because 2’ (t) is increasing
as it passes upward through the value x, at time £, .

The next step is to find the average noise energy in a burst. When a
member z (¢) is picked at random from the ensemble of = (¢)’s, the chance
that 2’ (t) will increase through the value %, during t, , t, 4 dt with slope
between 2” and 2” + dx” is 2"p (2, ,2” )dx" dil, where

(19)

pEn) = (2 )lexp[ E?_ _772]

’ Vb 2b,  2b
is the joint probability density of ' (t) and z”(t) (see Section 3.5 of
Ref. 11). When the ensemble of x (¢)’s consists of an extremely large
number M of members, the number which have the above behavior is
approximately (M dt)x"p(x, " )dx”. The total number M, which pass
upward through z, during f,, {, + dt is obtained by integrating from
2 =0toa” = w:
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(M ) (b 2
M, = o (ba) exp( %)

. . . . . 7 .
Since the noise energy in a burst is proportional to " we average it
over the M, members:

ave 2"’ = % f " (M dt)x"p(x, ") dx”]
iy 0

= (20,)""1(9/2).
Combining this with (19) gives
ty
ave_[ () dt =~ ‘/Z” (‘fb,) by 32 (20)
to To

for the average noise energy in a burst.

Our final assumption is that a noise burst occurs every time z’ ()
increases through x,” or decreases through —z,". The true number of
bursts tends to be less than this because such crossings can oceur when
a burst is in progress. I'rom noise theory," the expected number of such
crossings in one second is

1 (b o
9 ? o [ =
23 (bn) exp ( ‘>b(.) . (21)

Multiplying by the average burst energy (20) then gives

| 2
)= Lo (22) (%b ) exp ("33) (22)

which is the approximation sought for the average noise power.

The right-hand side of (22) has the dimension of (volt)® since the
dimensions of 2., b, , by, are volt/see, (volt/sec)’, (volt/sec’)’, respec-
tively.

APPENDIX B
Computation of ¢ (r) for a Bandlimited RC Signal

By a bandlimited RC signal we mean a signal which will result if
white noise is passed through a low-pass RC filter and then bandlimited
to the interval (0,fs). The one-sided power spectrum of such a signal
with unit variance is

F(f) 0<f</fe

II
3
[S™]
)
T
S|
X
)
B
=
+

F(f) =0 Fz/f.
where @« = 1/RC.
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The autocovariance function of a bandlimited RC signal with unit
variance is

Yir) = j“ F(f) cos 2nfr df

vir) = K [f W;"W cos 2w fr df (23)

— .C (—2?},;;—+?cos 2x fr df:',

where

2
T tan~'(2nf,/a)’

The first integral can be evaluated by contour integration and is found
to be (a/4) exp (—a | 7| ). If @ is small enough then the second integral
can be approximated by

oo 2

fj m‘! COS 27I'f’1’ df

2 [T 1 9
= 2 d 24
o | g oos 2o 4 (24)
o | 7| [cos2xf,| 7| . 7r:|
o Si (2xf, ——1.
= 27 [ onfy o] TSl D =5
Therefore,
2
~ gﬂ.m_al'rl cos 2af, | 7| o _1_r]
¢(r)_K|:4e 5 ( Sl 1 7] + 8i (2xf, | 7)) 5) |
where Si is the sine integral funetion. The above approximation of ¢ (r)
does not have y(0) = 1 which is the necessary requirement of unit

variance. To restore this requirement we divide the above expression by
¥ (0). Therefore, the autocovariance function for a bandlimited RC
signal with unit variance may be approximated by

%l'e—aj'rl — o] (M + 8i (2xf, | 7]) —E>

1!/(1_) E 27"fn|7| 2
T_ @
2 2nf,

Although the above approximation is convenient for computational
purposes, an exact expression for ¢ (r) can be found. Instead of approxi-
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mating the second integral on the right-hand side of (23), it can be
integrated exactly giving

f— Im [e " Ey(—ar — 2xf,7) — e Ey(ar — 2xf,7)],
-

where E, is the exponential integral. An alternate way of arriving at the
approximation in (24) is to expand the £, functions in the above ex-
pression about —2xf,r and take the limit as o becomes small.
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