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A control scheme for synchronizing the frequencies of geographieally
separated oscillators connected by communication links consists of averag-
ing the phases received at each station from remote oscillators, comparing
the result with the local phase, and applying the filtered error signal as a
correction to the local oscillator frequency. The system was studied by V. E.
Benes who found a sufficient condition for the stability of the system using
advanced mathematical techniques. In this paper, the stability condition
is derived (for a slightly more general control scheme) using only the transfer
Jfunction concept of linear systems and some properties of determinants.
A practical difficulty rvegarding the final frequency of the oscillators 1is
discussed and a modification of the control scheme is shown to alleviate the
difficulty. Also evamined are the questions of sensitivity to parameter
changes, the effect of jitler noise on the performance of the system, and the
effect of fatlure of an oscillator or transmission link.

I. INTRODUCTION

Consider a network of N geographically separated stations that are
connected by directed communication links. A local clock, or oscillator,
is situated at each station. The problem of synchronizing the frequencies
of the oscillators is of considerable practical interest for continental
pulse code modulation (PCM) systems.

The local oscillators have frequencies which may be altered in pro-
portion to a control signal. In the absence of external control, each
oscillator operates at a different frequency. The network is “connected”
in the sense that from any station to any other station there is either a
direct transmission link or an indirect path via one or more intermedi-
ate stations. A fixed time delay is associated with each transmission
link.

In an important but unpublished paper, V. E. Benes! has examined
a linear control scheme in which each station receives the phases of
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neighboring stations, i.e., those stations connected to it by direct trans-
mission links. The phases are averaged and compared with the local
phase; the error is filtered and applied as a correction to the frequency
of the oscillator. Similar schemes were also proposed by Runyon.?
Bene$ has proved that under suitable conditions the system is stable,
i.e., the oscillators asymptotically settle to a common frequency and the
phase differences have finite asymptotic values. He also finds explicit
formulae for the final frequency and asymptotic phase differences.
To obtain these results, he resorted to the mathematical techniques of
renewal theory and Tauberian theory. By assuming the stability of the
system, as proved by Bene$, A. J. Goldstein® has rederived the expres-
sions for final frequency and phase differences in a more direct manner.
Bonomi, La Marche, and Varaiya' improved the treatment of the
stability problem and suggested some avenues of approach for the
study of transient response. In each case, the authors relied on the
mathematical theory of Markoff chains and stochastic matrices.

M. Karnaugh® has formulated a more realistic and more sophisti-
cated nonlinear control model. Broad stability conditions for this
model are not yet known; however, certain special cases resemble the
Benes model.

In this paper, the stability conditions and the expression for final
frequency for a slightly more general version of the Benes model are
derived in a simple manner using only the transfer function concept of
linear systems and elementary properties of determinants. This approach
permits a clearer intuitive understanding and should be readily com-
prehensible to the non-mathematician. The sensitivity of the system
to parameter changes is also examined and certain questions regarding
the final frequency of the oscillators are clarified.

In Section II we give a formulation of the problem and obtain the
basic equations describing the system. In Section III certain crucial
properties of the matrix of averaging coefficients are derived which
result from the topological constraint that the network is connected.
Stability is proved in Section IV and an expression for the final fre-
quency is obtained. Section V considers some practical questions with
regard to how the final frequency is related to the free-running fre-
quencies of the oscillators. Section VI examines the questions of sensi-
tivity to parameter changes, the effect of failure of an oscillator or
transmission link, and the effect of jitter noise.

II. FORMULATION

Let f; be the frequency of the 7th oscillator in the absence of external
control, and r;(f) the control signal applied to the 7th oscillator at time ¢.
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If p,(f) denotes the total cyclical phase of the ith oscillator, then the
actual frequency at time ¢ is given by

Pi(t) = fi + 7i(0) (1)
where the dot denotes the time derivative.

The control scheme at the 7th oscillator is shown in Fig. 1. The
phases of all neighboring stations are transmitted to the ¢th station,
The transmission delay associated with the path from station j to
station 7 is denoted as r,; . Each phase received at station 7 is compared
with the local phase; the differences are weighted with the nonnegative
averaging cocfficients a;; and summed. The weighted sum of phase
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Tig. 1 — Station 7 of the phase averaging control system.

differences is applied to the filter with transfer function H;(s), and the
filter output is the frequency correction term r;(¢). Thus, we have

ri(t) = hi(t) « j;lﬂij[pj(t — 1) — pi(t)], (2)

where h;(f) is the impulse response of the filter at the ith station and the
asterisk denotes convolution.

