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of Communications Systems
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Organic synchronization is a method for the mutual synchronization of a
set of geographically separated clocks. It is applicable to pulse code modula-
tion (PCM) communications networks and to other systems which have
similar requirements for synchronism.

After a brief review and history of the problem, a model for organic
synchronization is developed. A control-independent study of possible
equilibrium solutions is then carried out. A special class of controls s shown
to provide asymptotic stability in the limiting case of zero delays. This
result leads heuristically to the synthesis of a broad class of nonlinear con-
trols. With these controls, the systems are represented by families of non-
linear differential-functional equations. This model provides a basis for
the simulation of organic synchronizalion. Broad conditions which are
mathematically sufficient for the stability of the nonlinear systems are not
yet known. The final frequencies of a linear subclass of organic systems,
known to be stable, are examined.

I. INTRODUCTION

The timing of the switching actions at each switching center of a pulse
code modulated (PCM) communications system is governed by a device
called the ‘“local cloek.” It may consist of a cyclic counter driven by an
oscillator. Each cycle of the counter is then one clock cycle.

In a geographically widespread PCM system, the local clocks may be
either autonomous or synchronized. This choice should be made with
the best possible knowledge of the available technology, as well as con-
sideration of its functional and economic consequences. The choice is
clearly a rather basic one, and it may have long term effects upon the
evolution of the system.

The time-multiplexed PCM signals arriving at any locality may have
arbitrary, and usually scattered, points of origin. Some of them require
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decoding into a common analog form. In particular, they may be voice
signals. A homogeneous, time-multiplexed set of such signals is easily
decoded by a common digital-to-analog converter, provided that the
transmitted samples have been generated synchronously. A nonsyn-
chronous alternative is to insert extra digits into the signals in order to
permit multiplex transmission. Additional equipment is needed to re-
move these digits and smooth the timing of the demultiplexed samples
before or after decoding them.

This paper is only one of a number of studies of system synchroniza-
tion, and it does not provide a complete solution to the problems touched
upon. After a very brief review of some past work in this field, I shall go
back to fundamentals to derive a model for organic synchronization.
TFollowing this, the sections entitled “Equilibrium Points”, ‘“Reduced
System Equations”, “Controls: Qualitative Discussion”, and “System
with Zero Delays” provide background for the synthesis of a family of
controls which is introduced under the heading, “A Family of Realizable
Organic Systems”.

The question of the final frequencies of certain linear organic systems
is then taken up. Finally, some remarks are made to clarify the stability
problem,

II. HISTORY

The synchronization of PCM networks has long been a subject of
interest. The question of synchronizing switching centers, in addition to
the transmission links, arose in 1956, when the PCM telephone switch-
ing experiment, later named Essex,! was planned.

The term “‘organic synchronization”, which seems to have been in-
troduced by V. E. Bene§,? will be used herein for systems fitting the
model to be derived in later sections. The systems treated by Benes,
excepting a certain minor idealization, form a subclass of these systems.
This same subeclass of systems is discussed in a patent® by J. P. Runyon.

Bene#® has demonstrated asymptotic stability for his systems, which
are linear, under quite interesting conditions. He has also given formulas
for the asymptotic system frequency and for the asymptotic relative
phases of the oscillators. A. J. Goldstein* has given simplified derivations
of these formulas.

An alternative mutual synchronization method, called ‘“frequency
averaging”’, has been treated by Bene$ and Goldstein.® Frequency
averaging systems, while stable, lack a frequency determining element.
Each oscillator puts out the average of the frequencies received from its
neighbors, and the system frequency will wander in the presence of
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noise. Because of this feature, it does not seem to be very practical,
unless it is combined with other techniques.

The transmission of a synchronizing signal from a master oscillator
to all other oscillators, which are locked to this signal, is perhaps the
simplest approach to synchronization. However, such a system is vul-
nerable to failure of the master oscillator or failure of a transmission
link. Means for mitigating this weakness have been proposed by G. P.
Darwin and R. C. Prim.® They equip the system with automatic means
to reorganize itself in the event of a failure. Unfortunately, this adds
considerable complexity to the basically simple method.

Turther discussion will be limited to organic systems for synchroniza-
tion.

B. J. Karafin” has carried out some digital computer simulations of
organic synchronization of small systems. A. Gersho and B. J. Karafin®
have simplified the proof of asymptotic stability for Bene&’ systems.
C. J. Candy and M. Karnaugh? have studied organic systems of up to
four switching centers by means of an analog simulator. M. B. Brilliant
has also studied linear organic systems!® and has computed transient
responses of certain large linear systems.!

Linear systems with zero delays have also been studied at the Univer-
sity of Tokyo by T. Saito, H. Fujisaki and H. Inose.!?

1II. THE SYNCHRONIZED NETWORK

Consider a set of N = 2 geographically separated pulse code switch-
ing centers, interconnected by directed pulse transmission links, as
illustrated in Fig. 1 for the case N = 4.

