A Mathematical Model of a Vibrating
Soil-Foundation System

By G. F. WEISSMANN
(Manuseript received October 8, 1965)

The displacement amplitudes and the phase angles of vertically vibrating
rigid circular plates on an elastic isotropic homogeneous half-space have
been expressed in terms of the mass of the plate, the static spring constant
multiplied by a frequency-dependent function, and a damping term. The
results have been modified to apply to vibrating soil-foundation systems.
The effects of hysteresis damping, nonlinear load-deflection characteristics
of soils, the static prepressure, the change of soil properties with depth, and
the difference between static and dynamic stress-strain relations of soils
have been considered. The mathematical model has been compared with
data on vibrations of circular foundations. The agreement between the model
and the experimental data for cohesive soils is very good.

I. INTRODUCTION

Numerous attempts have been made to develop a mathematical
model capable of representing the steady-state vibrations of a soil-
foundation system. E. Reissner! solved the problem of vertical vibrations
of a rigid circular plate on a semi-infinite elastic solid. A sign error in
his work was discovered by O. J. Sechter? who presented also a corrected
analytical solution for this case. T. Y. Sung?® continued this work for
different pressure distributions between the plate and the solid. G. N.
Byecroft! presented approximate solutions of the steady-state vibrations
for the degrees of freedom of a rigid circular plate on an elastic isotropic
half-space and on an elastic stratum. Since the mathematical solutions
become rather difficult, this approach has been used only for a strongly
idealized soil, namely the semi-infinite elastic isotropic solid. Another
approach to this problem is the determination of a simplified mathe-
matical model capable of deseribing the vibrations of a soil-foundation
system. O. J. Sechter? showed that the amplitude-frequency response
curve of a vibrating system consisting of constant mass, viscous damp-
ing force, and linear spring constant differs only slightly from that
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caused by vertical vibrations of a circular plate on an elastic half-space,
provided the mass of the plate is multiplied by a factor and the damping
coefficient is chosen appropriately. This approach has been extended
by M. Novik®® who introduced a frequency independent nonlinear
restoring force. G. Ehlers’ attempted to simulate the soil-founda-
tion system by assuming the foundation to be supported by a trun-
cated pyramid of soil. This approach was used also by A. Pauw,’
and H. A. Balakrishna Rao and C. N. Nagaraj.® However, none of the
above mentioned models was capable of representing the amplitude-
frequency response curves of several soil-foundation systems investi-
gated by R. K. Bernhard and J. Finelli,'® who concluded that an equiva-
lent system could not be analogous to a simple spring-mass system
with viscous damping and linear elasticity.

The purpose of this paper is to present a quasilinear system sufficiently
adaptable to represent the amplitude-frequency response and phase
angle-frequency curves of circular foundations on soil.

II. THE VIBRATIONS OF CIRCULAR FOUNDATIONS ON AN ELASTIC HALF-
SPACE*

The vertical steady-state vibrations of ecircular foundations on a
homogeneous elastic isotropic half-space have been investigated analyti-
cally by E. Reissner,! O. J. Sechter,® T. Y. Sung,? and G. N. Bycroft.*
According to their work the displacement amplitude becomes

_F 2+ f
W= G 4/(1 F boao1)? + (boaof2)® (1)

The phase angle is

- f2 :
e P R R (2)

where
yo = displacement amplitude of foundation,

Fy = force amplitude of harmonic exciting force,
G = shear modulus of half-space,

ro = radius of circular foundation,

by = mo/pre. = mass ratio,

mp = mass of circular foundation,
p = mass density of half-space,
ay = rawV/p/G, = frequency factor,

* The letter symbols used in this paper are defined where they first appear and
are arranged alphabetically, for convenience or reference, in the Appendix.
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& = phase angle between exciting force and displacement,
(7, = dynamic shear modulus of half-space,
w = angular frequency,

fi and f; are functions of the dimensionless frequency factor a,, of
Poisson’s ratio » of the half-space and of the assumed pressure dis-

tribution between the half-space and the foundation.

T. Y. Sung® determined the functions f; and f, for different contact
pressure distributions and different Poisson’s ratios in terms of power
series of the frequency factor a, for ay £ 1.5. The values of these fune-
tions for a pressure distribution caused by a rigid circular plate are
shown in Fig. 1. The functions f, and f. as determined by G. N. Bycroft*
differ somewhat from those used in this paper which are based on T. Y.
Sung’s’ work. It should be noted that for zero frequency, f, approaches
a finite value and f» becomes equal to zero.

For zero frequency, (1) becomes
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Fig. 1 — Functions f, and jf; for rigid eircular plates.
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where
10 = lim 3, = displacement of foundation due to static load Fy , and

w-=0

fio = lim f; = value of f; for zero frequency.

ag—>0

From Fig. 1 it follows that the value of fi, can be expressed as

1—v
—fuw = i (4)

Substituting (4) in (3) results in an expression for the displacement of
a rigid circular plate on a homogeneous elastic half-space due to a vertical
static force. This expression is identical to that derived by Boussinesq"
in 1885.

Tt is readily verified that (1) and (2) can be written as

Fy
W = VCa — ml + [CHF (5)
CB
tan ® = o p— (6)
where

c = _Gro_ 46n _ o (7)

fm 1 —w w0 Yo

_ v _ _1—v fi
el S N Ry 8
B — f2f10 _ 1 — v f2 (9)

TR 4 Rt f

C, represents the static spring constant of a rigid eircular plate on an
clastic isotropic homogeneous half-space. Its magnitude depends on
the shear modulus and Poisson’s ratio of the half-space and on the radius
of the rigid plate.

« and B are functions of the frequency factor ay and of Poisson’s ratio
» as shown in Fig. 2. They have been computed using the values of fi
and f» shown in Fig. 1. The values of the functions « and g for » = 0 and
y = } are plotted in Fig. 2 only, because the values for » = ; and v = 3
fall between those shown. Since ap = row v/p/G, , the functions « and 8
depend on the ragnitude of the radius of the plate, o, the frequency, w,
the dynamic shear modulus, G,, of the half-space, and the mass-density
p, of the half-space.
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Fig. 2 — Funections o« and 8 vs frequency factor a, .

The square root of the ratio of the dynamic shear modulus, G, to the
mass-density, p, represents the shear wave velocity, v.,

b = 1/5 (10)
p

It should be mentioned that, for many materials, the dynamic shear
modulus, ¢, , as obtained from wave velocity measurements, is larger
than the shear modulus, ¢, determined by means of static or slow dy-
namic tests.

For large shear wave velocities, the function « approaches one and 3
approaches zero. For this ease, (5) represents the displacement ampli-
tude and (6) the phase angle of a linear vibrating system without damp-
ing. This system consists of the mass of the plate, a weightless spring
with a spring constant defined by (7), and a harmonic exciting force.
It becomes apparent that the functions e and 8 modify this simple
system to account for the additional effect of the mass-density of the
half-space.

The functions « and 8, as shown in Fig. 2, can be expressed with



182 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1966

sufficient accuracy as follows:

2
a=1—ea02=1—s(’3)m2 (11)

B =ba =bh (:;_o)w (12)
where & and b; are appropriately selected constants. The values of € and
b, depend on Poisson’s ratio; e varies between 0.26 and 0.30, and f
between 0.76 and 0.85.

1II. THE PARTICIPATING MASS OF THE HALF-SPACE

H. Lorenz!? introduced the concept of the participating soil mass in
order to explain some results of foundation vibration tests. O. J. Sechter?
proved that the vertical vibration of a circular plate on an elastic half-
space can be expressed, with sufficient accuracy, by means of a constant
mass, a viscous damping force, and a spring constant. The mass consists
of the mass of the plate, m,, multiplied by a factor which accounts for
the mass of the half-space vibrating in-phase with the plate. The dis-
placement amplitudes and the phase angles of such a system can be
written as

Fy

Y= V0 — mo + [bel? (13)

tand® = — ——— (14)

C, — mw?

where

M = My + m, = constant mass,

m, = participating mass of half-space, and

b = damping constant.

