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Sequential decoding 1s a technique for encoding and decoding at moderate
cost with a decoding reliability which approximales that of the optimum,
and expensive, maximum-likelihood decoder. The several known sequential
decoding algorithms enjoy a cost advantage over the maximum-likelthood
decoder because they allow the level of the channel noise to regulate the
level of the decoding computation. Since the average level of the requived
decoding compulation for sequential decoders is small for source rates
below a rate Roomp , such a decoder can be realized for these rates with a
relatively small logic unit and a buffer. The logic unit is normally designed
to handle compulation rates which arve less than two or three times the
average compulation rale; the buffer serves to store data during those noisy
pertods when the requived computation rate exceeds the computation rafe
aof the logic unat.

If the periods of high compulation, which are caused by noise, are too
frequent or too long, the buffer, which is necessarily finite in capacity, will
fill and overflow. Since dala are lost during an overflow, continuity in the
decoding process cannol be maintained. The decoder, then, cannol conlinue
lo decode without error. For this reason, buffer overflow is an important
event. In addition, since ervors in the absence of overflow are much less
frequent than are overflows themselves, the overflow event is of primary
concern in the design of a sequential decoder.

This paper presents some recenl analytical resulls concerning the proba-
bility of a buffer overflow. In particular, it is shown that this probability
is relatively insensitive to both the buffer capacity and the maximum speed
of the logic unit for maderate capacities and speeds. By contrast, it is shown
that the overflow probability decreases rapidly with a decrease in the source
_T’-l-:l;'rnsll]ts of this paper are drawn from the author’s thesis which has been
accepted by the Massachusetts Institute of Technology in partial fulfillment of
the requirements for the degree of Doctor of Philosophy. The research reported
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rate and is more than squared by a halving of this rate. These sensitivities are
basic to sequential decoding; they exist because the required compulation level
is large during intervals of high channel noise and grows exponentially with
the length of such an interval. It is also shown that the dependence of the
overflow probability on the source rale is intimately related lo erponents
appearing in the coding theorem. In addition, the results presented agree
with the limited experimental evidence available.

I. INTRODUCTION

Sequential decoding procedures are important because they achieve,
at modest cost, a decoding error rate which approximates the error rate
of the optimum and expensive maximum-likelihood decoder. Sequential
decoding procedures have this near-optimum performance at modest
cost because they allow the level of the channel noise to determine the
level of the decoding computation. The level of the decoding computa-
tion is a function of the source rate as well as the channel noise and if
the source rate is held at less than a computational cutoff rate, Reomp ,
the computation level on the average will be small.!21® Thus, a sequential
decoder may be constructed from a logic unit capable of handling two
or three times the average computation rate and from a buffer to store
data during those noisy periods which require a computation rate which
exceeds that of the basic decoding machine. The maximum likelihood
decoder, however, always reanives a very high computation rate and, in
effect, is designed to handle the peak noise levels.

The buffer portion of the decoder stores data during periods of high
computation and since it has finite capacity, it will fill and overflow if
the high computation intervals are too frequent or too long. If and when
a buffer overflow occurs, the decoder cannot continue to decode reliably
since data which are important to the continuing decoding process are
lost. Consequently, a buffer overflow forces a halt in the decoding process
while both the encoding and decoding processes are restarted.

While errors occur after the onset of overflow, they may also occur
in the absence of overflow. For a properly chosen code, however, it can
be argued that errors in the absence of overflow occur much less fre-
quently than do overflow, themselves. Consequently, it can be argued—
and, indeed, it is found in practice—that the buffer overflow event is of
primary concern in the design of a sequential decoder.

In this paper, we present some recent results® concerning the proba-
bility of a buffer overflow. In particular, we show by upperbounding this
probability that it is relatively insensitive to machine speed and to the
storage capacity of the buffer for moderate speeds and capacities. By
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contrast, it is shown that the overflow probability decreases rapidly with
a decrease in the source rate and that this probability is more than
squared by a halving of the rate. It is found that these sensitivities are
basic to sequential decoding and arise because the computation per
decoded digit is large during intervals of high channel noise and grows
exponentially with the length of such an interval. We show that the
dependence of the overflow probability on the source rate is intimately
connected with exponents found in the coding theorem.*5 In addition,
the results represented here agree with the limited experimental evidence
available.®

We assume throughout this paper that the encoding and decoding
are done for a discrete memoryless channel (DMC) characterized by
the channel transition probabilities

(P (y;| ), 1=k =K, 1<j<J}

where 2. represents a letter from the channel input alphabet and y;
represents a letter from the channel output alphabet. The results for the
DMC apply with qualifications to other channels.

In the following sections we introduce the Fano algorithm,? the
vehicle for this study of sequential decoding.

II. THE DECODING PROCEDURE

2.1 Tree Codes

The Fano algorithm decodes data encoded from tree codes. We assume
that this data arrives from a source as a sequence of digits and we make
the assumption that these digits are statistically independent and are
drawn from the b-letter alphabet, A = {a1,a., -+, a}. A sequence
of source digits drawn from this alphabet is encoded with a tree code as
follows (see I'ig. 1): A branch from the first node of the tree is selected
which corresponds to the value of the first digit produced by the source,
The same is true for the second and later source outputs. Thus, in the
example of Fig. 1, the source sequence (1, 0, 2, --- ) with letters from
the alphabet {0, 1, 2} selects the sequence (112, 010, 122, --- ) from
the tree. The digits on these branches are then transmitted over the
DMC.