We assume the filters have three simple properties: (7) causality,
ie., the response at any instant does not depend on the future of the
input, (¢7) stability, in the sense that a bounded input always produces
a bounded output, and (477) positive dc gain, i.e.,

Hi0) =X > 0. (3)

Without loss in generality we may assume that the averaging coeffi-
cients sum to unity, i.e.,

i ai; = 1. (4)

=1



1692 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1966

Clearly a scaling of all the coefficients a;; for fixed 7 is equivalent to a
change in gain factor of the sth filter,

If there is no direct transmission path from the jth to the 7th station,
then the coefficient a;; is presumed to be zero. Thus, the N X N ma-
trix, 4, whose 7jth element is a;;, contains all the topological informa-
tion about the network of communication links. In order that mutual
synchronization be possible, it is certainly necessary that the network be
connected so that from any station to any other station there is either
a direct or indirect transmission path. The resulting properties of the
averaging matrix A imposed by this topological constraint play a
vital role in the proof of stability for the system.

In agreement with the Bene§ model we consider the starting condi-
tions where the oscillators are assumed to have been free-running
for an indefinitely long time prior to t = 0, and at { = 0 the control
signals r; are connected to the oscillators. Thus, we have

pit) = fa + p.(0), t <0 (5)

where p;(0) is the phase at ¢ = 0, and from (1), (2), and (4), the fre-
quency of the 7th oscillator when the controls are operating is

pi(t) = hi(t) % 2 aiflpi(t — i) — ()] + fi,  t= 0. (6)
27 .
Equations (5) and (6) for ¢ = 1, &, ---, N completely characterize

the behavior of the system under the particular starting conditions of
interest. Taking the ordinary Laplace transform of (6), we obtain

sP; =H:‘Z:ai;‘Pj_HiPi+§1'fi+pi(0) + @, (7)

where

dij = @i exp (—s7y5),
0
Q) = Hi(o) Ty [ p0) exp (—at) dt

and P;(s) is the Laplace transform of p;(f). The term @;(s) is the con-
tribution to the 4th oscillator frequency after ¢ = 0 due to the contents
of the transmission links at ¢ = 0. Using (5), @:(s) can be evaluated
explicitly, but for our purposes it is sufficient to note that

sQi(s) -0 as s—0. (8)

The transformed equations (7) can, in principle, be solved for the
phases p;(¢) for ¢ = 0. The desired stability information can be obtained
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directly from these equations. We shall, however, obtain this informa-
tion in a somewhat indirect but more profitable way by defining an
associated linear time-invariant system with N inputs and N outputs.

Consider the same control arrangement for the N interconnected
oscillators. Instead of the former starting conditions, suppose the con-
trol paths have always been connected and that each oscillator can be
activated by an arbitrary frequency “input’ as shown in Fig. 2. Then
the actual frequency of the ith oscillator at time £ is the sum of the
basie frequency input v;(f) and the correction component r,(f) leaving
the filter. The phases p;(f) are considered the “outputs’ of the linear
system. When »;(f) = 0 for each 7, the system is at rest and all outputs
p:(¢) are identically zero.

The importance of the associated linear system is that any desired
starting conditions in the physical model can be treated by an equiva-
lent set of inputs to the linear system. To clarify this, note that the
system of Fig. 2 is characterized by the equations

pi(t) = hi(t) % Z a;j[pj(t — T;'J') — ()] + v:(t), — <t< @, (9)

Formally taking the exponential (two-sided Laplace) transform of (9)
we obtain

SP;:H;Z@:,‘P;'—H{P-"[‘ V", (10)
i

where P(s) and V,(s) are, respectively, the exponential transforms of
p:(t) and v,(¢). Equation (10) implicitly characterize the associated
linear system whose inputs are »;(¢) and outputs p,(t) as long as »;(z)
has an exponential transform. Comparing (7) and (10) we see that the
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Fig. 2 — Model of station 7 of the associated linear system.
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phase responses of the physical model with the corresponding starting
conditions will be the outputs of the associated linear system for ¢ = 0
if we select the inputs to be