All possible links need not be physically provided. The cases of great-
est interest are those in which there is a directed path from any center

LINK (2,1)

CENTER 1 \ Jq
J (1,2)
1

(] (>

Fig. 1 — A sample network.
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to any other center, possibly by way of some intermediate centers.
Systems with this property will be called “connected systems”.

A connected system of N centers must have at least N links, because
at least one link must terminate at each center. When the centers are
connected in a unidirectional loop, there are exactly N links. The maxi-
mum possible number of links, assuming no duplications, is realized
when every ordered pair (z,7) of distinet centers is connected by a link
to 7 from 7. This number is N(N — 1). The correspondence between the
ordered pair (7,7) and the direction to ¢ from j is a convention which will
be followed consistently.

An important component at each center is the local clock which de-
termines the timing of all switching actions at that center. The messages
from all other centers arrive in the form of framed pulse codes. These are
pulse codes divided into sequences containing equal numbers of digits
by means of periodically introduced framing digits. In order for the pulse
codes to be correctly processed, a correct phase relationship must exist
between the arriving framed code and the local clock.

The desired phase relations are realized by providing a certain amount
of buffer storage for each incoming link.® Such equipment is illustrated
in Tig. 2. The arriving digits are stored in a cyclically addressed discrete
memory. They are read out of the memory under control of the local
clock and of a circuit which monitors the appearances of the framing
digits, so as to be correctly phased.

RECEIVED
SIGNAL INPUT
REGISTERS
TIMING i
EXTRACTOR F
3
4
1 | ———eeee
| | FROM
Lo wRITE | WRITE | | |ERAMING
COUNTER | ! I |CcONTROL| ! LOCAL
| |SELECTOR | SELECTOR ] SYSTEM I CLOCK
MEMORY
I
1
I
I
K

l I DELAYED

ouTPUT SIGNAL
REGISTERS

Fig. 2 — Buffer memory.
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Other forms of buffer memory which incorporate variable delay lines
have also been proposed. These may be acceptable and less costly in
some cases.

Under favorable conditions, the arriving signals can be correctly
phased by means of the buffers. However, unless the oscillator frequencies
are properly controlled, their phase differences will wander beyond any
bound. Then, some of the buffer stores will fill up or be emptied, causing
erroneous codes to appear at their outputs. It is the primary object of
the controls to avoid such malfunctions. The system will be considered
to be operating synchronously when no information is being lost in this
fashion.

I shall adopt the point of view that it is desired to keep the buffer
memories just half full, in which case the system would not be unduly
vulnerable to transient disturbances. Controls will be sought which tend
to inhibit large deviations from the desired condition. We shall see that
these deviations cannot, in general, be reduced to zero. The oscillator
control signals will be derived from them.

It should be noted that the transmission delays between centers are
variable over some small fractions of their center values. These delays
will depend upon the environmental conditions of the propagating media
and on message-induced jitter at pulse repeaters.!* The buffer memories
must mop up the delay variations as well as the effects of phase wander
of the oscillators.

IV. NOTATION

The single subseripts 4, j, k, - - -, refer to the various centers and to
the oscillators located at these centers. Their range is the integers, 1, 2,
---, N. When one of them appears in a statement or equation with no
other qualification, the statement or equation holds over the whole
range.

It has already been pointed out that the ordered pair (j,7) designates
the link to center j from center i. When a statement or equation con-
tains a pair of subscripts with no other qualification, it holds for all
pairs (j,z) which designate existing links.

The set of all existing links will be called R. Thus, (j,2) ¢ R means
there is a link to j from 7 in the system.

Similarly, Ry is the set of links terminating (i.e., receiving) at center
7, and S; is the set of links originating (i.e., sending) at center ¢. Thus,

) 5= UG,
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Let M be the number of links in the system. We have seen that
N=M=<sNN-1).

System controls will be supposed in effect for ¢ = 0. Prior history of
the system provides the initial condition. Statements about functions of
¢ with no other qualification will hold for ¢ = 0.

Occasionally, vectors will be used having N singly subsecripted com-
ponents or else M doubly subscripted components. For example, the
delay vector = has the M components r;;, (f,7) ¢ R. It will be clear
which vector space is meant in each case.

V. PHASE, FREQUENCY, AND DELAY

The local clocks will emit coherent signals. That is, for time intervals
which are very long compared to one period of the clock, the output will
be approximately periodic. Under these conditions, many formally
different definitions of instantaneous frequency will be in good numerical
agreement. I shall simply postulate the existence of such continuous
funetions, f(t).

Phases of the oscillators are defined to be

pi®) = 0) + [ S)as (1)

in cycles, and
fi=pi. (2)
The principal value of the phase is
¢: = p; modulo 1 3)

and has the range 0 = ¢; < 1.
The initial condition for the phases will be

p:(0) = ¢:(0). (4)

The values, ¢;(0), are observables of the physical system. In fact, the
switching actions at center 7 are timed according to ¢;(¢).