We assume that each branch of the tree contains ! channel symbols
so that the source rate in bits per channel transmission is defined as

R = logs b/L. (1)

A variety of rates can be generated with tree codes.
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Fig. 1 —Tree code.

A class of tree codes which may be generated with a small amount of
equipment is known as convolutional codes. Convolutional codes are
generated with shift registers, multipliers and adders. An example of a
convolutional encoder is given in Fig. 2 where circles represent multipli-
cation and addition is taken modulo b = 3. This example generates the
tree code of Fig. 1. Although we do not restrict the results of this paper
to convolutional codes, it suffices to say that they can be decoded with
sequential decoders with a small resultant error rate."'®

2.2 The Melric

The Fano algorithm decodes by comparing the received channel
sequence to paths in the tree code in search of a path which “matches
well” to the received sequence. A “match” is measured with a “metric.” *

* This is not a metric in the mathematical sense since it does not satisfy any of

the rules for a metric. The word metric is used here to indicate the relative mateh
{or mismatch) between the received channel sequence and a tree path.
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Let 4, , 7, represent a tree path and the received sequence, respectively,
where each has s branches. Then, for the purposes of this paper we
define the metric between @, , o, , d (@, , 7,), as

d (s , ;) Z‘; ,; [Iogz{ : ?(’"l:’;"')} R:| (2)

where ,;, , vy are the hth digits on the rth branches of 4, , ., respec-
tively. P (vs/us) is a channel transition probability. The function
(v4) for v, = y;is given as

K

fly) = 2 pePlys| @) (3)

This function may be viewed as the probability of channel output
y; when the channel inputs are assigned with probabilities {pi}. (The
function f(y;) and the probability assignment {p,} are chosen because
they fit naturally into the random code bound to be presented later.)

This choice of metric is used because it lends itself to analysis and is
a metric with which the Fano algorithm will operate. We now study
this metric and observe from a simple combination of terms in (2) that
d(4, , B,) is monotonically increasing in increasing P[7, | @,] which is the
probability of receiving the sequence 7, when the sequence . is trans-
mitted. This fact plus the fact that all tree paths with the same number
of branches are assumed equiprobable imply that P[3, | @,] is propor-

DATA —> \ 2 . o | 0

—_—

—o
ENCODED DATA

Tig. 2 — Convolutional encoder.
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tional from Baye’s Rule, to P[a, | 7], the a posteriori probability of se-
quence i, given that sequence #, is received. Equivalently, this implies
that d(a, , 5,) is monotonically increasing in the a posteriori probability
of tree path @, . Thus, as the decoder progresses into the tree we expect
d(i, , 7,) to increase if i, represents the correct path (see Fig. 3). How-
ever, if the decoder branches onto an incorrect path, we expect the path
to decrease in probability (for a properly chosen code) and to see
d (i, , 7,) decrease (see Fig. 3). Although this behavior is typical, occasional
noisy intervals will cause the correct path to decrease in metric and
searching will be required to distinguish it from incorrect paths.

T3
CORRECT PATH— .

T, - — _—
t *
ET‘J:O / \C_\

@
=
b3 [ ’|l
‘lrto INCORRECT PATH-""k
T2 C
T‘3

LENGTH =

Tig. 3 — Criteria and typical paths.

2.3 The Fano Algorithm

The Fano algorithm is a set of rules for searching tree paths using
the metric given by (2).* Since the algorithm is designed to find the
transmitted tree path, it is programmed to follow a path which grows in
metric. A path will be said to grow in metric if it crosses an increasing
sequence of thresholds, such as those of Iig. 3.

The decoder is also programmed to search for other paths when the
path being followed begins to decrease in metric and crosses a threshold
from above. Such a decrease signals the presence of channel noise and
indicates that searching will be required to distinguish between the cor-
rect path and incorrect paths.

The rules governing such a search, as well as the rules for determining
which path to follow when two or more paths increase in metric, are given

* Other metrics with the same properties will also work.
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by the flow chartt of Fig. 4. In that chart, a “‘most probable’ branch at a
node is that branch for which the increase in the metrie is largest.

The “running threshold”, which is simply called “threshold” in the
flow chart, is really a sequence of thresholds which always lies below the
node being examined in the decoder (see Fig. 5). It is used to determine
whether the path being extended increases or decreases in metric. In
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I'ig. 4 — Flow chart of the Fano algorithm.

operations A, B, and C the metric on a node is compared with the run-
ning threshold. The indicators OIK and BAD signify, respectively, that
the metric is above or below this threshold.

In operation D, the statement “tighten threshold” means that the
running threshold is to be increased until it lies just below the value of
the metric on the node reached by the decoder. Notice that the threshold
is increased only when a node is reached for the first time. Otherwise
looping would occur.

i This chart is based on a chart suggested by Prof. I. M. Jacobs of M.IT. It
is equivalent to the flow chart of Ref. 2.



156 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1966

P
T e — — RUNNING
° THRESHOLD
E \s}
[
w
: —
/ _—~ENTER SEARCH MODE
ok A R NN o AN (NN I O O
‘\.
“THRESHOLD REDUCED

LENGTH =—>
Fig. 5 — Threshold reduction, b = 2.