Equations (13) and (14) are identical to (5) and (6), provided the
constant mass and the damping constant are selected as follows:

W@ w

blzi’cs. (16)

m

b

This identity is readily shown by substitution of (15) and (16) in (13)
and (14).
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1V. DYNAMIC STIFFNESS

Some investigators, such as W. Heukelom,'* expressed the results
of foundation vibration tests in terms of the dynamic stiffness and the
phase angle. The dynamic stiffness is defined as the ratio of the force
amplitude between the foundation and the subsoil to the resulting dis-
placement amplitudes. The steady-state vibrations of a rigid circular
plate on an elastic half-space shall now be expressed in these terms.

The force acting at the surface of the half-space can be expressed as

F =F — mgj (17)

where

Fo= Fee'"™ = force acting between plate and half-space,

FFy = force amplitude acting between plate and half-space,

¥ = phase angle between F and the resulting displacement,

F o= Fe"™"™*™ = exciting force acting on plate,

y = yee' = displacement of plate,

i = —yw'e™ = acceleration of plate,

® = phase angle between /" and the resulting displacement,
i ==l
The force amplitude acting between the plate and the half-space becomes
]'-,0 = ‘\/Fu2 =+ 2F0’ﬂ’£nyuw2 cos P + (muywﬂ}z (18)

and for the phase angle between the force acting at the surface of the
half-space and the displacement, the following expression is obtained:

Fu Si[l <3
t = . 1
an ¥ Fy cos & + moyow® (19)

The dynamic stiffness is defined as the ratio of the force amplitude
acting between the plate and the half-space and the resulting displace-
ment amplitude and becomes, by means of (18),

a - 2y 2
g = Fo_ Fo 1+2Mw2c08¢+(ﬂ—hwn—) (20)
Yo Yo Fy Fo

where
S = dynamic stiffness.

Substituting y, and ®, expressed by means of (5) and (6), in (20),
the dynamic stiffness becomes

S=0CvVa+8 (21)
and by substitution of (5) and (6) in (19), the following expression is
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obtained for the phase angle ¥:
tan ¥ = B . (22)
(2]

Substitution of the values for @ and 8 from Fig. 2 or of the approximate
expression for @ and 8 given by (11) and (12) in (21) shows that the
dynamic stiffness of the half-space is essentially equal to the static
stiffness or the static spring constant, C, . The effect of @ and 8 on the
dynamic stiffness is negligibly small.

Substitution of « and 8 in (22) shows that the phase angle between
the force acting at the surface of the half-space and the displacement
remains always smaller than 90 degrees for values of the frequency
factor, @y, smaller or equal to 1.5.

V. DAMPING

Energy propagation to infinity provides the only damping of the
vibrations of a rigid circular plate on an ideally elastic homogeneous
half-space. The energy dissipated per cycle becomes

D, = ng dy (23)

D, = dissipated energy per cycle,
F = Fysin (ot + @),
¥ = Yo sin wt.
By substitution of (5) and (6) in (23) the following is obtained:
D, = =C.Byc. (24)
The energy required for the deformation of the half-space becomes
U, = %Caﬂfyoz (25)

where
U, = energy required for the deformation of the hali-space.

It should be noted that the energy required for the deformation of the
half-space is equal to the maximum energy stored in the half-space
reduced by the inertia effects of the half-space.

The loss coefficient of the circular plate on the ideally elastic half-
space shall be defined as

_ D _8
"= 50, (26)
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where
7 = loss coefficient of vibrating circular plate.

The loss coefficient of the circular plate on the elastic half-space should
be identical to the phase angle between the force amplitude acting
between the plate and the half-space and the resulting displacement
amplitude shown in (22).

It should be pointed out that both the dissipated energy and the
energy of the half-space are proportional to the static spring constant
C, . The loss coefficient of the vibrating system, however, is a function
of a and g alone. a and 8 are defined by means of (8) and (9). Equations
(11) and (12) are approximate expressions of a and 8.

The medium of the half-space was considered to be ideally elastic and
hence, the propagation of energy to infinity provided the only source of
energy dissipation. However, engineering materials and particularly
soils are not ideally elastic but dissipate energy due to internal friction
if subjected to cyclic stresses. The author and R. R. Hart"” determined
the specific damping capacity or the coefficient of energy absorption of
some granular soils by means of laboratory tests. The specific damping
capacity is defined as the amount of energy absorbed by a unit volume
of the material per unit of energy spent for deformation per cycle. The
specific damping capacity for these granular soils varied between 0.4
and 0.9. D. D. Barkan'® reported values between 0.64 and 0.79 for sand.
For clayey soils the damping capacity varied between 0.2 and 0.6.
Furthermore, it was established that the specific damping capacity of
sandy and clayey soils does not depend on the rate of stress application,
the frequency of changes in the stress, the maximum alternating stress,
or the static prestresses. The loss coefficient is obtained by division of
the specific damping capacity by 2.

n =2 (27)

where
n = loss coefficient of material
¥, = specific damping capacity of material.

The loss coefficient, 5, is considered to be a basic property of a material.
The difference between the loss coefficient of a material, 5, and the loss
coeflicient of a vibrating system, n,, should be noted.

G. N. Bycroft' investigated the effect of internal friction of the me-
dium of the half-space on the functions f; and f, shown in Fig. 1. f; be-
comes numerically smaller and f, greater for small values of the fre-
quency factor, ap . Changes of f; and f; affect the function « and 8 shown
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in Fig. 2 and defined by means of (8) and (9). The effect of such a change
on the function « is rather small and « can still be expressed, with
sufficient aceuracy, by means of (11). The function 8 becomes approxi-
mately

Tow

3=n+blﬂn=n+blT- (28)

Tor small values of the frequency factor, ao, or for high shear wave veloc-
ities and small radii of the plates, the effect of the loss coefficient of the
medium becomes significant.

An approximate expression of the loss coefficient of the vibrating
circular plate is obtained by substitution of (11) and (28) in (26)

Tow
7+ bao 1+ b (?:)

Ns = 1 — E‘ﬂuz = ?‘uw)2 . (29)

1 —e|—
11’
For zero frequency, the loss coefficient of the plate becomes equal to
{he loss coefficient of the medium of the half-space. This is true only
if the loss coefficient of the material is independent of the magnitude of
the applied static and eyclic stresses. The author!” measured the loss
coefficient of circular plates on clayey silt subjected to slowly alternating
loads. The results varied between 0.1 and 0.15. Considering the additional
friction between the plate and the soil, the results agree well with those
obtained by laboratory tests of sandy and clayey soils as reported by
the author!s and by D. D. Barkan.®

VI. NONLINEAR RESTORING FORCE

The static spring constant of a rigid circular plate on an elastic iso-
tropic homogeneous half-space has been expressed by means of (7).
For this idealized medium, the deflection is a single-valued linear func-
tion of the applied force. For engineering materials, and particularly for
soils, this relationship becomes considerably more complex. Due to
the effect of hysteresis damping, the deformation caused by the appli-
cation of an alternating force is no longer a single-valued function. Two
different forces cause the same deformation under the condition of
loading and unloading. Furthermore, the average of these two forces
may be a nonlinear function of the deformation and/or the rate of
deformation. Other factors, such as static preloads and change of the
properties of the half-space with depth, further complicate the forece-
deformation relation.
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In view of the mathematical complexity of strongly nonlinear vibra-
tion problems, it shall be assumed that the nonlinearities of the force-
displacement function within a limited range are small. For this case
the nonlinear force-displacement function can be expressed with suffi-
cient accuracy by means of an equivalent linear funetion.

F, = fly) = Ciyo)y for —yo =y = 4o (30)

where
F, = f(y) = nonlinear force-displacement function, and
C.(yo) = amplitude dependent spring constant.