If there is a transmission link to center j from center 4, the signals
transmitted therein will be subject to a time delay 7;(t). If a pulse is
launched from center ¢ at a time ¢ and received at center j at time #; ,
then the delay is defined to be

Tji(tg) = t‘:z - t1. (5)

Analogously, the phase of the signal received at time ¢ by center j
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from center 7 is defined to be
pii(t) = pidt — ()] (6)

It should be recognized that the principal phase of a timing wave
recovered from the received pulse code would, in practice, only approxi-
mate ¢;; (¢). Errors of a few percent of one pulse period are common in
pulse repeaters.’ This corresponds to a fraction of one percent of a typi-
cal frame period.

The frequency of the received signal is obtained by differentiation of

(6).
Fi) = 1 — 7/ Ot — 7 D). (7)

This equation displays the Doppler shift of frequency caused by varia-
tion of 7; .

The clock frequency at the 7th center may be represented in the
idealized form

Fi) = F + E: 4+ g:(t) + na(2). ®)

F is the mean center frequency of all clocks in the system, averaged
over the time during which the system is observed. E; is the incremental
center frequency of the 7th clock, also time averaged. By definition,

iE; = 0. (9)

The time function g;(f) is the contribution of the system controls,
while #,(¢) is a random noise with zero mean. There will be a symmetrical
bound on g;(t),

lg:) | = G, (10)
which is supposed to be larger than the other frequency deviations. This

is necessary if the controls are to bring all oscillators to the same average
frequency. Under realistic conditions of operation,

t+1/F
G > max | E;| + max o (Fj m(s)ds) (11)
i i t
t=0

where o(-) is the standard deviation.

VI. FUNCTION OF THE BUFFER MEMORY

The principal phase of the signal arriving at center j from center ¢
will usually not agree with that of the oseillator at j. The purpose of
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the buffer memory in this link is to delay the signal by an additional
time, d;; (t), so that

ei(t) = eult — dji(t)]. (12)
In view of (6), this can be written
ei(t) = eilti), (13)
where
tis =t — dj(t) — vult — dju(t)]. (14)

Taking the right-hand derivative of (13), and because this derivative
of the principal phase is always equal to the derivative of the phase, we

get
£ =11 — di O — 73lt — da(O) -f: (52), (15)
where physical considerations make it clear that
ldi|, |mdl <1,
Equation (15) implies the dependence of d;; on f:, f;, and 7, .
Matters can be simplified by shifting attention from the delays in the

buffer memories to the numbers of frames, i.e., clock eyeles, they con-
tain. The number of cycles in the (j,2) buffer at time ¢ is:

yi(t) = put) — pilt — dji(t)] (16)
and
yi (0) = fi(®) — [ — dii O]-Filt — dis (1)),
Using (7) and (15), this can be put in the form
yii (t) = fa:(t) — £;), (17)

which equates the rate of accumulation of cycles to the rate of arrival
minus the rate of removal. In terms of the oscillator frequencies,

yi (0) = [ — v O]-flt — (D] — £; Q). (18)

Suppose the (7,7) buffer has a capacity of 2D ; cycles. The normalized
state of this buffer is defined to be

25() = Dy lyi(t) — Dy, (19)

which is the fractional deviation of its contents from half its capacity.
In terms of this variable, (18) becomes

2 (1) = Dy (L — i O1Filt — 7] — D7 fi().  (20)
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This equation explicitly relates the derivative of the buffer memory
state variable, x(¢), to the delays and clock frequencies in the system.
I have remarked that the frequencies should be controlled so as to
prevent any buffer memory from emptying or filling. For example, if
buffer (7,7) is nearly empty, then we desire f; > f; until the situation is
sufficiently corrected. On the other hand, if the (j,7) buffer is nearly
full, then the inequality is reversed. However, things are complicated by
the fact that all buffers associated with the 7th center, that is, those in
links of the set R; | S:, are affected by a change in f; .
The system is said to malfunction whenever
max |z;(¢) | > 1,
(7,i)eR
that is, whenever the buffer memory state vector leaves the ‘““unit cube”.
Defining the nonnegative scalar,

re(X) = max ||, (21)
(7,i)eR

we see that the system is in a permitted buffer state when

re(x) = 1. (22)

VII. EQUILIBRIUM POINTS

Suppose the system is so controlled that an equilibrium solution to
the system equations is possible. That is, in the absence of disturbances,

(@) =0 for t=0
and there exists a constant f such that

fit) = f for t =0, i=1,2,---, N.

If the system, in or near this state, is disturbed by a change in the net-
work configuration, noise in the oscillators, or changes in some of the
delays, then variations in the state of the buffer memories will result.
To minimize the chance of malfunction under such disturbances, it seems
reasonable to seek an equilibrium in which the buffer state is, in some
sense, near x = 0. That is, the buffers are nearly half full.