To further clarify the operations of the flow chart, we make the follow-
ing observations: (1) Forward searching on a path whose path metric
continues to grow is performed by operations A and D, (i%) the searching
required after the searched path crosses the running threshold from
above is performed by operations B, E, C, and D, (i%%) the running
threshold is reduced only if it is found that all paths cross this threshold
from above (see Fig. 5). This last observation deserves expansion. When
the decoder observes that the path under examination violates the run-
ning threshold, it looks back, one node at a time, to find a path which it
might extend forward. If, after a number of backward and forward
moves, the decoder decides that all paths examined violate the running
threshold, it reduces the value of this threshold and repeats the search
until a path is found which remains above the new lower value of the
threshold. (If there is more than one such path, the decoder follows that
path which has the “most probable” branches.) The decoder then con-
tinues to extend this path,

We now go on to discuss a particular buffer design and to examine
the dynamics of the decoding operation. We shall return to the discus-
sion of this section in a following section while discussing a random
variable of computation.

2.4 Dynamics of the Decoder

A buffer designed to smooth the delay experienced by data arriving
at the decoder is shown in Fig. 6. Data arrives from the left, is stored
in sections corresponding to tree branches and progresses through the
buffer at the rate at which it arrives. Storage is reserved below each
branch for tentative source decisions. A safety zone is provided so that,
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should a buffer overflow occur, data in this section will be declared
unreliable and not released to the user.

Two pointers are shown on the buffer of Fig. 6. With these pointers
the decoder operation may be traced. The “search’” pointer locates the
received branch currently being examined. The “extreme” pointer
labels the latest branch ever examined. When the channel is relatively
noise-free the two pointers hover at the left-hand side of the buffer.
During a noisy interval, searching is required and the search pointer
drifts to the right and away from the extreme pointer while the extreme
pointer drifts to the right at the data rate. The two pointers become
superimposed and move to the left after the noisy period has been passed.
(We assume that the decoder has a computation rate which is twice or
three times the average required computation rate.)

Should the channel experience a severely noisy period, the search
pointer may drift to the far right-hand side of the buffer at which time
the decoder will quite probably release an erroneous source decision to
the safety zone. This spells trouble because thereafter the decoder
searches on incorrect paths and is likely to do a large amount of con-
tinuous searching. Additional decoding errors will then be released to
the user. This event we call buffer overflow.

Since buffer overflow can be detected by the location of the search
pointer, the user can be so informed. However, no known techniques
exist for retrieving the decoder from the overflow state once it has
entered this state other than a restarting of the decoding process. This

RECEIVED
BRANCHES
— e e @ e 8 (11

DECODED
EMPTY DATA
T SAFETY
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EXTREME

LOGIC, TREE GENERATOR

Fig. 6 — Buffer.



158 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1966

implies that either a feedback link has to be available or that periodic
restarting is employed. Overflow, then, is a serious event. Since it can
be argued the probability of an overflow is generally much larger (for
a properly chosen code) than the probability of an error without overflow,
it is, therefore, a most important consideration in the design of a se-
quential decoder.

In the next section we begin the analytical treatment of the overflow
probability. Our intent is to indicate the dependence of this probability
on the encoder and decoder parameters.

2.5 Static Computation

The overflow probability, Psr(N), is defined as the probability that
the buffer overflows on or before the Nth source decision is released to
the safety zone. It is this probability which is of primary concern in
the design of the decoder. Unfortunately, both experimental’ and
analytical’ investigations of Pgr(N) have produced only estimates of
this probability and these estimates depend upon a heuristic connec-
tion between Pazr(N) and probabilities which have either been deter-
mined experimentally or bounded analytically. We shall be concerned
with the analytical bounds and shall present an interpretation of these
bounds.

Since Pyr(N) is not amenable to direct analysis we shall be concerned
with a random variable of computation which we call “static”’ computa-
tion. This is a computation associated with a node of the correct path.
We assume that the decoder reaches a node of the correct path, say the
gth, and we define static computation, ', as the number of computations
required on the gth correct node and on all nodes on paths branching
from this correct node except nodes on the correct path. This set of
nodes is ealled the “incorrect subset” associated with the gth correct
node. (See Fig. 1 where g = 2). A computation on a node is defined as
a forward or backward “look” from a node (See the flow chart of Fig.
4).

The analytical results of this paper are concerned with bounds on the
cumulative probability distribution of the random variable of static
computation C, namely, P[C = L]. We shall determine the behavior
of P[C' = L] with the distribution parameter L. Before we do so, how-
ever, we develop an upper bound to € to be used later in developing an
upper bound to P[C' = L]. We begin by labeling nodes in the incorrect
subset.

Each node in the gth incorrect subset can be labeled uniquely with a
doublet (m, s). We take the index s as a measure of the “penetration”
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of a node in the incorrect subset. We say a node has penetration s if
it is separated from the correct node by s branches. The correct node
itself is at penetration zero. The index m indicates the position of nodes
at penetration s counting from the kottom of the incorrect subset (see
Fig. 1 where node (3, 2) is shown). We define M(s) as the number of
nodes at penetration s and have 1 £ m £ M(s) where

1 s=0
M(s) = (4)
b — 1) s>0

and b is the number of branches at a node. (Note that M(0) = 1 since
the correct node has penetration zero.) Then, each node is uniquely
labeled by a doublet (m,s).