The spring constant, (',, should be selected in such a manner that the
stored energy at the displacement amplitude of both the nonlinear and
the equivalent linear systems are equal.

vo Vo
U =f F.dy =f fapdy = 3C(yo)y’ (31)
0 0

where

U = stored energy.
The spring constant as a function of the displacement amplitude is
readily obtained by solving (31) with respect to ', . The static spring
constant can frequently be expressed by the following empirical equation:

¢, = Cuyu_" (32)

where
Cy and n are appropriately selected constants.

It should be noted that (32) is an empirieal function which has been
used successfully by the author” to express the amplitude, dependent
load-deflection characteristics of circular plates on some soils. Other
functions may be more suitable to define these characteristics for
different soils.

The amplitude-frequency response curves and the phase angle fre-
quency curves of circular plates on a quasielastic homogeneous isotropic
half-space with hysteresis damping are obtained by substitution of
(11}, (28), and (32) in (5) and (6). For the amplitude-frequency response
curves, biquadratic equations of the frequency as a function of the ampli-
tudes are obtained.

VII. THE VIBRATING SOIL-FOUNDATION SYSTEM

The load-deflection characteristics of cireular rigid plates on soil are
generally expressed in terms of the coefficient of subgrade reaction
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which is defined as the ratio of the average applied stress to the resulting
displacement. The spring constant of a rigid circular plate on soil
becomes then

C, = mro'ks (33)

where
ks = coefficient of subgrade reaction.

By means of (7) and (33) the coefficient of subgrade reaction of cir-
cular rigid plates on an elastic isotropic homogeneous half-space ecan be
expressed as

4G

- (1 — »v)ro’

ks (34)

For this case, the coefficient of subgrade reaction becomes inversely
proportional to the radius of the plate.

The author'’ determined the coefficient of subgrade reaction of a silty
clay experimentally. Circular plates of different radii, ro, were loaded to
produce various average prepressures, p, between the plate and the sub-
soil. This static prepressure was maintained until the creep settlements
of the plates became negligibly small. An average stress, &,, was then
repeatedly added to and subtracted from the prepressure, . The result-
ing displacements were measured. Fig. 3 shows the results schemati-
cally. The coefficient of subgrade reaction, k., is calculated by dividing
the alternating stress amplitude, #,, by the corresponding vertical dis-
placement, ¥, . The results may be summarized as follows:

(7) The coefficient of subgrade reaction decreased with an increase
of the alternating stress amplitude, &, .

(i1) An increase of the static prepressure, p, caused an increase of the

coefficient of subgrade reaction.

(#7) An increase of the radius, o, caused a decrease of the coefficient
of subgrade reaction; however, this decrease was generally smaller
than (34), valid for the elastic half-space, would indicate.

The author and S. R. White™ have shown that the dependence of the
coefficient of subgrade reaction on the static prepressure can be rather
significant for some soils.

S. D. Wilson and E. A. Sibley” have shown that the shear modulus
increases with an increase of the rate of load application. A modulus
value determined from velocity measurements was almost an order of
magnitude higher than that determined by means of static compression
tests. Typical data reported by R. V. Whitman®® show a similar phe-
nomenon. Only for sands, the shear modulii obtained by seismic tests
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Fig. 3 — Coefficient of subgrade reaction.

did not differ much from that determined by means of static compression
tests. Based on these results, it appears reasonable to assume that the
coefficient of subgrade reaction of some soils increases also with an in-
creased frequency of the load application.

Because the static prepressure, j, and the radius, ry, of the foundation
are important parameters affecting the magnitude of the coefficient of
subgrade reaction, k., the mass, mg, of the foundation should be expressed
as

My = — o P (35)

where
g = acceleration of gravity.

Substituting (11), (28), (33), and (35) in (5) and (6), the following
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expressions for the displacement amplitude, s, and the phase angle, ¢, are
obtained:

Fy
Yo = - 2 2
36
1o ks /‘/[1 — {1 + e’} 1c.u"il + [11 + blﬂ)w] (36)
ksg Vs
To

7+ blu—w

tan & = L (37)

1 — 41+ edy’) %wg

G = 2 1/5-9— (38)
Vs P

The resonance frcquency becomes

where

- 1/ _ keg
pil -|— edo’} |:1 + E:—~ k,.g:| (39)

In order to estimate the magnitude of @, (10) and (34) are sub-
stituted in (38) to yield

If,g 4/  dpgGro 1/ e, (40)
(1 — v)Gp w(1 — »)pG,
where

v = pg = density of soil.

For most soils, with the exception of sand, the shear modulus obtained
by means of slow vibration tests is smaller than that obtained by seismic
velocity measurements and hence G/G. < 1. The specific weight of
soils, v, is generally smaller than the average contact pressure between the
foundation and the subsoil, 5, and therefore v/5 < 1. Since the founda-
tion is considered to be rigid, the magnitude of the radius, ro, must be
limited. An increase of the radius r, would require a corresponding in-
crease of the average contact pressure, j. Hence, it is reasonable to
assume that d, is, for many materials, a small quantity and that ed, is
then small compared to one. For this case, (39) can be simplified to

wo & V It/ P- (41)

The amplitude at resonance, yo, , for a constant exciting force, Fy, fol-
lows from (36)
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Fy
Yor =
2 To (42)
T ks [n + o wni’
8

and for a centrifugal exciting force Fy, = maeowo. where m, is the eccentric
mass and e, the eccentricity of the rotating weights:

2
Towo
Myeowso® meeg [1 - E( v, ) il
Yor = — P R AN (43)
w0 K I:ﬂ + b . :| |:1; + b ( owo)]
£l Vg

The loss coefficient at resonance can be expressed by means of (29) and
(43) as

Towo
7+ b ( )
” = = TR (44)
{— e (Lowo) ™0 Yo Malfor
Vs

It is now hypothesized that (36) and (37) describe the amplitude-
frequency response and the phase angle-frequency relation of a rigid
circular foundation on soil, provided the coefficient of subgrade reac-
tion, k,, the shear wave velocity, v,, and the loss coefficient of the soil
i, are determined experimentally and the constants e and b, are selected
according to the model of the rigid cireular plate on the elastic half-
space as 0.26 and 0.76, respectively. For sand, with its relatively low shear
wave velocity, the term rowo/v. may exceed 1.5 and (36) to (39) are no
longer applicable.

The validity of this hypothesis can only be established by the evalua-
tion of the data obtained by means of vibration tests.

VIII. THE EVALUATION OF VIBRATION TEST DATA

Vertical vibration tests of rigid circular foundations on soil were
conducted by H. Lorenz!?* in Germany, D. D. Barkan!®in the U.S.8.R.,
M. Novak?®® in Czechoslovakia, W. Heukelom!*:* in the Netherlands,
F. J. Converse” of California Institute of Technology, and Z. B. Fry
of the U. S. Army Engineer Waterways Experiment Station. R. K.
Bernhard and J. Iinelli'® of Rutgers University used a rigid square
foundation.

A vertical sinusoidal exciting force, F, was applied to the foundation
and the resulting displacements were measured. Generally, these dis-
placements could be expressed with sufficient accuracy in terms of a
sinusoidal funetion.
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The weight of the foundation and its dimensions are considered to be
known quantities. They can be expressed in terms of the average
contact pressure between the foundation and the subsoil and the radius
of the foundation. In case of square foundations, the radius of an equiva-
lent circular foundation with the same contact area as the square
foundation was used.

The exciting force amplitude, Fy, is also considered to be a known
function of the frequency. For all these reported tests, the exciting force
has been produced by means of eccentrically rotating weights and
therefore, can be expressed as Fo = Mrow

The following experimental data can be obtained from a well con-
ducted foundation vibration test:

(i) The displacement amplitude-frequency response curve, yo(w), and

(77) The phase angle-frequency curve, ® (w).

However, the measurements of the phase angle-frequency curve is rela-
tively difficult, and a number of investigators did not determine these
data. In some cases only the resonance frequency was measured.