I shall begin along these lines by seeking the set of equilibrium points
which can be reached from arbitrary initial conditions and under any
controls whatever. The situation of asymptotic equilibrium to be con-
sidered is as follows.

(i) #q@) =0 for (= 0.
(7)) 7;:(t) = 7:(0) >0 for t =0, (jji) eR.
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(#i1) lim f;(t) = f for 4=1,2,---, N.
() lim [p:(t) —p®)] =& for ¢=1,2---,N,
|

where

mw=lgwm 1G] < o.

Let x = lim x(#). The locus of attainable points x will be examined

t->0
under the above conditions.
With the delay vector = assumed to be constant, (20) has the sim-
ple form,

xji’ = Dji—l'fi(t - Tj-n') - D:‘iﬁt'fi(t)-

Therefore,

z;i = 2;(0) -l-f ;i (£)dt
b

2u0) + Dy [ 10t = ) = £ (Ol

The integral may be evaluated, using (1) and the conditions (7¢Z) and
(iv) of asymptotic stability. The result is,

v = Dy @ — @5 — 7if) + Bii, (23)
where
Bji = 2;:(0) + D;i '[p;(0) — pi(—7;i)] (24)

is a constant which depends upon the initial condition. Equations (23)
express the set of buffer memory equilibrium states attainable from a
given initial condition in terms of the asymptotic phase differences and
the asymptotic system frequency. This set depends upon the initial
condition through the parameters, Bj;

It is shown in Appendix A that the set of phase differences

(@ — @) | (47) e B}

contains exactly (N — 1) linearly independent elements. There are M
components of the asymptotic buffer state veetor x, with M = N.
Therefore, if f were an unconstrained real variable, we see that, as a
function of the phase differences and f, x would range over an N-di-
mensional linear manifold of its M-dimensional space.
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However, the system frequency f must be near F, the average center
frequency of the clocks. More specifically,

F+m_axE;—G<f<F+n_1inE,-+G.

This inequality requires that the bound on the magnitude of the fre-
quency control be large enough to reduce the highest frequency below
the system frequency and to raise the lowest frequency above the system
frequeney. Thus, all clocks can be brought to a common frequency, even
in the presence of noise. Nevertheless, ¢ << I in cases of practical in-
terest.

In a typical application, G = 107° F, so the domain of allowed values
of f is a very narrow interval. It may be said that the range of x is a
neighborhood of an (N — 1)-dimensional linear manifold. The distance
of this manifold from the origin is determined by the initial condition.

In cases of practical interest r,,G < 1, so that

p;i(0) = pi(—75) = 7:f + p;(0) — pa(0).
In such cases, (23) has the approximation
v =2 xi(0) + Dy '[§ — @ 4+ pi(0) — pi(0)]. (25)

T'rom this it is clear that a;; &= x;;(0) if §;: — §; equals p; (0) — p,;(0).
Therefore, an asymptotic state vector x which is, in some sense, small is
attainable when the initial state vector x(0) is small in the same sense.

VIII. REDUCED SYSTEM EQUATIONS

The trajectory of the buffer memory state vector is of central im-
portance to this work. However, the system controls operate directly
upon the clock frequencies. For this reason, it will be convenient to shift
attention from the M equations (20) to an N-dimensional vector equa-
tion for the frequencies. This equation, and its component equations,
will be called the “reduced” system equations because N = M.

I shall proceed under the assumptions of no frequency noise and con-
stant delays;

n(t) =0 (26)
=(t) = =(0). (27)
Then, (20) can be integrated to the form

x5 (t) = Dy '[pit — i) — p; (O] + Bii, (28)
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where, as before, B;; depends upon the initial condition and is defined

by (24).
Now a simple change of variables is made.
@) = pi(t) — 1t (29)
In vector notation, this is,
q(t) =p@) — ftly, (30)

where 1y is an N-dimensional column vector with unit coordinates.

If the system is asymptotically stable at the frequency f, then q' ()
will go asymptotically to zero. Therefore, given any controls, it will be of
interest to see whether this condition is realized for any value of f in
the allowed domain.

Substitution of (29) in (28) gives

2;i(t) = D gt — 7)) — q; () — 7;f] + Bys. (31)
In view of (2), (8), (26), and (30),
q () = (F -y + E + g(1), (32)

where g (f) is the increment to the clock frequencies under system con-
trol. In particular, let

g(t) = ritx(-)}. (33)

Each component of I' must have a realizable dependence upon the buffer
memory state vector trajectory. The problem of control synthesis is
precisely the problem of finding a suitable form for I'.

The reduced system equations are the differential-functional equa-
tions,

q () = (F — Ny + E + ritxlq(-), f, Bl}, (34)

with x defined by (31). The parameter, B, which depends upon the
initialization of the system, enters (34) as a parameter in the controls.
It is, therefore, not surprising that the system’s trajectory and its final
state, if any, depend upon its initialization. B is not entirely arbitrary.
This can be seen by applying the condition for phase agreement, (12)
at ¢t = 0. Some manipulation of (16), (6), (12), (19),and (24) shows that

B;i=D;'Ki — 1, (35)
where K ;; is an integer, and

Kji = y:(0) + p;i(0) — pi(—75).