To develop an upper bound to the random variable €' we continue
the discussion of Section 2.3. Assuming that we have reached the gth
node of the correct path, defining D as the smallest value of the path
metric on the remaining portion of the correct path and letting 7’5 be
the threshold just below D (see Fig. 7), we see from observation (#77) of
Section 2.3 that no threshold lying below T is ever used. A lower
threshold would be required if all paths eventually crossed T'p but, by
definition, at least one path, the correct path, remains completely above
Tp.

Consider a particular incorrect node (m,s) with metric dy + d*(m,s),
where d; is the value of the metric on the path terminated by the gth
correct node and d* (m,s) is the remainder. If the thresholds are defined
by T: = iy, Lo > 0, — » < i < o, and if dy + d*(m,s) is separated
from Ty by k such thresholds (including T), then the decoder can
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Tig. 7 — Typical path trajectories and the minimum threshold, 7'» .
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look at node (m,s) with at most k thresholds.f It can be shown that with
each threshold no more than (b + 1) computations can be performed
at node (m,s), i.e., one backward look and b forward looks from (m,s).
Since this is the case, we can define a random variable which counts
the number of thresholds between the value of the metric on node (m,s)
and threshold 7'» and we can use this random variable to bound C. To
simplify the analysis, however, we shall define a random variable z; , (m)
which allows us to everbound the number of thresholds between the value
of the metric on node (m,s) and threshold 7'y , including T'» . Represent
the metric on the correct path of length ¢ + r by dy + d.(@. , 5;) where
@, , B, are the portions of the correct and received paths extending be-
yond the gth node, respectively. Then, we have the following definition
for z; ., (m):

(1 d*(mss) g Tf—l ] dc('ar y ﬁr) é TH—] ,
Zia (7"') = some r = 0 (‘5)
0 otherwise.

We now argue that > %« zi.(m) overbounds the number of thresh-
olds between the value of the metric on node (m,s), do + d*(m,s), and
threshold T, including this threshold. Let do, the value of the path
metric on the correct path up to and including the gth node, be between
thresholds 7" and T + { . Then, if the metric on node (m,s) were T + £
instead of do, the number of thresholds with which (m,s) would be ex-
amined would be increased. Similarly, if the path metric on the correct
path of length g + 7, do + d.(4, , 5,), were replaced by T' + d. (4,,v,), the
computation on node (m,s) would again be increased. These observations
are used to define z; ,(m) in such a way that > e w 2i.s (m) overbounds
the number of thresholds between (m,s) and T'p .

We have stated that no more than (b + 1) computations are needed
for each threshold lying between (m,s) and 7'p . Then, we overbound
the random variable of static computation on nodes of the gth incorrect
subset, C, by

S

M(s
CO+1) X 34 zlm). (6)

i=—=0 s=0 m=l1

This bound will be used in overbounding P[C = L].
In Section III the analytical results will be delineated and interpreted
and the upper bound to P[C' = L] will be derived.

t This may be deduced from the flow chart of Fig. 4.
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III. THE DISTRIBUTION OF STATIC COMPUTATION

Static computation has been defined as the computation performed in
a particular incorrect subset of the tree code. A lower bound to the proba-
bility distribution of this random variable has been obtained, and is
presented elsewhere." An abbreviated derivation of an upper bound to
this distribution will be presented in a following section. The essence of
the lower bound argument is contained in the following section.

3.1 Behavior of the Distribution

It has been found®” that the distribution of static computation,
P[C = L] behaves as L5 for large L. We shall now present several simple
intuitive arguments which explain this behavior.

If noise causes a large dip in the value of the correct path metric in
the neighborhood of the gth correct node (see I'ig. 7) then, the decoder
will not be able to discriminate between the correct path and incorrect
paths. Thus, much computation will be required. Since the number of
paths in the incorrect subset grows exponentially with penetration into
this subset, the number of computations required will grow roughly as
an exponential in the length of the correct path dip or the duration of
the interval of high channel noise. Hence, the static computation grows
exponentially with an interval of high channel noise. On the other hand,
an interval of high channel occurs on the DMC with a probability which
decreases exponentially with its length. It is the balance between these
two exponentials which is responsible for the behavior of the distribution
of static computation. Random variables with distributions of this type
are known as Paretian random variables and they appear in random
walk problems,® in the distribution of incomes,® in error clustering
on the telephone channels'® and many other places.™

3.2 Random Code Bound on the Distribution

The technique used in this section to overbound the distribution of
computation contains two major steps. In the first step, the distribution
is bounded in terms of the moments of computation using a generaliza-
tion of Chebysheff’s Inequality. In the second step, the moments of
computation are averaged over the ensemble of all tree codes. Together
the two steps generate a random code bound to the distribution. This
argument shows the existence of codes having a particular upper bound
to their distribution function. The generalized Chebysheff Inequality is
stated below.
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Lemma 1: Let C' be a positive random variable. Then,
PIcz Ll £C?/L”, pz0. (7)

The “tightness” of this inequality is indicated by two examples.
() For the discrete random variable which assumes values 0 and ¢
with probabilities 1 — @ and a, respectively, the bound is exact when
L = ¢y. (#1) For the continuous random variable which assumes values
greater than or equal to one with probability density B/c’*!, the exact
form of P[C = L)]is 1/L? and the bound is 8/(8 — p)L”forp < 8. There-
fore, as p approaches 8 the coefficient in the bound becomes indefinitely
large while the exponent approaches the true exponent. Since the dis-
tribution of static computation is Paretian, this same behavior appears in
the random code bound derived in this section.