Solving (5) and (6) with respect to C.a and C,8 the following equa-
tions are obtained:

2
Cia = Iﬁ) I:M -+ cos (IJ] = 77y ket (45)
Yo Fy
o 2
C8 = o sin ® = 71 k3. (46)
0

k., shall be defined as the “dynamic coefficient of subgrade reaction.”
By means of (45) and (46) it is always possible to calculate the param-
eters Ca and C,3, provided the mass of the foundation, mq, is known and
the force amplitude-frequency relation, Fy(w), the displacement ampli-
tude-frequency relation, yo(w), and the phase angle-frequency relation,
& (w), have been determined experimentally.

Substitution of these values for C,a and C,8 back in (5) and (6) will
obviously result in a perfect fit of the calculated amplitude-frequency
response curve and the phase angle-frequency curve with the experi-
mental data. However, according to (33), C, is a function of the coeffi-
cient of subgrade reaction, k, . The coefficient of subgrade reaction, ki,
in turn is, as discussed previously, a function of the displacement am-
plitude, 7, and of the frequency, w. Due to the large amplitude changes
occurring close to the resonance frequency, even small nonlinearities of
the stress-displacement relation may cause a considerable change of the
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magnitude of the coefficient of subgrade reaction. From a single ampli-
tude-frequency response curve and the corresponding phase angle-
frequency curve, it is impossible to determine the effect of the displace-
ment amplitude on the parameters C,e and C,8. However, if the exciting
force amplitude is changed a number of amplitude-frequency response
curves and phase angle-frequency curves are obtained, and it is possible
to evaluate points of constant frequency at different displacement
amplitudes or of constant displacement amplitudes at different fre-
quencies. In this manner, the effect of frequency and amplitude on the
parameters C,e and C,8 can be determined.

The loss coefficient, 7., of the vibrating system is defined by means of
(26). Substitution of (45) and (46) in (26) results in

sin ®

Ns = 2 .
[mayow 1+ cos ¢:| (47)
Fy

It should be noted that for phase angles ® greater than r/2, the denomi-
nator in (47) becomes a difference, and small experimental errors will
have a considerable effect on the calculated magnitude of the loss co-
efficient, ., . Furthermore, (47) shows again that the loss coefficient
does not depend on the spring constant, C, .

If the phase angle-frequency data are not available, C,a and C,8 can
be calculated from the amplitude-frequency response curve for specific
frequencies only. For low frequencies, the phase angle ® can be assumed
to be approximately equal to zero, at high frequencies equal to =, and at
resonance equal to =/2. Unfortunately, for a centrifugal exciting force,
the displacement amplitudes at low frequencies are rather small and the
data become relatively inaccurate; at high frequencies, the exciting
force amplitude frequently exceeds the weight of the foundations and
no data are taken. It is always possible to select frequency dependent
functions in such a manner that an amplitude-frequency response curve
calculated by means of (5) will fit the experimental data. This is possible
for any arbitrary amplitude dependent function, C, (). However, there
is no physical significance in fitting one particular amplitude-frequency
response curve. A mathematical model capable of describing the vibra-
tions of a vibrating soil-foundation system should not only fit the am-
plitude-frequency response curve and the phase angle-frequency curve
of one particular test but should also predict the effect of a change in
radius, rq, of the foundation, of a change of the static contact pressure, p,
and of a change of the exciting force amplitude, F .
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IX. RESONANCE DATA OF VERTICAL STEADY-STATE VIBRATIONS OF RIGID
FOUNDATIONS

A direct comparison of the data of vibrating rigid foundations shown
in the literature is complicated by the different units and nomencla-
ture used to express the results of these tests. In order to facilitate such
a comparison, data obtained at resonance have been collected and are
presented in Table I, using uniform units and nomenclature.

The authors of the publications used are listed in Column 2 of the
table.

The type of soil is shown in Column 3.

The radius, o, of circular foundations is shown in Column 4 and is
expressed in feet. In case of a square foundation, such as used by R. K.
Bernhard and J. Finelli,'® the radius of an equivalent circular foundation
with the same contact area as the square foundation was used.

The average static contact pressure, 3, between the foundation and the
subsoil is shown in Column 5 and is expressed in pounds per square foot.

Column 6 shows the angular resonance frequency, w,, expressed in
radians per second. Resonance occurs if the phase angle between the
exciting force and the resulting displacement is equal to =/2 or 90 de-
grees. For centrifugal excitation, resonance is sometimes determined by
the tangent to the amplitude-frequency response curve through the
origin. This is correct only for a linear damping force; however, the
possible error is small. Even the difference of the frequency at maximum
amplitude and the resonance frequency remains relatively small.

The exciting force amplitude, Fy, is listed in Column 7 in terms of
pounds. H. Lorenz® and R. K. Bernhard and J. Finelli'® reported some
results for which the exciting force at resonance becomes greater than
the weight of the foundation. These data are not included in Table I.

Column 8 shows the displacement amplitude at resonance in inches
multiplied by 102

The loss coefficient at resonance, a dimensionless quantity, is listed in
Column 9 and has been calculated by means of (44).

The compression and shear wave velocities, v., and, »,, are shown in
Column 10 and are expressed in feet per second.

Column 11 shows the coefficient of subgrade reactions, &,, which is
defined as the ratio of the average stress caused by a static force acting
on a rigid circular or square plate to the resulting displacement. The
coefficient of subgrade reaction is expressed in pounds per square foot
per inch.

The type of data reported by the investigators are listed in Column 12.
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Table I shows clearly the need for more complete reporting of the
obtained test data and of associated significant soil parameters.

Some typical values of the compression and shear wave velocities for
different soils have been listed by D. D. Barkan'® and are shown in
Table II.

X. EXPERIMENTAL VERIFICATION OF THEORY

Equation (29) shall now be used to predict the loss coefficient, v,,
of vibrating rigid circular foundations. The results shall be compared
with the loss coefficient, »,, obtained by substitution of foundation
vibration data in (47).

Z.B. Fry” of the U. S. Army Waterways Experiment Station reported
the results of vibration tests of rigid circular foundations on a silty clay.
Fig. 4 shows a typical amplitude-frequency response curve and the
corresponding phase angle-frequency curve. An average shear wave
velocity v, = 475 ft/sec was determined for this soil.

Fig. 5 shows the loss coefficient, »,, obtained by substitution of the
shear wave velocity, v,, in (29). A loss coefficient of the soil of 7 = 0.1
was assumed, and, based on the model of the rigid circular plate on an
elastic half-space, the constants ¢ = 0.26 and b, = 0.76 were used.
Furthermore, for a number of frequencies, the loss coefficient, »,, was
calculated by substitution of the data shown in Fig. 4 in (47). The
agreement between the predicted and experimentally determined values
of the loss coefficient is very good. The data show that the loss coefficient
is affected to some degree by the magnitude of the exciting force am-
plitude.

The loss coefficient at resonance can be caleulated by means of (44).
The resonance frequencies, wy, and the displacement amplitudes at
resonance, ., of foundations having different radii, ro, contact pres-
sures, p, and exciting force amplitudes, Fy, are listed in Table I. The
data reported by Z. B. Fry™ for silty clay having a shear wave velocity
v, = 475 ft/sec are listed from numbers H-1a to H-10d. The loss co-
efficients, 7,, at resonance are shown in I'ig. 6 as a function of the prod-
uct of radius and resonance frequency, rowp . The agreement between the
loss coefficient predicted by means of (29) and these experimental
values is excellent.