1
Vils) = < + pil0) + @ilo). (11)
In the time domain, these inputs are
vi(l) = fau(t) + p(0)8() + gi(t), (12)
where q.(¢) is the response of the filter H;(s) to a time-limited input
which begins at time { = —max r;; and ending at ¢ = 0, 8(¢) is the unit

impulse function and u(¢) is the unit step function. From (8) and the
final value theorem it follows that ¢;({) — 0 as ¢ — oo. It is important
to note that the phase responses to the inputs (12) will be the same
as the phase responses of the physical model only for ¢ = 0. For¢ < 0
the responses of the associated linear system do not correspond to the
physical model.

Equation (10) may be expressed in the form

- 1
Ps' = 161'(3) ’Z:; diij + (m) V{, (13)
where
_ H;(s)
Bi(s) = m . (14)

The simplified model of the linear system, corresponding to (13), is
shown in Fig. 3 where 8.(s) is the transfer function of the feedback
configuration as shown. Thus, the operation of the ith station is to
average the incoming phases, apply the average to the filter B;(s),
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Fig. 3. — Simplified model of station 7 for the associated linear system.
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and finally add a filtered input component to produce the phase response
p:(f). We shall see in Section IV that the condition for stability of the
system is simply that the filter 8;(s) have a gain less than unity for
sinusoidal inputs.

Equations (13) for 7 = 1, 2, --- | N can be formally solved for the
phase responses with the help of matrix notation. Let B(s) be the
N X N matrix whose 7jth component is

bij(s) = Bi(s) dy;
and let C(s) be the diagonal N X N matrix whose 77th element is
1
S + H,’(S) )

Note that for s = 0 we have ¢;;(0) = 1/A; and B(0) = A, where A;
is the de gain of H,(s) and A is the averaging matrix, both defined
earlier. Let P(s) and V(s) be the N component column matrices whose
ith elements are, respectively, P;(s) and V;(s). Then (13) becomes

Cn‘(S) =

[[ —BlP=CV (15)
or
P = KV, (16)
where
K(s) = [I — B(s)I™' C(s) 17)

is the matrix transfer function of the linear system. Thus, each element
K;i(s) of K(s) is the scalar transfer function relating the output p:(¢)
to the input v;({) when all other inputs are zero. In Section IV we shall
determine certain key properties of the singularities of K;;(s). In order
to examine the behavior of I — B(s) in the neighborhood of s = 0,
certain important properties of the averaging matrix 4 will be needed.
In the next section these properties are derived.

111. PROPERTIES OF THE AVERAGING MATRIX

As a result of (4), the averaging matrix A has row sums equal to
one. I'rom the requirement that the network be connected, certain
restrictions are placed on which combinations of elements of 4 may be
zero. These two characteristics of 4 imply certain essential properties
of the matrix / — A where [ is the identity matrix.
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Theorem 1: If A is the averaging matrix of a connected network of N sta-
tions then the malriz I — A has rank N — 1.

Proaof: Since the equation
(I—=4A)x=0 (18)

is satisfied by any vector z with all components equal, the matrix 7 — 4
is singular and must, therefore, have rank less than N. Suppose that its

- rank is less than N — 1. Then (18) has at least two nontrivial solutions
that are linearly independent. Therefore, there exists a nontrivial solu-
tion, %, whose components are not all equal. Now let w be the solution
vector with each component equal to the negative of the smallest
component of . Then ¥y = % + w is a nontrivial solution of (18) with
all components non-negative and at least one component equal to
zero. Let @ = |41, 12, -+, %} be the set of indices for which y; = 0
and @ = {dk41, teg2, - -, 2x) the set of indices for which y; is positive.
Since y satisfies (18) we have

N
yi— 2@y =0  i=12--N
i=1

and so

> aiy; = 0, for i ¢ @.
7e®

But this is only possible if
a;; = 0, 7e6@ and je®,

which implies that there is no transmission path from any station with
identifying index in ® to any station with identifying index in @. Con-
sequently, the network of N stations is not connected, which is a con-
tradiction. Therefore, I — A must have rank N — 1.