The random variable of computation C has been overbounded by (6).
It should be clear that moments of the bound on € will be difficult to
evaluate due to the many crossterms. Much of the difficulty is avoided
through the use of Minkowski’s Inequality’ which is stated below.

Lemma 2: Let 2, , 22, - -+ , Ta be a set of positive random variables. Then,
for p = 1 and for every n we have
1ip

i=1

(Z": fc;)P = é . (8)

Applying this inequality to the bound on €' we have

" = (b+1) iim

i=0 s=0 \ m=l

1/p

o o TEm———in )
+(b+1)2 2 (Z Z—a,-(m))

i=0 =0 m=1
In this form, moments are taken of the sum of the random variables
zi..(m), 1 £ m = M(s), with both the threshold 7T'; and the penetra-
tion s fixed. (See the definition of z; ,(m) in (5).)
To further bound C? we make the following expansion for integer
values of p where the indices 7 and s are omitted:

TM(s) NP M) M(s)
(Z Z(M)) = > - 2 zlm)zlme) -+ 2(m,) . (10)

m=1 mp=1 -mp=1

Since such an expansion does not hold for noninteger p, we limit our
attention hereafter to integer p. We now proceed through several count-
ing arguments to put (10) in a manageable form.
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Since the random variable z (m;) z(ma) - - - 2(m,) assumes the value 1
only when all implied events occur simultaneously, the expectation in
the right-hand side of (10) is the probability of the joint occurrence of
all implied events. Now it can be seen for p = 4, say, that

2(5)z(1)2(16)z2(5) = 2(16)z(5)z(5)z(1) = 2(1)z(5)z(16)

since z(-) = 1 or0 (so that 2(5)z(5) = 2(5)). Hence, z(m,) - -+ z(m,)
is independent of the order of the m; and equals z(6,) --- z(8,) where
@y, --+,0, are the distinet elements among m; , my, --- , m, . Conse-
quently we can write”

M () M)
. Z z(my) - -+ zlm,)
my=1 mp=1
Min(M(s).2) (11)
= > W(t,p)z(6,) --- z(8,)
t=1 All sets of ¢
distinet elements
(01, --- . 0]

where W (¢,p) is the number of p-tuples (my,ms, ---, m,) which con-
tain ¢ distinet elements. We now bound W {¢,p).

W (¢,p) may be viewed as the number of ways of placing one ball in
each of p distinguishable cells where the balls are of ¢ different colors
and each color must appear at least once. The number of such collec-
tions of p balls is less than the number of collections one would have if
we include the situations where one or more colors do not appear. This
larger number is the number of ways of placing ¢ different elements in
each of p distinguishable cells, or ¢*. Therefore, W {t,p) = t".

To underbound W (¢,p) we now establish that W (t,p) = tW (t,p — 1).
Consider W (t,p — 1), the number of ways (p — 1) balls of ¢ different
colors may be placed in (p — 1) distinguishable cells with no cell empty.
Consider extending the collection by placing one additional ball with
one of the ¢ colors in a pth cell. This new collection contains (W (t,p — 1)
items. It cannot contain more items than does the collection of W (¢,p)
items because one color appears at least twice and every other color at
least once, establishing the desired inequality. Iterating this inequality
(p — t) times and observing that W (¢,t) = t!, we have W (t,p) = " 'tl.
The two bounds are summarized in the following Lemma:

Lemma 3: For t £ p we have

Vorte 't" £ Witp) £ 1 (12)
* Thc' upper limit on ¢ indicates that (m,, -++, m,) contains no more than the

smaller of M (s) and p different elements,
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Proof: We use the fact’ that
thz i N 2mt e Q.E.D.

The two bounds indicate that W (¢,p) grows with ¢ primarily as ¢* for
large p.

Before we proceed to the next counting argument we motivate our use
of this next argument by presenting a result which is too long to be derived
here. The probability z;,(61) --- z:..(6.) is the probability that nodes
(6,,8), -+, (6,,8), all at penetration s in the gth incorrect subset,
simultaneously lie in metric above threshold 7;_, = (i — 1) t while
the correct path falls below 74 somewhere following the gth correct
node (see (5)). An overbound to this probability is given below. The
average of the product of the z’s is taken over the ensemble of channel
transitions and the set of all tree codes. It is at this point that the random
code technique is used.

—— 7 a ) tolt/ (148)—agl q—italt/ (1+1)+ag]
zlu(al .-'zlﬂ(al\ < {20 ’ 9 o ¢
[alt/ (14+8)] (R;—R) —all, —rol logR—p;(op)] (13)
-2 12 J Z 2 -
ro=l1

Here a is the number of branches on the paths terminated by nodes (6, , s),
., (8,, 8), exclusive of branches preceding the gth correct node, and

1 oo K Py, Lap 141
(o) B 1 F tIOEE ;ﬂ% (EP [ (Jy'}’)u)] ) (14)

K
f(yj) é ,; pr.-P(y,- ‘ :1‘-;-)
where oy = 0. Also,

1 J K 1+t
R4 — log E. (LZ} ka(.w|ﬂ'k)”'+') . (15)
The probability assignment [p,} is the assignment given to digits in a
code when using the random code argument. In the bound of (13) there
exists a value of oo, —(£)/(1 + ) < g0 = 0, for which the sum on ro
converges, as long as R < R, . Examination of (13) will show that the
bound depends on the paths terminated by nodes (6:,s), (62,s), -+,
(6., s) only through «, the number of branches which they contain,
exclusive of branches preceding the gth correct node. (For example, see
Fig. 8 where a set of paths is indicated with checks and the branches
which they contain are labeled with 1.) This being the case, we must
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Fig. 8 — Topology of tree paths.

then group together in (13) all paths having the same number, «, of
branches. Call this number of paths N(a). The following lemma pro-
vides a bound on N,(a).