ORGANIC SYNCHRONIZATION 1717

Given the initial phases, the initial condition can be changed only by
integral changes in the numbers of cycles y(0) stored in the buffer mem-
ories.

IX. CONTROLS: QUALITATIVE DISCUSSION

Loosely speaking, it is desired to control the system so as to keep the
buffer memory state vector small, in some appropriate sense. More
specifically, the vector should be kept away from the faces of the unit
cube.

These qualitative considerations will be made more concrete by de-
fining a class of real valued functions r(x) of the buffer memory state
vector, which will be called “penalty functions”. Each such function
will have the following properties:

(z) »(0)=0.

(it) r(—x) = r(x).

(i77) r(x) has a continuous gradient Vr(x).

(fv) r(x) is strictly convex; that is, for any two distinct vectors
X;, X; and any real number A in the open interval (0, 1),

r[)\xl -+ (1 — R)Xﬂg] < )\T’(X]_) + (1 - )\)T‘(X2).
(»v) For any x such that

. 3
= lim—°_ =0
=l =1 s 7(sx)

These functions will have a unique minimum at the origin and will go
to infinity uniformly on all rays from the origin. When properly chosen,
their convex surfaces of constant value may closely approximate the
cube surfaces having equal values of max | x,;. This latter quantity,

R

however, does not have a continuous gradient,

The attainable equilibrium points have been shown to lie in a neigh-
borhood of an (N — 1)-dimensional linear manifold. The infimum of the
values of 7 (x) over this set is realized at a unique point in its closure.
This point is either the origin or else the point of tangeney with a surface
of constant r. After selecting a suitable penalty function, controls will
be sought which bring the buffer state vector near this point.

In attempting to reach this objective, a subclass of penalty functions
having the simple form

r(x) = 2 ulxy) (36)

R
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will be employed. The function w(-) must have the properties, ()
through (v), of a penalty function on a one-dimensional real space. A
simple example of such a function is

ua () = 2°°, m=1,2 ---.

Fig. 3 illustrates the surfaces,

T = Max (T2, an) = 1
n = 3’122 + -1'212 =1
re = :?’124 + 33214 =1
ry = ?3126 + ﬂ‘I216 = 1.

The last three are penalty functions of the type defined in (36), for a
system having just two links,

X. BYSTEM WITH ZERO DELAYS

The family of systems under consideration will have widely varying
nonnegative delays for the transmission links. In many cases of interest,
the product of maximum loop delay and control bandwidth may be very
small compared to unity. In such cases, the extrapolation to zero delays

-2
(1,0) 2

Fig. 3— Curves of unit value.
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may be a useful and illuminating exercise. One such system will be
treated here as a step toward the synthesis of a family of controls.

In the zero delay case, let the controls T' be simply a function of x.
This results in a system of ordinary, autonomous differential equations.

)= F -Nix +E+Tr(x) (37)
in which x is now defined by
zji(t) = Dii lg:(t) — ¢; ()] + B (38)

The synthesis of I' (x) will be based upon a penalty function which
takes the form given in (36). One of the desired properties of the system
(37) is that it come to rest near the attainable minimum of r(x). It is
therefore reasonable to try controls which have a component along the
negative gradient of r (x).

Let V,r (x) be the column vector whose ith component is

dJ

30, r(x) (39)

[(Var(x)) =

and let A be any N X N positive definite matrix. The controls to be
considered here are of the form

rx) = —Avy(x). (40)
Thus, we are assured that™
[~ Vo x)]"-T(x) 20 (41)

with equality if and only if V,r(x) = 0.
Make the linear change of variables,

w(t) = A7q(). (42)
Then, the system equations are
w'(t) = AT — Ny + E] = Var (x). (43)

The inverse of a positive definite matrix is also positive definite.
Therefore,

v Ay > 0
and it is possible to choose f such that
Iy"AT(F — Ny + E] = 0. (44)

* The superseript 7' will indicate the transpose of a vector or matrix.
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It is easy to verify that
INTVqT (x) =0 (45)

in the zero delay system. Having chosen f to satisfy (44), we find that
the trajectory of w must lie in a linear manifold which is orthogonal to
ly . It will now be shown that the system exhibits global asymptotic
stability when w is restricted to this linear manifold. That is, from any
starting point in the manifold, the system will ultimately come to rest
at a unique point in the manifold.

Consider the following function:

L(w) = —wAAT((F — Ny + E] + r (x). (46)

Because of some of the properties of » (x) and the connectedness of the
systems under study, it can be shown that L (w) has a unique minimum
in every linear manifold orthogonal to 1y . Also, V,L(w) is zero only at
this minimum. The proofs are given in Appendix B.