Theorem 2: If A is the averaging matriz of a connected network, the co-
factors of all the elements in any given row of I — A are equal and posi-
tive. Spectfically, if M ;; is the cofactor of the ijth element of I — A, then

M;=Mz>0
fori, 5, k=1,2,--- N,
Proof: Since I — A hasrank N — 1, the solutions of
(I —-Ay=0
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satisfy

y, _ Mi; -
== ' =1,2,---,N.
yk .Z‘I;‘k’ 1 b | ?

But the only solutions y are those with all components equal. There-
fore,

My =My all ik 19)

Let R(e) = I — €A and let 1{;;(¢) be the cofactor of the ijth element
of R(e). For 0 < ¢ < 1, each principal minor of E(e) is the determinant
of a diagonally dominated matrix (see Appendix), so that

Mii(e) #0 0=e<l1.

Since M;(0) = 1, it follows by continuity that M;;(1) = 0. Hence,
from (19)

ﬂf‘-_,- = ]lf{;- ; 0 all Z',j,k. (20)

Now (I — A)’, where the prime denotes the transpose, must also
have rank N — 1. Thus, solutions of

(I—A4A)z=0 (21)
satisfy
2j ]l’lrj,' .
2 ==L i=12---,N. 22
P Iu,{-{ i 1= 1 ( )

Equations (20) and (22) imply that the nonzero components of z must
have the same sign. Suppose a solution z of (21) has at least one com-
ponent zero and nonzero components positive. Then the same argument
used in Theorem 1 leads to the conclusion that the network is discon-
nected, which is a contradiction. Therefore, there is a solution z with all
components positive and consequently (22) implies that all cofactors
M ;; are positive, which completes the proof.

IV. ANALYSIS

With the help of the preceding results, we are now in a position to
prove stability and determine the expression for final frequency. These
results will be obtained under the assumption that 8:(s), for each ¢,
satisfies the condition

| B:(jw)| < 1, w # 0. (23)
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In Appendix B we show, with the help of the Nyquist eriterion, that
condition (23) implies the stronger condition

|B:i(s)] <1 for s in @, (24)

where @ is the right half and imaginary axis of the s plane excluding the
point s = 0.

In Section II we saw that the associated linear system is characterized
by the matrix transfer function K(s) given by

K(s) = [I — B(s)]! C(s). (25)
Now, since 8; = H;/(s + H,), it follows from (24) that
ci(s) = 1/(s + Hy)

has no singularities in ®. Furthermore, under condition (24) the matrix
I — B(s) is diagonally dominated (see Appendix A) for all s in @®.
Thus, the determinant | / — B(s)| is nonzero for all s in ®, and so we
conclude that each component transfer function K,;(s) is analytic in
the region @.

At s = 0, the matrix I/ — B(s) reduces to / — A which is singular
according to Theorem 1. Thus, the determinant |7 — B(s)| has a
zero at s = 0. To show that it is only a simple zero we find an asymptotic
expression* for the determinant in the neighborhood of s = 0. In the
matrix / — B(s), we replace the elements b;;(s) by their asymptotic

expressions
bij(8) ~ ai; |:1 — (Tn‘ + %) S] ,  8§—=0

where we have used the relations exp (—sr) ~ 1 — srand H,/(s + H,)
~ 1 — s/A;. Without changing the value of the determinant, we may
replace the first column by the sum of all the columns. The first column

then becomes

s(n-i-%l),s(n-l-xlz), s(r+%)

N
T = Z QijTij (26)
=1

where

is an average of the transmission delays of links arriving at the ith

* The technique for finding the asymptotic expression is due to A. J. Goldstein.
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station. Now we expand the determinant about the first column and
obtain

|I—B(S)|N6‘Z(T{+%)Mﬂ, s —0, (27)
i1 i

where M;; is the cofactor of the ijth element of I — B(0), as defined
in Section IIT.

Since M, is positive (from Theorem 2), it follows from (27) that
| I — B(s)| has only a simple zero at s = 0. But ¢;;(0) = 1/); is finite,
so that from (25) we conclude that each K;(s) has a simple pole at
s = (. Using (25) and the asymptotic expression (27) it follows that

I(ff<s) ~ -YJ'/Sa s = 0) (28)
where

M i/ \;

Yi = 1 )
> ('r: + x{) My

I

Note that v, is positive and independent of 7 because M;; = M, > 0,
according to Theorem 2. Thus, letting

31/A
Z M/ ?\z (29)
we have
4
Y= 1+ Z TidiAg (30)
l

with0 < d; < 1land > d; = 1.