Lemma 4: Ni(a) £ (0 — 1)I(s — 1) 72", (16)
Proof: The proof is by construction. We first show that
Ni(a) £ (t — 12" for s= 1.

Consider placing the ¢ paths in the tree, one by one. The first of the ¢
paths placed in the incorrect subset of the tree (containing M(s) = b°
paths) may assume no more than b* positions. A second path connecting
with the first, but having d, separate branches, may assume any one
of b™ positions since its point of connection to the first path is fixed
by its length d; . A third path with d» branches distinet from the first
two may connect to either path and terminate in b positions, that
is, it can assume no more than 2 b™ places. The tth path having
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d,—, branches may terminate in any one of b*~' positions; hence, can
be situated in no more than (¢ — 1) b**-* places. Thus, given that the
second path has d; branches distinet from the first, that the third path has
d, branches distinct from the first and second, ete., the number of ar-
rangements of the ¢ paths cannot exceed (¢! — 1)!0% where

a=s+d+ -+ d,

the number of branches on these paths. All that remains is to determine
the number of ways that values may be assigned to dy,da, -+ ,dis.
(Note that d., is fixed given « and dy,ds, -+ ,d.,2.) Since each
number d; represents a portion of a path, 1 = d; = s, we may assign
values to dy, dz , - - - , di_s in N0 more than s'~* ways. Hence, the number
of arrangements of ¢ paths containing a branches cannot exceed
(t — 1)!s'"*b". Observing that b = 2'% by (1) we have the desired re-
sult for s = 1. We also have s = « < st since one path contains s branches
and the number of branches on all paths cannot exceed st. Now, when
s = 0, the bound on N,(«) is zero. We must have N,(a) = 1 when s = 0,
so that we replace s by (s + 1). Q.E.D.

Combining all terms we have the following random code bound on
the moments of static computation:

CTTJ”" [Z (S + 1)1 1p 9 e exp (_;i(le;__pf)):l (2£|)(l—n)pp”1]p

{(2 2 exp | —rlloR — py(o )]])”p [iﬂ 2
( ite(3 + a)):l (17)
+(Srew - rer - wen) [

exp (+ ito(p/(1 -; p) + a'))]} _

It can be shown that ¢ and ¢ can be chosen for R < R, such that
a> —4 ¢ < —(p)/(1 + p), aR — py(e) > 0 and dR — uy(c) > 0,
that is, suuh that the bound converges for B < R,

We now have enough results available to draw the central conclusion
concerning moments of the random variable of static computation, C.
For integer p, €7, as an average over the ensemble of all tree codes, is
finite for source rates R strictly less than the rate R, (given by (15}).
Since it can be shown that By = Ry = Ry = -+ 2 0, we have for any
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given rate R that moments €, C?, ---, C* are bounded where k is the
largest integer such that B < R:. We cannot determine from this
bounding argument whether moments C*+, 2, ete. are finite or not.

Returning to Chebyshefi’s Inequality we overbound the cumulative
probability distribution of the random variable of static computation,
P[C = L], using the bounds on the moments.

Theorem 1: With a probability of at least 0.9, a tree code drawn from the
ensemble of lree codes will have a distribution of stalic computation,
PIC" = L), which is bounded by 10C* /L* where I is the largest integer such
that R < Ry, R s the source rale, Ry is given by

J

1 K : 1+k )

Ry = — ;log 2 (Z Pkp(%']l'k)m“) (18)
v =1 \k=1

and C* is the random code bound on the moments of static computation.

For any larger k a finite bound on C* is not known.

Proof: Over the ensemble of tree codes P[C = L] is a random variable.
Then, if we let a represent P[C’ = L], we have

= 3 ap(x) = 10zPr = 10i)

22107

from which we have that Pla < 103] = 09.
Q.E.D.

This theorem summarizes the major result of this section which is
that the distribution of computation decreases as fast as L™ where k
is the largest integer such that R < R, . We note that C* becomes in-
definitely large as R approaches R, . This was predicted by the discus-
sion which followed the introduction of Chebysheff’s Inequality.

In the next section we interpret the bounds on the distribution of
static computation and relate these bounds to the probability of a
buffer overflow.

1V, STATIC COMPUTATION AND THE OVERFLOW PROBABILITY

The upper bound to the distribution of computation given above and
a lower bound presented elsewhere’ both are algebraic functions of the
distribution parameter, that is, P[C = L] behaves as L 8> 0, for
large L. In the following sections we define a quantity called the “com-
putation exponent’” which extracts from P[C' = L] its behavior with L.
The computation exponent is compared to known exponents on the
probability of error and with some experimental data. Also, a heuristic
connection between the overflow probability and the distribution of
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static computation is established. We begin with a discussion of the
computation exponent.
4.1 The Computation Exponent

The “computation exponent,” e¢(R), as defined below, is a measure
of the tail behavior of P[C’ = L], that is, its behavior with L for large
L.