The time rate of change of L(w) is

Lw) = [w ()]"VuL (w).

But
VoL(w) = —A"A7[(F — f)ly + E] + A"V (x) (47)
= —A"W ().
Therefore,
Lw) = —[W ]"A™W' (t) = ' (O1"AW (). (48)
In view of the hypothesis that 4 is positive definite,
L(w) 0,

with equality if and only if w' (1) = 0. When this occurs,
—A™W () = VuL(w) =0

and the system is at the minimum of L{w). Thus, L (w) is a Liapunov
function for the system'™'® and the system is globally asymptotically
stable in the restricted sense mentioned above.

Inasmuch as

q'(t) = Aw'(t),

w' (1) = 0 implies q'(¢) = 0 and the system of (37) and (40) is also
globally asymptotically stable in the linear manifold of its motion.
It is apparent from the definition (30) of q(¢) that the system has
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the common frequency f when q' () = 0. The Liapunov function

L(w) = L(@) = —q"A7'[(f — /)y + E] + r[x(q)]

has its minimum at the equilibrium point, qui. , where
VoL (Quin) = —A7'[(F — N+ E] + V[x(quin)] = 0.

The equilibrium point is seen to be offset from that point at which
Vs = 0 when the mistuning E of the clocks does not vanish. This should
not be surprising, because the controls must compensate for the fre-
quency differences.

Suppose the (N — 1)-dimensional subspace orthogonal to ly is in-
variant under A7, Then the requirement (44) reduces to f = F, and
the system frequency is the average of the clock center frequencies. It
can be shown that when the matrix A has the above property, its column
sums are all equal. In particular, if a diagonal matrix has this property,
it is the identity matrix, multiplied by a positive scalar.

In this section, I have considered global asymptotic stability, rather
than trajectories within the unit cube. Attainment of a suitably bounded
trajectory will depend upon the A matrix and the initialization of the
system.

XI. A FAMILY OF REALIZABLE ORGANIC SYSTEMS
In the last section, the controls

INz) = — AVg(x) = — AV, ;u(i‘ﬁ)

were shown to stabilize the system of (37) with zero delays. A family of
controls will now be synthesized so as to be realizable and practical for
systems having positive delay.
Equations (38) show that
(")i ’I.L(I_,‘,') = Dji_](aik - 6;‘1:)”’(:5_1':') (49)
Qe

using the Kronecker & notation. Thus, when the matrix A is diagonal,
the controls for the clock at center 7 depend only upon the buffer memory
states in links terminating at center ¢ or originating at center 7. This is a
very desirable simplification, and there seems to be no merit in employ-
ing more complicated forms. A more general type of control having this
property is

Ti(x) = Z‘_; apu () — %‘: bpu (), (50)
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where the signs have been chosen to agree with the earlier model when
ax; , by are positive. The development is quite heuristic at this point,
because a proof of stability for the system having the controls (50) with
arbitrary positive coefficients is lacking.
The final model is based upon a modified form of the controls (50).
(7) To achieve realizability, a delay A;; must be imposed on the
argument of a control signal from the (j,k)th buffer memory to
center k.
(#i) The controlled frequency deviations must be limited. For this
purpose, I introduce the limiter function p(- ) such that

px) = =, [z] =1
=1, z>1
= —1 z < —1

(#4) For the purpose of reducing system bandwidth, a filter with
impulse h(¢) and unit dc response may be employed. Let *
indicate convolution.

rift,x(-)} = Gp (h(t)* %; aiu'[z:5(8)]

(51
— SZ bj.-u'[x,-,-(t - A{j)] ‘) )

The complete system equations are
q® = (F — Ny + E + ritx(-)} + n() (52)
x;i(t) = Dy gt — @] — ¢;i(t) — 7:@)f) + By (53)
Bji = 2;(0) + Dy {p;(0) — pd—r7:(0)}. (54)

Equations (53) and (54) have been obtained by integration of (20).
The definition of the delay A;; in (51) will depend upon the manner
of transmission of the control signal. When the state z;; is transmitted

to center 7 via link (7,7),
Ai; = Agi(t) = dij(t) + 7iilt — di ()] (55)

This form is particularly awkward because the buffer memory delay,
d;; (t), is not one of the canonical variables. However, it can be very
closely approximated as follows:

di; (t) =2 Dysles; (t) + 11F. (56)
A simpler but cruder approximation is

di; (1) =2 DyjF. (57)
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In the special ease of (51), for which b;; = 0, this complication does
not arise.
XII. COMPARISON WITH THE SYSTEMS OF BENES

V. E. Benes? has analyzed a class of linear systems having delays and
filters. In my notation, these systems obey the equations

[Di’(t) =F + E; + Gh(t)* Z dilp;(t — 7i5)
e (58)
— pa(2)] + ().