We have, therefore, shown that each transfer function K;(s) is
analytic in the right half and on the imaginary axis of the s plane ex-
cept at s = 0 where it has a simple pole with positive residue inde-
pendent of 7. The impulse response k;;(t), associated with K;;(s), will,
therefore, consist of exponentially decaying sinusoids and a step function
of height ~; .

To determine the stability of the original model under the particular
starting conditions, we examine the asymptotic behavior of the phase
responses of the associated linear system when subjected to the inputs
given by (11). From (16), we have

PG = LK) [ n@ 40| ey
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IFFrom the known properties of K,;(s), it follows that the phase response
pi(f) for { > 0 will be the sum of terms decaying exponentially to zero
plus a term of the form ft 4 5, where f and 4, are obtained by the residue
theorem according to

£ = lim *Py(s)
g0
and
Cd
N = 1513333 [sPi(s)].

The final frequency f of the ith oscillator is, therefore, given by
N
S =2 il (32)
iz

which is independent of 7. Thus, we have proved stability of the system
since the frequency of each oscillator has been shown to asymptotically
approach the common frequency f and the phase differences clearly
approach finite values. From (30) the expression for the final frequency
can be written as

,E_ d}fi

Tl + Z Tidiki (38)

i
which, with the help of (29), shows the dependence of f on the delays
74 and the de gains A; .

V. REMARKS ON THE FINAL FREQUENCY

From the results of the preceding section it is clear that the final
frequency can be below even the lowest oscillator free-running fre-
quency. In fact, it is evident from (33) that the final frequency is a
monotonically decreasing frunction of the system gain-delay produects.
Thus, the controls may bring the system to a frequency outside its
practical operating range.

The final frequency reduction is a consequence of the fact that the
frequency control of each station varies directly with the differences of
total phase. The interstation delays introduce phase lags which drive
down the frequency of each station. This point is made somewhat
clearer by considering a system in which all the oscillators have the
same frequency f and the same initial phase. When the controls are
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applied at £ = 0 an average phase “error” (—fr;) is applied to the con-
trol path of each oscillator 7. This “error” causes a simultaneous re-
duction in the oscillator frequencies from which the system never
completely recovers.

As a conceptual solution to this difficulty, suppose the system of Fig.
1 is modified so that the local phase at the output of the integrator is
passed through a delay line before being compared with the incoming
phases. This loeal delay at station 7 is chosen equal to r;, the average
delay of links terminating at station 7, as defined in (26).

In the previous model, the error signal was determined by a com-
parison of the local phase at the present time with the remote phases
of earlier times. In this modified system, however, the comparison is
made between phases which on the average occur at the same time.
Thus, the undesired component of the error signal due to interstation
delays is eliminated.

Using an argument which parallels the development of Sections II,
IT1, and IV, it may readily be shown that the final frequency for the
modified system is given by

J= Zj: d;f;. (34)

In contrast with the original system, it is evident that the final fre-
quency of the modified system is always an average of the free-running
frequencies.

The Bened formulation (Fig. 1) may be viewed as a simplified ab-
straction of the more complex practical systems that have been pro-
posed.2:* Both the Bene$ formulation and the modified system contain
a total phase comparator which is an impractical element. Karnaugh®
has shown that an important linear subclass of the more realistic class of
systems he has proposed obey equations of the same form (6) as in the
Benes model. This more realistic formulation also fits the linear system
model with modified frequency ‘“inputs” that depend in a different
manner on the initial conditions. It is, therefore, subject to the stability
condition (23).

Moreover, it has a different final frequency which approaches an
average of the free-running frequencies as the interstation delays become
large.