(19)

— >
o(R) AR {fm — 108 PIC 2 LI
Lo log L

If P[C = L] behaves as L™ for large L, then g = e(R)/R. We con-
sider the computation exponent e(R) rather than g because e(R) is a
bounded function while 8 is not. We now state bounds that have been
obtained on e(R) by over- and under-bounding P[C’ = L]. We note
that a channel is “completely connected” if all of its transition proba-
bilities are nonzero, i.e., all output symbols can be “reached” from
every input symbol, the normal physical situation.

Theorem 2: Codes do not exist for the completely connected DMC which
have a compulation exponent greater than & (R) where’

é(R) =A (—U)(R - -‘Tmin) (20)
and ¢, —1 = o = 0, is the solution to
R = max (o) . (21)
k a

Here, v (a) is given by

J
vi(o) A logs Z P(yj|.1-k)'+’f(yj)_"
=1
; Py, | )
Imin é 1 — L
R ()
and

fly) = EmP(%)-
k=1 Lk

Theorem 3: On the DMC, codes exist which have a compulation exponent
greater than or equal to ¢(R) where

¢(R) = pR (23)
andp = 1,2,8, -+, 1s found from Ry;n = R < R, . R, 1s given by (18).
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The probability assignment {p.} appears in the random code argu-
ment and in the definition of the metric through the function f(y,).
Although this will not be done here, one can choose {p to maximize
e(R).

As an example, the two bounds are sketched in Fig. 9 for the Binary
Symmetric Channel (BSC) with crossover probability of p» = 0.01. In
that figure we have chosen p, = 3, &k = 1, 2, For this probability assign-
ment & (R) is zero for R greater than or equal to channel capacity. For
other assignments & (R) may intercept the rate axis at a rate which ex-
ceeds channel capacity.

4.2 An Faxperimental Result, A Conjecture and An Interpretation

Recently a computer simulation was made of the Fano algorithm for
a number of channels including the BSC. This simulation study’ was
performed at the M.I.T. Lincoln Laboratory under the direction of
K. L. Jordan. Mr. Jordan has generously provided the author with
“data from a particular simulation of a BSC with crossover probability
of po = 0.01.

In this simulation, a convolutional tree code of the type deseribed in
Section 2.1 with b = 2 was used (hence; source rates of R = 1/1, ] an
integer were available). The generator for this tree code was optimized
in the manner found in Ref. 1.

‘[ T
\i\ Qo
| 1 1
E — Po g Po
| \\ 2 a0 2
4 . -

- P 1 \ :
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Fig. 9— Computation exponent bounds for the BSC with po = 0.01.
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An empirical distribution of a particular random variable of compu-
tation was measured. This random variable differs from static compu-
tation somewhat but one can argue heuristically that it is within a small
multiple of the random variable of static computation when either
random variable is large. The random variable measured in the simula-
tion is the number of computations required to advance one node into
the tree. For example, when the channel is not noisy, a forward ‘look”
will indicate that a forward move is possible and only one computation
will be necessary; however, if the channel is noisy, the decoder may
have to do much backward searching before a path is found upon which
the point of deepest penetration into the tree can be increased.

The empirical distribution of computation is shown in Fig. 10 for
R = %. The corresponding computation exponent for this rate is shown
in Fig. 9. The data from which the empirical distribution was deter-
mined represents the transmission of over one million channel digits.
Although data at rates R = 3, 1 was available, it was not deemed re-
liable and not used because few cases of large computation occurred.

The experimental computation exponent and the derivation of the
lower bound to e(R), namely e(R), leads one to conjecture a “‘true”
value for the computation exponent.

| L ]

5 [ T T

5 — } |
T . \
{ 1 | N
2
2.96 [,
1074 | [ | L L1l I Y |
1 2 4 6 8 10 20 40 60 80 100 200 400

L

Fig. 10 — Empirieal distribution of computation.
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Congecture: T For the metric used in this paper the computation exponent
for the Fano algorithm cannot exceed e”(R) and there exists codes
with this computation exponent where ¢*(R) is given by

e'(R) = pR, for R =R, (24)

Here p assumes all nonnegative, real values and R, is given by (18).
Here we use that probability assignment {p.}, for each p that maximizes
R,.

The conjectured exponent for the BSC is shown in Fig. 9. The ex-
perimental point and ¢*(R) at R = % differ by 5 percent, an excellent
match.

The conjectured exponent has an interesting interpretation in terms
of the probability of error with “List Decoding.” ™" With list decoding,
the decoder makes a list of the & a posteriors most probable codewords.
If this list does not contain the transmitted codeword, an error is said
to occur. Random code bounds have been obtained on this probability
of error, This probability of error has an exponent which we call E,(R)
for list size & (see Fig. 11). E.(R) may be found from an exponent
E.(R) by Ex(R) = E.(R) for R." < R where R," is the rate at which
E.(R) has slope -k and for R < R:", E.(R) is the tangent to E.(R)
at B = R;". The rate-axis intercept of this straight line is R .

The “list decoding exponent”, E.(R), depends on the random code
assignment probabilities {ps}. If that set {ps is chosen for each rate
which maximizes E.(R), we have the “sphere-packing’”"® exponent.
(See Fig. 11.) This is an exponent on the probability of a block decoding
error which cannot be exceeded by any block code with any decoding
algorithm even when a feedback channel is available. Thus, the “list
decoding exponent’” and the “sphere-packing exponent’ are funda-
mental.