The resonance data obtained by M. Novak are shown in Table I
(A-1a to A-10c). The tests were conducted on a loess loam. The loss
coefficients calculated by means of (44) are shown in Fig. 7. Unfor-
tunately, the shear wave velocity, v,, was not reported. Therefore, a
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TABLE II — CoMPRESSION AND SHEAR WAVE VELOCITIES OF SOME
Soms (FROM D. D. BARKAN)

Soil Comp;:]s:iggwave Shear wave velocity
[ft/sec] [ft/sec]
Moist clay 4920 500
Loess at natural moisture 2630 850
Dense sand and gravel 1575 820
Fine-grained san 985 360
Medium-grained sand 1800 525
Medium-sized gravel 2460 590
0.020 [ | w
0.018 / WEIGHT OF FOUNDATION:
’ W =30970 LBS
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Fig. 4 — Typical amplitude-frequency response curve and phase angle-fre-
quency curve of rigid circular foundation on silty clay.
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number of different shear wave velocities were substituted in (29) and
the resulting curves are also shown in Fig. 7. Table IT shows a value of
the shear wave velocity of loess v, = 850 ft/sec. The agreement of the
predicted values of the loss coefficient and the experimentally deter-
mined values at resonance are again very good.

Z. B. Fry" reported also the results of vibration tests on sand. The
resonance data, the radii, and the contact pressures are listed in Table
I (I-1a to I-9d). A typical displacement amplitude-frequency response
curve and the corresponding phase angle-frequency curve is shown in
Tig. 8. The loss coefficients, 7,, were calculated by means of (47) and
are shown in Fig. 9. No loss coefficient was predicted because the ex-
perimentally determined shear wave velocity decreased with an increase
of the frequency. Fig. 10 shows the loss coefficients at resonance of
foundations having different radii and contact pressures. The loss co-
efficient at resonance appears to be approximately constant. Fig. 11
shows the loss coefficients calculated by means of (47) for two founda-
tions having different radii. The figure shows that for this sand, the loss
coefficient is independent of the radius of the foundation. In order to
obtain the constant loss coefficient at resonance shown in Fig. 10, the
resonance frequency must be constant too. The resonance frequencies
listed in Table I for this case are indeed almost constant,.

1.2 7
n+b To wo' |
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Fig. 7 — Loss coefficients at resonance of circular foundations on loess loam.



206 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1966

0.024
I WEIGHT OF FOUNDATION:
0.022 TAY w W=30970 LBS
: \ ‘ RADIUS OF FOUNDATION:
\ Ty =3.65FT
S0IL: SAND
0.020 EXCITING FORCE
AMPLITUDE: [LBS]
= 2
0.018 ~ \ Fy=1.464 &
- £ —=== F,=1,10502
F3 [ 0
= 0.016 1% — — Fy=0.736 w2
»° ] \
. 1 AN —— F°=O.370t.-)2
w ]
S 0.014 t
E
&
S 0.012 . —
4
=
@ o010
g o.
w
[¥]
3
Z 0.008
a
o
0.006 —
|
0.004 7 .
/ / / -
'
0.002 S — 1
7,
',’-‘ -/
35
3o -
&, /’
® 0 y /4 .
o2
—J
g
S IsF——F———+ =SS e e
9
Io e T I Y AU R—
05
o 4
0 25 50 75 100 125 150 175 200 225 250

CIRCULAR FREQUENCY: w [RAD/SEC]

Fig. 8 — Typical amplitude-frequency response curve and phase angle-fre-
quency curve of rigid circular foundation on sand.



24

SIN @ SINg
8=y, ~ rwy,
oo o
+CO0S @ +COos .
[m, €o ] [mneog ?
20 o
p=9(w)
W =30970 LBS
Yo = Yo (w)[iN] a
1.6~ To=3.65 FT.
g e F =M e,w?=1464 w2 [LBS]
AF,=m, e, 02 =1.105 w2 [LBS] o
12~ o F,=me, w?=0736 w2[LBS]
0 F,=m, e, w2=0370 w?[LBS] .
EXPERIMENTAL DATA By Z.8.FRy (2) o
OR FIG. 8
08
]
o
04 %
8 ﬁ SOIL: SAND
0 P
0 100 200 300 400 500

Ty [FT. RAD/SEC]

Fig. 9 — Loss coefficient of a vibrating eircular foundation on sand.

1.6
o Pp=1225LB/FT2 Ty =2.58FT a = 492LB/FT2 = as0FT
% p=738 LB/FT2 Tp=3.65FT mp=612LB/FT2) 0
14— ® P=612 LB/FT2 _ 5
=369 LB/FT
DATA By Z.B.FRY (21) OR 3 87 o2 t:;FTE}r°: 5.17FT
TaBLE I, n0.I1a =T ad p=
1.2 —
.
1ot
x%
08 % i _
X x a
[=| . . . A | fa\
o L A o
0.6 8 ?a musas® oppla
. o P
| . a
| ‘
| |
0.4 | !
: _ _Mme; _ mEg
s= = =
MoYor  TT6°PYor
o2l — . r —
[ L
200 250 300 350 400 450 500 550 600 650

Towe (FT. RAD/SEC)

Fig. 10 — Loss coefficients at resonance of circular foundations on sand.

207



208 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1966

24
® W =30,970 LBS
To=3.65FT
o W =51,280 LBS .
Tp=5.16FT. o
20 -
o
| .
1.6 :
o]
LS *
.2 ~To
L
L
o9° o
08f-
L
’D o
-
00 o
04 e S
:. o]
Mo 0
o o
.
0
0 20 40 60 80 100 120

CIRCULAR FREQUENCY,w (RAD/SEC)

Fig. 11 — Loss coefficients of two different foundations on sand.

It may be concluded that the proposed mathematical model is capable
of predicting the loss-coefficient, 7, , of a vibrating circular rigid founda-
tion on a cohesive soil. For sand, however, this model is not applicable,
and a different mechanism must be assumed in order to explain the
independence of the loss coefficient from the magnitude of the radius of
the foundation. The assumption of a dynamic arching effect causing the
vibration of a large sand mass of a definite radius may provide an in-
tuitive explanation.

The resonance frequency of the proposed mathematical model can be
determined by means of (39). The resonance frequency depends on the
coefficient of subgrade reaction, k,, the static contact pressure, p, the
radius of the foundation, ro, and the shear wave velocity, v, . Equation
(39) can frequently be replaced by (41), which neglects the inertia
effects of the soil. It has been shown that these effects are relatively
small for cohesive soils and foundations of small radii. The coefficient
of subgrade reaction at the resonance frequency is generally slightly
higher than the statically determined value. Hence, neglect of the effect
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of the rate of loading in the numerator of (39) is often compensated by
neglecting the inertia effects in the denominator.

The assumption, that the resonance frequency can be calculated by
means of (41), is supported by the data obtained by D. D. Barkan'®
shown in Table I (B-1a to F-4). The calculated values of the resonance
frequency, based on static load-deflection tests, agree well with the ex-
perimentally determined values. The error in percent is shown in Fig. 12
as a function of the radius of the foundation. The error does not exceed
20 percent. In general, the predicted values of the resonance frequency
are higher than the experimentally determined ones. This was to be ex-
pected because the inertia effects of the soil are neglected in (41). Pos-
sible experimental errors may have caused the four predicted resonance
frequencies shown in Fig. 12 which were lower than the experimentally
determined values.

Unfortunately, to the best of the author’s knowledge, only D. D.
Barkan'® determined the static coefficient of subgrade reaction in con-
nection with vibration tests of circular foundations. However, the dy-
namic coefficient of subgrade reaction can be calculated by means of
(45) provided the exciting force, displacement amplitude, and the phase
angle are known experimentally determined functions of the frequency.
The data shown in I'ig. 4 were substituted in (45) and the dynamic
coefficient of subgrade reaction was calculated for three different dis-
placement amplitudes. The results are shown in Fig. 13. There is an
expected scattering of the data. However, it may be concluded that the
dynamic coefficient of subgrade reaction, k,«, decreases with an increase
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of the frequency, w, at a constant displacement amplitude, y, . Changes
of the displacement amplitudes result, however, in significant changes
of the coefficient of subgrade reaction.