He considers the delays to be fixed, the systems to be connected systems,
and adds the constraints

;>0 for (¢,j) e B;
> dy = 1
Ry
Then, assuming the noise 5 () to be bounded and to go asymptotically

to zero, he finds a sufficient condition for global asymptotic stability.
This asymptotic stability is defined by

lim pi (t) = i=12 -, N

L—M:I‘.)
]lim [pi(t) — pn(t)]| < w, 1=12 -, (N—1)
>

Benes sufficient condition is that
G>0

GH{iw)

mﬂ—(iw_) <1 for all w # 0.

H (s) is the Laplace transform of the filters’ impulse response, h(i);
w is real radian frequency, ¢ is the imaginary unit, and it is assumed that
H(0) = 1, as before.

This condition is stricter than that needed to stabilize an ordinary
phase controlled oscillator, but it is not too difficult to satisfy. It is also
quite remarkable in its independence of the system graph and its delays.

Benes also gives formulas for the final system frequency and phase
differences. These have been rederived more simply by Goldstein,* using
the final value theorem.

A very direct approach to the final values is to insert them in (58),
replacing the convolution with Gh(¢) by multiplication with G.
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Let
{EE pit) =f
}lﬂ'l [pi@) — px(O)] = P:

and note that
lim [pi(t — ri;) — pi()] = —7iif.

i
Making the appropriate changes in (58),
f=F+E:+ G;fiﬂ'[ﬁj — P — 7iifl.
Because fiy = 0 by definition, we now have a set of N linear equations
in the N variables f, {1, - - -, Pv—1 . Using the notation,
o= 2 T,
R

for an average of the delays in the links to the 7th center, the equations
assume the simpler form,

(1 + Gro)f + Gp: — G Y ap; = F + E:. (59)
Ry
They have been shown by Goldstein to give the following solution for f
F+ b1t
jo F 2 0B (60)
14+ G birs
Here b;,% = 1,2, ---, N, depends only upon the averaging coefficients,
dij , (’L,J) € R: and
b; =0
Zb; =

A glance at (60) shows that the final system frequency is monotone
decreasing with the product of the de gain, G, and an average of all
delays in the system. This effect has caused some dismay, but it results
from an unrealistic model.

Let us go back to the family of organic systems defined by (51)
through (54) and (29). These will be specialized in such a way as to
obtain a class of linear systems analogous to that of Benes. The follow-
ing steps must be taken.

(7) Eliminate the limiter, p(- ), from the controls, (51).
(%) Let u(zy;) = 32:/, so uw () = %
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(7i) Use the phase variables,
pi(t) = ¢:(t) + ft.
(i) Set b;; = 0, for all (4,7), in (51).
(v) Make the identification
@iy = aiDij”
and impose the constraint,

D = 1.
Ry

(vz) Assume the delays to be constant.
With these changes,

pi (t) = F + E; + Gh(t)« ; @iflpi(t — 7i;) — pi(8)]

(61)
+ @ ; [ Dixi;(0) + pi(0) — pi(— 7:)] + nu(t).

This set of system equations differs from those of Benes, (58), only in
the addition of a term which is constant in time, but which depends
upon the initial condition. It may be considered to be a modification of
the mistuning, E; , in the treatment of the stability problem. Therefore,
the proof given by Bene§ of global asymptotic stability under his suffi-
cient condition also applies to (61).

Now let us derive the equations for final values. In doing this, note
that the jth oscillator has the natural frequency, F' + E;, for { < 0,
while its frequency has the final value f. Therefore,

pi(—7i) = p;(0) — ri;(F + Ej)
thll [pit — i) — pi@®)] = — 7iif.
Now, proceeding as before, (61) leads to
[ =F+ Ei+ G2 (5 — B = ruf)
+ @ Z @i lDijx:;(0) + pi(0) — p;(0) + ri- (F + E,)|

Putting this in a form analogous to (59),

(1 4+ Gr)f + Gp; — G;a.-,ﬁ,- = (14 Gr)F + E;

(62)
+ G ; dilr;E; + Dijzii(0) + pi(0) — p;(0)].
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The solution for f, analogous to (60), is
G ; b{&vi;‘Dijxij(O)
f=F+§CﬁEj+ L5 G b (63)
where the coefficients ¢ are averaging coefficients defined by
iy = bjdji + Gb{&r;‘if"j
2 (b + Ghidigris) (64)

and the coefficients b are the same as before.

The first two terms on the right of (63) give an average of the in-
dividual clock frequencies. The last term depends on the initial condi-
tion, but it goes to zero as the system delays become large. Thus, the
behavior indicated by (60) does not really occur in our model for organic
systems.

XIII. SOME REMARKS ON THE STABILITY PROBLEM

The mathematical problem of stability is not yet satisfactorily solved
for general organic systems. Two special families of organic systems are
now known to be globally asymptotically stable. These are certain non-
linear systems with zero delays and certain linear systems with delays
and filters. These very special cases nourish the hope that broader
sufficient conditions for stability can be found.

The present section will be devoted to redefinition of the stability
problem and a discussion of some necessary conditions for stability.