The conjectured computation exponent, ¢*(R), can now be related to
E»(R). To find e¢*(R) draw a line from R on the rate-axis which is
tangent to F,(R). (See Fig. 12.) This line intersects the exponent axis.
The rate-axis intercept and the exponent-axis intercept define a point
on ¢ (R). Using this construction procedure every point on ¢ (R) may

t Note added in the preparation of this paper: Recently I. M. Jacobs and E.
Berlekamp have underbounded the probability of buffer overflow or undetected
error using lower bounds to the probability of error with list decoding. They have
found that this bound has a computation exponent which agrees with the con-
jectured exponent given above and have shown that this bound grows linearly
with the number of source digits processed by the decoder before overflow. Also,
H. Yudkin has recently upper bounded the moments of static computation for
integer and noninteger moments. The computation exponent implied by these
bounds establishes the conjecture.
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Fig. 11 — List decoding exponent.

be generated. Hence, e¢*(R) may be oblained by a simple and natural
construction from E.(R).

4.3 Heuristic Connection With The Overflow Probability

In this section we establish a heuristic connection between P[C = L]
and the probability of a buffer overflow Pgp(N), the probability of an
overflow before the Nth source decision is released to the safety zone.

We begin by noting that Pzr(N) is monotone increasing in N, hence
that Psr(N) = Pgsr(1). We first relate Ppr(1) and Pg[C = LJ.

Referring to Fig. 7, an example of a correct path trajectory which
causes large static computation, we develop the following argument.
If the random variable of static computation, C, is large, most of the
computation will be performed on nodes which are close to the reference
node. For computation to be performed on nodes distant from the
reference node, the correct path must dip sufficiently at some distant
point so that it returns at least to the level of the reference node. (Incor-
rect paths typically decrease in metric.) Since the correct path increases
on the average, such a dip must be very large and thus occurs with
much smaller probability than do dips close to the reference node.

If most of the static computation is done on nodes close to the refer-
ence node, we may associate such computation with dips in the correct
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path. Then, since all incorrect subsets in the neighborhood of a path
dip will have approximately equal amounts of computation done in
them, the total computation due to a correct path dip will be a small
multiple of the static computation in a particular incorrect subset in
the neighborhood of the dip. Consequently, if about N,, incorrect sub-
sets have equal computation in them, say Cy, and N,Cs is enough
computation to cause overflow on the first decoded digit, then, heuris-
tically, Pge(1) = P[C = C,]. To find Cy, assume that the buffer can
store B tree branches of [ digits each, that each channel digit arrives in
r.n seconds, and that the decoder can perform one computation in 7,
seconds. Then, the search pointer will be forced back to the safety zone
if more than IBr./ 1, computations are needed to decode the first digit.
Setting N.,Co = [Bra/7 we have

Par(1) =2 PC 2 1Bra/Nawro] (25)

as our heuristic approximation.

If dips in the correct path are infrequent and if the decoder operates
at about twice or three times the speed required to do the average
computation in real time, then we may approximate Pyr(N) by assum-
ing independence of the dips which cause overflow and have

Pur(N) & NPgp (1) (26)

This last argument is weak and should, at best, serve as a rule of thumb.

@

COMPUTATION EXPONENT

Fig. 12 — Construction for e*(R).
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The argument leading to the connection between Pgp(1) and the dis-
tribution of static computation is stronger and is partially supported by
the experimental evidence cited above.

From (24), (25), (26), and the fact that the distribution of static
computation is Paretian, we deduce that the overflow probability, when
it 78 small, behaves as N [Nuwro/IBra)’ where B is related to the compu-
tation exponent e(R) by 8(R) = e(R)/R. Thus, it is clear that the
overflow probability is relatively insensitive to the buffer size B and
the machine speed 1/7, but that it depends heavily on the source rate
R. (Note that changing the duration of the channel symbols, .. , is
tantamount to changing the channel and thus e(R).) Since e(R) in-
creases with decreasing rate, we deduce that g(R) is more than doubled
by a halving of the information rate or that the overflow probability is
more than squared.

V. CONCLUSIONS

It has been said that the buffer overflow probability is of primary
concern in the design of a sequential decoder. We have examined this
buffer overflow probability and have shown that it is relatively insensi-
tive to the buffer capacity and to machine speed for moderate speeds
and capacities. We have also indicated that the overflow probability
is a strong function of the source rate. In addition, bounds on the de-
pendence of the overflow probability on the source rate were given and
related to exponents presented in the coding theorem.

We have argued that the particular sensitivites of the overflow prob-
ability exist because the distribution of static computation is an algebraic
function of the distribution parameter; i.e., P[C' = L] behaves as L4,
8 > 0, for large L. In turn, it has been observed that such behavior
arises because the random variable of static computation assumes ex-
ponentially large values with exponentially small probabilities. This
exponential growth of computation has been shown to be basic to se-
quential decoding.’

While the probability of overflow is relatively insensitive to many of
the machine parameters, these parameters can be so chosen and the
source rate can be so restricted that the probability of a buffer overflow
can be made very small. To achieve the small overflow probabilities, the
source rate for many channels need not be restricted to be less than
about 90 percent of R,.” (R, is generally known as Ryomp , the computa-
tional cutoff rate defined by Wozencraft.! For many channels, Reomp is
a substantial fraction of channel eapacity.)
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