Fig. 14 demonstrates the dependence of the dynamic coefficient of
subgrade reaction on the displacement amplitude. The dynamic co-
efficient of subgrade reaction decreases with an increase of the displace-
ment amplitude. For a constant frequency, the coefficient of subgrade
reaction as a function of the displacement amplitude can be expressed
with sufficient accuracy by the following empirical equation:

ke _ y_o’_*)"
ks* (yo (48)
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where
n = 0.26 = experimental constant,
k.* = coefficient of subgrade reaction at displacement amplitude
¥, and
yo© = displacement amplitude used as reference amplitude.

The maximum displacement amplitude at resonance, yo, = 0.0182 in., is
shown in I'ig. 4 or in Table I, No. 5d and shall be used as reference
amplitude (" = o). Resonance occurred at wo* = 95.4 Rad. sec '
Solving (39) with respect to the coefficient of subgrade reaction, one

obtains
* _
R PR o (49
g > .

. * .
provided the resonance frequency, w,”, the shear wave velocity, v, , the
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average contact pressure, i, and the radius, r,", of the reference founda-
tion are known quantities.

By means of (11), (48), and (49) the dynamic coefficient of subgrade
reaction k,a can be written as follows

Tn*w *
1 — n
kﬂ=ﬁ*wu*2|: S(U.)](E(f)
e
Vs

Equation (50) is plotted in Fig. 13 for four values of the displacement
amplitude, o, and in Fig. 14 for two values of the angular frequency, «.
A comparison of the data obtained by means of (45) with the plot of
(50) shows that the results are compatible; however, the scattering of
the experimental data prevents a direct verification of (50).

So far, the radius of the foundation, ry, and the subsoil were assumed to
remain constant. Now, however, the effect of a change of the radius
and the contact pressure on the natural frequency of rigid circular
foundations shall be considered. From (39) follows

. 2. -
/ ) 1+ ¢ (“’*) A'_i*g
ﬂ = ks 'P* Us p* (r—l
* k*)\ p YN TEAYZAY A 51)
v.) P* \ro ks P

The asterisk indicates known quantities used for a reference founda-
tion.

The coefficient of subgrade reaction is, as mentioned before, a function
of the displacement amplitude, the radius of the foundation, the contact

pressure, and the rate of loading. The author'” proposed the following
expression for the coefficient of subgrade reaction subjected to fluctuating

loads
ke (") oy [\ *(ﬁ)p:l
- () [ (&) 4 (& (52)

where n, r, ¢*, and p are experimentally determined constants. If these
constants are assumed to be zero, then (52) is proportional to (34) which
is valid for the case of the elastic half-space, n indicates the amplitude
dependent nonlinearity of the coefficient of subgrade reaction. An in-
crease of the stiffness of the soil with depth is considered by the term
(ro*/r0)" ™", and the effect of the contact pressure is indicated by (B/p™)".
It shall be assumed that the coefficients of subgrade reaction for fluc-

(50)
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tuating loads were determined at a frequency in the range of the reso-
nance frequencies of the vibrating foundations. Hence, no provision is
made in (52) for the effect of the rate of loading. Substituting (52) in
(51) one obtains

n —4\ 4 /.. Hl—r _ ) (1—r) 7}
G L)
w[l* Yor P o p* rD*
|V 1+ e (?l*)g kg :
X ve /s P* - (53)
1+ ¢ (""*)2 k.*g (yu,*)" (_"'S)H' (73_*)
Us p* Yor ro* P o
- —-r)
P To
‘[1 St (,,—) (‘) ]

Fig. 15 shows the angular resonance frequencies of the rigid circular
foundations reported by Z. B. Fry® for silty clay as a function of the
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displacement amplitude at resonance. These data are listed in Table I,
No. H-1a to H-10d. Z. B. Fry* reports furthermore, that the shear
modulus determined by seismic methods does not change significantly
with depth below the surface for this silty clay. Hence, it may be as-
sumed that the constant, r, in (52) and (53) becomes approximately
zero. Furthermore, it can be assumed that the effect of the static contact
pressure can be neglected, since the overburden does not increase the
shear modulus significantly. Hence, ¢ is assumed to be small compared
to unity. With these assumptions, (53) simplifies to

S 6
wp Yor v To

i

¥
1+e (""L*)z ’“;j:g ' (54)
e () R (1) (B) ()
Uy P To P Yor
where
wo® = 95.4 Rad/sec = angular resonance frequency of reference
foundation for maximum exciting force listed in Table I, No.
H-5d,
yor. = 0.0182 in. = amplitude at resonance of reference foundation,
re* = 3.65 ft = radius of reference foundation,
% = 738 Ib/ft’ = average static contact pressure of reference
foundation,
e = 026,
g = 386 in./sec’ = acceleration of gravity,
v, = 475 ft/sec = shear wave velocity,
n = 0.26 = experimental constant determined from Fig. 14, and
k¥ = coefficient of subgrade reaction for reference foundation ealeu-

lated by (49).

For the contact pressure p = 5 = 738 lbs/ft’ and the radius ro =
ro" = 3.65 ft, the angular resonance frequency of the reference foundation
is obtained and shown in Fig. 15 as a function of the displacement
amplitude at resonance, yo, . This curve fits the corresponding experi-
mental data very well, which was to be expected from the results shown
in Fig. 14. For a contact pressure § = 612 lbs/ft* and a radius r, = 3.65
ft the maximum values of the angular resonance frequencies of the
here considered foundations are obtained. For 5 = 612 lbs/ft’* and ro =
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5.17 ft follow the minimum values. They are also shown in Fig. 15 as
functions of the displacement amplitude at resonance. The experimental
data and the curves computed by means of (54) show good agreement.
It should be realized that the changes of the radii and the contact pres-
sures were relatively small and their effects on the resonance frequency
appear to be in the same order of magnitude as the possible experi-
mental errors of measuring the resonance frequency. However, the
dependence of the resonance frequency on the displacement amplitude
is clearly demonstrated.

The resonance frequencies obtained by M. Noviak on a loess loam are
listed in Table I, No. A-1a to A-10c. They are shown in Fig. 16 as a
function of the displacement amplitude at resonance. Again it is appar-
ent, that the resonance frequency decreases with an increase of the dis-
placement amplitude; however, not as rapidly as in Fig. 15. Unfor-
tunately, no detailed description of the soil properties is available;
however, it has been shown in I'ig. 7 that an assumed shear wave veloc-
ity v, = 800 ft/sec allowed the prediction of the loss coefficient with
good accuracy. Hence, the term £ (ro/v,)" becomes small compared to
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Fig. 16 — Resonance frequencies of rigid circular foundations on loess loam.
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one and can be neglected in (53). Equation (53) can then be written

nf2 (1=r) =\r)i
2 () ) e () (AT
Ian ior P p

For each set of data shown in Iig. 16 follows n = 0.18. Assuming SR
and p = 0.38, (55) becomes

wo _ (Jur*)”“ (P__*)gu ») (J r*)o .09 (ﬁ_*)uzl (56)
wo* JOr ﬁ Yor 73

Equation (56) shows the effect of a change of the displacement ampli-
tude and of the contact pressure on the resonance frequency for the
data shown in Fig. 15. The agreement between the resonance frequencies
caleulated by use of (56) and the experimental data is excellent.

The assumption of ¢ & 1 in (56) results in a resonance frequency
which is not affected by a change of the radius of the foundation. Since
this is possible only if the overburden increases the stiffness of the soil,
the stiffness of the soil must also be affected by the magnitude of the
contact pressure j. Hence, an experimental constant p = 0.38, which
indicates the effect of the contact pressure on the stiffness of the soil,
is reasonable.