In short, the Bene§ formulation was sufficient to provide the im-
portant stability criterion, but neglected factors affecting the final
frequency. The linear system model developed here is general enough
to be applicable to both the Benes formulation and a linear subclass of
the more realistic Karnaugh formulation.
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VI. SENSITIVITY AND RELATED QUESTIONS

Suppose that the system has been operating in a synchronized steady-
state condition for a long time, and at some instant, say { = ¢,, a sudden
change is made in one or more parameters of the system. The subse-
quent phase responses are determined by considering the new associated
linear system subjected to suitable inputs equivalent to the pertinent
starting conditions. These inputs will have exactly the same form
as (11) but now the term @;(s) will be evaluated using the past history
of the phases given by

pit) =fd+n <t

where f, is the synchronous frequency prior to the parameter change.
If the stability condition (23) is satisfied for the new system and if the
parameter change does not reduce any A; or a;; to zero, the new system
will also be stable. Consequently, after ¢ = ¢, the frequencies of the
oscillators will asymptotically resynchronize to the new final frequency
determined by (33) or (34) using the changed parameter values. From
these arguments we can also deduce that the effect of a slowly time-
varying parameter on the system operation is to cause a corresponding
slowly varying synchronous frequency. By “slow” time variations we
mean that the time for a noticeable change in a parameter value to
oceur is much longer than the time constants associated with the tran-
sient response of each K;;(s).

By similar arguments, it is easily seen that failure of a transmission
link will lead to resynchronization if the remaining network is still
connected. Also, in the case of oscillator failure, the remaining N — 1
oscillators will resynchronize to a new frequeney if the resulting network
of N — 1 stations is still connected after removal of all transmission
links entering or leaving the inoperative station. In each case, the final
frequency can be computed from (33) or (34) using the appropriate
parameter values. To prove these results, the nonzero averaging weights
san be rescaled so that A has row sums unity; the filter gains A; are
assumed to be correspondingly rescaled. The characterizing equations
for the new system then has the required form and so resynchronization
~ill oceur.

The effect of independent jitter noise on the frequency of each osecil-
lator may be considered by including a noise term n(f) in each “input”
v;(t). By superposition, the effect of noise can be considered separately.
Thus, each phase response p;(f) will consist of the response in the
absence of noise plus a noise component whose power density spectrum
is
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;1 I K!n(j“’) 12 Sv(w),

where S,(w) is the power density spectrum of n,(f). Consequently, if
the input noise jitter has zero mean and finite variance the output
noise components will also have zero mean and finite variance. We
conclude, therefore, that in the presence of noise jitter each oscillator
will asymptotically have a common frequency with a random perturba-
tion. The perturbations will be correlated but, in general, will not be
identical. Furthermore, small jitter noise implies proportionately small
perturbations.

VII. CONCLUDING REMARKS

We have seen that the transfer function approach has permitted a
simple treatment of a rather complicated control system. Tfurther
studies regarding transient response or bounds on the size of perturba-
tions due to jitter noise can be made for particular topological configura-
tions by determining more information about the transfer functions
K i;(s) with the help of (25). The linear system approach together with
the added generality of having different filters at each station has
made it possible to consider the effect of parameter changes or oscillator
failure on the behavior of the system.
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APPENDIX A

A square matrix A is said to be diagonally dominated when for each
row the sum of the magnitudes of the off-diagonal elements is less than
the magnitude of the diagonal element, i.e.,

|aw| > 2 | aiil, each 7.
PE

Theorem: If A is diagonally dominated it is nonsingular.

Proof: Suppose the contrary. Then there exists a nontrivial solution
{x;} satisfying

> aiz; =0 each 1.
-
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Let r be one of the indices for which | z; | is a maximum. Then

Arrly = _Z QrpTi
k#r

so that

law |2 ] = 2 an] 2| < 20 | an]| ||
k#=r k#r

which is a contradiction. Hence, the theorem is proved.

APPENDIX B
On the Boundedness of B:(s)

Theorem: If B:(s) is bounded by wunity on the jw axis then it 1s bounded
by unity in the entire right-half plane.

Proof: Since

) _ Hi(s)/s
B6) = T 7
the condition | 8;(jw)| < 1 is equivalent to
[A ] < |1+ Aexp (ip)], (35)

where
A exp (ip) = Hi(jo)/je.
But (35) is equivalent to
Acose > —13

so that the locus of H(jw)/jw, as w increases from — s« to o, cannot
encircle the point —1. Hence, by the Nyquist stability criterion, g8;(s)
is analytic in the right-half plane. Furthermore, 8;(=) = 0. Thus,
it follows that |B:(s)| < 1 in the right-half plane according to the
maximum modulus theorem.
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