The effect of a change of the radius of the foundation on the resonance
frequency shall now be discussed. The resonance frequencies of the
foundations deseribed by (54) decrease with an increase of the radius.
The decrease of the resonance frequency is approximately proportional
to the square root of the radius. A similar relationship between the
resonance frequency and the radius of the foundation was established
by G. P. Tschebotarioff” who evaluated the performance records of a
limited number of existing engine foundations. However, foundatlons
which are described by (56), are independent of the radius. H. Lorenz”
reported an increase of the resonance frequency due to an increase of
the radius. This apparent contradiction is readily explained by the
proven nonlinearity of the coefficient of subgrade reaction. The exciting
force in all test results here reported was produced by eccentrically
rotating weights. Therefore, the ratio of the displacement amplitudes at
resonance becomes, by means of (43),

v ()6
Yor - M€ wo fey* ro*
ro*we® (10) (w0 (57)
{ = - 2 (7‘0*) (wu*)

7o *wp™®
7+ b

&
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Substituting (57) in (52) and solving for the ratio of the displacement
amplitudes at resonance and substituting this ratio in (53) the follow-
ing expression for the resonance frequency is obtained:

2 1—r—2n - 10—
wo B ”h*eu*)m‘ ('f'u*)“ r 1) (p*), n)
f-b'l]* mico To P

0 (1—r) Fomt]
2 1—
[rmeseGe) () T

0

where

ro¥o® (0 ¥ n/2 » 47 /£ -g\ 4
0+ by %0 ﬂr_) T Py )
Vs y(]r To P

(58)
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d1—ex g ex (0 b
[-ere () ()]

Since n < 1, (yor"/yor)", and ¢,"”* are approximately equal to one. For
¢’ = 0, (58) becomes

@ _ (ml*eo*)nm (r—o,—k)i(l-rkiﬁn (E);(lnl
we® mey o P
. % * “4(l—n) _
1+¢ (’L) ki*g ' (59)

ro¥ 2k5*g AN (73* J
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The resonance frequencies of vibrating foundations which are expressed
in terms of (59) are affected by the nonlinearity of the coefficient of
subgrade reaction. For relatively small foundation radii and relatively
large nonlinearities expressed by the experimental constant, n, an
increase of the radius may result in an increase of the resonance fre-
quency. For large foundation radii and small nonlinearities, however,
the frequency should decrease for an increase of the radius. Resonance
frequencies expressed in terms of (60) should show an increase of the
resonance frequency with an increase of the radius.

Equations (59) and (60) show also the effect of the contact pressure,
B, on the resonance frequency. Generally, the resonance frequency de-
creases for an increase of the contact pressure, however, at a rate less
than expected from purely elastic considerations. The nonlinearities
expressed by the experimental constant, n, in (59) and (60) reduces the
effect of the contact pressure which is proportional to the mass of the
foundation. The stiffening effect of the econtact pressure is expressed
by the experimental constant, p. The value of p = 0.38 was used to
express the data shown in Fig. 16. In the plate bearing tests conducted
by the author and 8. R. White, a value of p = 1.859 was obtained. For
such a soil, an increase of the resonance frequency with an increase of
the static contaet pressure should be expected. In other words, the
increase of the mass of the vibrating system is more than compensated
by the resulting increase of the stiffness.

It may be stated, that the proposed mathematical model is not only
not contradicted by the available experimental data obtained on silty
clay and loess loam, but that there is a satisfactory amount of evidence
supporting this theory.

Equation (45) was also used to calculate the dynamic coefficient
of subgrade reaction for sand. The amplitude-frequency response curve
and the phase angle-frequency curve shown in Fig. 8 were used for the
caleulation. The dynamic coefficient of subgrade reaction, k.o, divided
by the contact pressure, p, and multiplied by the acceleration of gravity
is shown in Fig. 17 as a function of the frequency. The data show a strong
dependence on the frequency. The dynamic coefficient of subgrade reac-
tion decreases rapidly if the frequeney is increased. This phenomenon
was to be expected, because the loss coefficient increased rapidly with an
inerease of the frequency as shown in Figs. 9 and 11. However, the shape
of the dynamic coefficient of subgrade reaction-frequency curve does
not agree with the shape of the function a shown in Fig. 2. Hence, the
proposed mathematical model of the vibrating rigid circular foundation
is not applicable to foundation-sand systems. The dynamic coefficient
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of subgrade reaction was also determined for two additional foundations.
The amplitude-frequency response curves and the phase angle-frequency
curves of these foundations were also provided by Z. B. Fry of the
U.S. Waterways Experiment Station. The dynamic coefficients of
subgrade reaction divided by the contact pressure and multiplied by the
acceleration of gravity for these additional foundations are also shown in
Fig. 17. There appears to be a difference of the dynamic coefficient of
subgrade reaction divided by the contact pressure for low frequencies.
For higher frequencies, however, the data are practically identical. This
implies a coefficient of subgrade reaction proportional to the contact
pressure and independent of the radius of the foundation. The inter-
section of the w’-curve with the data indicates the resonance frequency.
For the three sets of data shown in Fig. 17, the resonance frequency
appears to be constant. In order to verify this assumption, all the reso-
nance frequencies reported by Z. B. Fry? are shown in Fig. 18 as a fune-
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Fig. 18 — Resonance frequencies of rigid circular foundations on sand.

tion of the displacement amplitudes. For all practical purposes, the
resonance frequencies for these circular foundations on sand are constant,
independent of displacement amplitude, radius, and contact pressure.
The data by F. J. Converse? listed in Table I, No. J-1a to J-7s, show
a dependence on the applied foree amplitude but appear to be relatively
independent of the contact pressure and the radius. A mechanism
describing the vibrations of eircular foundations on sand must be differ-
ent from the here proposed mathematical model. Arching of sand has
probably a significant effect on the vibrations of foundation-sand sys-
tems. For engineering purposes, it appears to be sufficient to determine
the resonance frequency and the loss coefficient with a small vibrator
and to assume an identical resonance frequency and loss coefficient of
the planned foundation. The suggestion by G. P. Tschebotarioff*®
of providing cavities near the four corners of machine foundation blocks
which could be filled, or emptied, to change the weight of the block by
15 to 20 percent would have no or only an insignificant effect on the
resonance frequency and the loss coefficient of foundations on sand.

The effective mass of a vibrating rigid circular plate on an elastic
isotropic homogeneous half-space is determined by (15). The mass of
the half-space vibrating in phase with the plate becomes

N\
me = eC, (:?") (61)
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where
m, = mass of half-space vibrating in phase with plate.

The ratio of the soil mass to the mass of the plate becomes, by means

of (61), (33), and (35),
me_ kg (’;) (62)
mo Y4 Vs

Substitution of (49) in (62) gives

Towo :
w o o(2)
e (63)

5.
mo I — e (?'Dwu)
Vg

The validity of (63) is limited to values of rqwo/v. < 1.5. For this value,
the ratio of the participating soil mass to the mass of the vibrating plate
becomes 1.41. For most vibrating foundations listed in Table I, this
ratio becomes considerably smaller and the participating soil mass, m, ,
becomes insignificantly small for small foundations. This conclusion is
apparently contradicted by the theoretical and experimental investiga-
tions of W. Heukelom.** However, it is readily shown, that the
amplitude dependent nonlinearity of the soil, which he recognized but
neglected, can account for this apparent contradiction. The dynamie
stiffness can be calculated by means of (20) from experimentally de-
termined displacement amplitudes and phase angles. The vibration
data obtained by Z. B. Fry® shall be used again to calculate the dynamic
stiffness. The displacement amplitude-frequency curve as well as some
values of the dynamie stiffness, calculated by means of (20), are shown
in Fig. 19. No provision was made to aceount for the nonlinearity of the
load-deflection characteristic of the soil. W. Heukelom®* fitted to such
experimental data the following function:

1A

9
S = 8|um0 — M for w = wo

3
wo 2
=8 om0 — M (—) @ for w = w.
w

The constants S |._o and m, , representing the static stiffness and the
participating soil mass, can be selected to fit the experimental data very
well indeed. This equation would indicate a constant participating soil
mass, m,, for frequencies below the resonance frequency and a partici-
pating soil mass, m, (wo/w)’, decreasing with an increase of the frequency
for frequencies greater than the resonance frequency. The magnitude of
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Fig. 19 — LEffect of the displacement amplitude on the dynamic stiffness.
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the participating soil mass becomes considerably larger than that ob-
tained by (63).

The dynamic stiffness of the proposed mathematical model is obtained
by substitution of (33), (28), and (11) in (21)

ooy [ @I @]

and by substitution of (48) as

S = mrok.* (%) 1/[1 _ 8(?"3:0)] + |:1? + by (?_I%"):I . (65)

where k,* is determined from (49). For the resonance frequency, ok,
becomes 420,000 Ibs/in. The displacement amplitude at resonance
yor = %* = 0.0495 in. and the experimental constant n = 0.26 are used
for the calculations. The solid line in Fig. 19 indicates the dynamic stiff-
ness for a constant displacement amplitude o = 3* = 3, . As is to be
expected, this curve fits the data only at the resonance frequency. The
dotted line, however, shows the corrections made to account for the
amplitude dependence of the dynamic stiffness expressed by (y*/y0)".
The displacement amplitude, o, at each frequency is taken from the
displacement amplitude-frequency curve also shown in Fig. 19. The
dotted curve fits the experimental data very well. It should be noted
here that this curve was rationally developed and not obtained by direct
fitting of data. It may be concluded that the reduction of the dynamic
stiffness close to resonance is caused by the amplitude dependent non-
linearity of the load deflection characteristic of the soil-foundation sys-
tem and not by a frequency dependent mass or a frequency dependent
coefficient of subgrade reaction. Even a small nonlinearity will cause a
significant change of the dynamic stiffness close to resonance due to the
large amplitude changes occurring in this frequency range. Again, the
proposed mathematical model is applicable only for cohesive soils and
no attempt was made to calculate the dynamie stiffness of sand-founda-
tion systems.

XI. SUMMARY AND CONCLUSIONS

The displacement amplitudes and the phase angles of vertically
vibrating rigid circular foundations on soil have been expressed in
terms of the average static contact pressure between the foundation and
the subsoil, the coefficient of subgrade reaction for fluctuating loads, the
magnitude and frequency of the exciting force, the radius of the founda-
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tion, the loss coefficient of the soil, the shear wave velocity, and two
theoretically derived constants accounting for the inertia effects of the
soil. The nonlinear stress-deflection characteristic of the coefficient of
subgrade reaction as well as the dependence of the coefficient of sub-
grade reaction on the radius of the foundation and the average contact
pressure between the foundation and the subsoil have been considered.
The derived mathematical model describes, as a limiting idealized case,
the vibrations of rigid circular plates on an elastic isotropic homogeneous
solid. Furthermore, it is capable of expressing the static load-deflection
characteristics of rigid cireular foundation on soil and, as a limiting
case, on an elastic half-space.

Based on this mathematical model, the following behavior of a vibrat-

ing soil-foundation system should be expected:

(i) An increase of the exciting force amplitude results in a decrease
of the resonance frequency of the vibrating foundation. This
effect is caused by the nonlinearity of the coefficient of subgrade
reaction.

(#7) An increase of the radius of the foundation when maintaining a
constant contact pressure and exciting force can result in either
an increase or a decrease of the resonance frequency of the
vibrating soil-foundation system. For large foundations an
increase of the radius will generally result in a decrease of the
resonance frequency. For smaller foundations the nonlinearity
of the coefficient of subgrade reaction and the increase of the
stiffness of the soil with depth may cause an increase of the
resonance frequency for an increase of the radius of the founda-
tion. For small nonlinearities of the coefficient of subgrade
reaction and small increases of the stiffness of the soil with
depth, an increase of the radius of the foundation will cause a
decrease of the resonance frequency.

(777) An increase of the contact pressure will generally lower the
resonance frequency, however, less than would be expected from
purely elastic eonsiderations. The nonlinearity of the coefficient
of subgrade reaction and the increase of the coefficient of sub-
grade reaction with an increase of the applied static contact
pressure explain this phenomenon. For some soils an increase
of the contaet pressure could possibly result in an increase of
the resonance frequency if the coefficient of subgrade reaction
increases very rapidly with an increase of the static contact
pressure.

(i) The loss coefficient, expressing the damping of the vibrating
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system, increases with an increase of the radius of the foundation.
The inertia effects of the soil or of an elastic half-space account
for this behavior.

(v) The displacement amplitudes increase less than proportional
to the amplitudes of the exciting force. Again, the nonlinearity
of the coefficient of subgrade reaction explains this phenomenon.

The predicted behavior of a vibrating soil-foundation system is well
supported by the available experimental evidence. An evaluation of
experimentally determined amplitude-frequency response curves and
phase angle-frequency curves support, furthermore, the validity of the
proposed mathematical model for cohesive soils. It is shown, that the
soil mass vibrating in-phase with the foundation is considerably smaller
than was previously expected. It should be noted, however, that this
mathematical model is not applicable to foundations on sand. For this
case, the resonance frequency and the loss coeflicient, remain practically
constant, independent of changes of the radius of the foundation or the
contact pressure. '

APPENDIX

Notation

The following letter symbols have been adopted for use in this paper:
(', = static spring constant of rigid circular plate on elastic half-space
or load-displacement relation of circular foundation on soil.

Cy = experimentally determined constant used to express the non-
linearity of load-displacement relation of circular foundations on
soil.

= dissipated energy per cycle.

D,

F = Foe'“"™ = harmonic exciting force acting on plate or foundation.
Fy = amplitude of exciting force acting on plate or foundation.

F, = f(y) = nonlinear force-displacement function.

F = Fe'™™ = force acting between plate or foundation and half-

space or subsoil.
Fy = force amplitude acting between plate or foundation and half-
space or subsoil.
shear modulus of elastic half-space.
dynamic shear modulus of half-space.
= Fy/iy0 = dynamic stiffness.
stored energy.
U, = energy required for the deformation of the half-space.

SmRg
I
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row A/ p/G, = frequency factor.

rowo V/ p/G, = frequency factor at resonance.
(To/v.) \/Cs/mﬂ = (Tﬂ/vn) '\/m

damping constant of linear vibrating system.

0.76 = constant used to approximate function g.
mo/pre = mass ratio.

experimental constant used to express the coefficient of subgrade
reaction.

base of natural logarithms.

eccentricity of rotating masses of vibrator.

function of the frequency factor and Poisson’s ratio.
lim f]

ag—0
function of the frequency factor and Poisson’s ratio.
acceleration of gravity.
—1.
coefficient of subgrade reaction.
eccentric mass of vibrator.
mass of circular plate or foundation.
my + m, = effective vibrating mass.
participating soil mass.
experimental constant used to express the nonlinear load-dis-
placement relation of circular foundations on soil.
average static contact pressure between foundation and subsoil.
experimental constant used to express the increase of the coeffi-
cient of subgrade reaction with an increase of the static contact
pressure.
radius of rigid circular plate or foundation.
experimental constant used to express the increase of the stiffness
of soil with depth below ground level.
time.
shear wave velocity of soil.
compression wave velocity of soil.
displacement of plate or foundation.
displacement amplitude of plate or foundation.
acceleration of plate or foundation.
displacement of foundation due to static load.
displacement amplitude of plate or foundation at resonance.
phase angle between exciting force and displacement of plate or
foundation.
phase angle between force acting between the plate and the half-
space and the resulting displacement.
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¥, = specific damping capacity of soil.

a = fifi/(fi' + f»') = function expressing the inertia effect of the

half-space on the restoring force.

@y = (!(Go,-). . .

B = fofi/ (fi + f2') = function expressing energy losses due to wave

propagation.

v = density of half-space or soil.

£ = constant used to approximate function a.

7 = loss coefficient of soil.

n. = D./2xU, = loss coefficient of vibrating plate or foundation.

v = Poisson’s ratio of half-space or soil.

p = mass density of half-space or soil.

w = angular or circular frequency of vibrating system.

wy = angular resonance frequency.

*  The asterisk is used as a superscript to designate fixed known or

experimentally determined quantities.
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