We have seen that the system will malfunction whenever the M-di-
mensional buffer state vector x(¢) leaves the unit cube. This leads to the
following practical definition of stability.

Definition: For any positive ¢, trajectory x(¢) is e-stable if

max |z;(t) | £ e for 0 =1 < .

Definition: A trajectory is stable if there is an ¢ < 1 for which it is -
stable.

The trajectory of an undisturbed organic system will depend upon the
system parameters and the initial condition. Therefore, the domain of
system stability must be defined in a space having the following coordi-
nates, which appear in (51) through (54). G, h(-), a, b, u(-), A, D,
x(0), E, = and p(¢) for ¢ £ 0. The initialization of the filter states must
also be defined.
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Several necessary conditions should be kept in mind when testing for
stability. First, the asymptotic frequency of the system must lie within
the controllable range,

F+E-Gsf<F+E+G i=12--- N,

Second, the limit points of the buffer state trajectory must lie within
the unit cube. Third, the system must be ‘“‘connected,” in some sense.
The connectedness of the systems deserves further discussion. I have
required that the organic systems must be connected in the following
sense: that there must exist a directed transmission path from each
center to every other center. Bene$ has used the same condition. On the
other hand, the stability of the special nonlinear systems which I have
treated depends upon a weaker condition. Namely, that the nonoriented
graph having a branch corresponding to each link must be connected.
This condition is used in Appendix B, which is essential to the proof.

An important difference between the systems treated here and those
of Benes, is that the former have the additional control coefficients,
b;; = 0 for (i.j) e R. Thus, the state z;;(¢) of a particular buffer may
exert a control over the frequency of the sending center, j, as well as
over the receiving center, 1.

Intuition suggests a necessary condition for stability based upon the
control coefficients, a;;, b;;, which appear in the family of equations,
(51). Inasmuch as negative coefficients tend to make the systems un-
stable, these are assumed to be either positive or zero.

Consider a ‘‘control graph” with nodes numbered 1, 2, --., N. Let a
directed branch exist from node j to node 7 if and only if a;; + b,; > 0.
This condition permits the frequency at center 7 to be influenced by its
phase relative to that at center j. Then a necessary condition for system
stability is that the control graph shall have a node from which directed
paths exist to all other nodes.

Under this “weak” condition, some parts of the system may simply be
“glaves” of another part of the system. The “strong” condition that
there exist a directed path from each node to each other node precludes
this possibility. However, it should be understood that the condition
satisfied by the control graph need not be satisfied by the graph whose
branches correspond to transmission links. This is the case because each
link may give rise to two oppositely directed branches of the control
graph. On the other hand, a connected system may lack stability when
too few of the control coefficients are positive.

A simple example is provided by the system shown in Fig. 4. The
digital transmission links appear in the “system graph” Fig. 4 (a). When
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Ta4 T23
T2
(a) (b)
(c) (d)

Tig. 4 — A system graph and three control graphs. (a) system graph; (b) in-
adequately connected control graph; (c) weakly connected control graph; (d)
strongly connected control graph.

the only positive coefficients are as , as;, the control graph of Fig. 4(b)
results. This fails to satisfy even the weak condition. It is clear that no
means exists for bringing centers 1 and 3 to a common frequency. The
control graph in Fig. 4(c) results when a2, au, by are the positive
coefficients. It must be assumed that a separate means for transmitting
the narrow band signal, by , to center 3 exists. This control graph satis-
fies the weak condition. If the system is stable, center 3 will be a slave
to the rest of the system. It will have no influence upon the frequency
trajectories of centers 1 and 2. If @, @21, ass, by are the positive co-
efficients, then the control graph of Fig. 4 (d) results. This one obeys the
strong condition. When the control graph is the same as the system
graph, Fig. 4(a), it is weakly connected. In this case, if the system is
stable, center 3 determines the common frequency.

XIV. SUMMARY

A class of systems for the mutual synchronization of spatially sepa-
rated oscillators has been synthesized and a mathematical model for
these systems has been presented. The model may be said to be physi-
cally realizable in that real systems can be built whose function will
very closely approximate the behavior of the model. While no such sys-
tem hardware has been presented here, a simple hardware analog has
been built.?

These systems, called “organic synchronization systems,” have a
possible application to continental or worldwide PCM communications.

A re-examination of the systems treated by Benes in the light of the
newly derived organic model indicates that

(?) his stability proof does apply to a particular class of linearized

organic systems, and
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(77) that his formula for the final system frequency must be modified;
the suitably modified formula no longer displays a monotone de-
creasing final frequency with increasing system delays.

APPENDIX A

Asymptotic Phase Differences

The set of all differences of the form, (7; — §;), can have at most
(N — 1) linearly independent elements. To verify this, consider the
(N — 1) elements

(@x — Gva), @v— — qw2), -+, (@ — §).
Suppose ¢ > j. Then
@ — @) = (@ — 1) + @ir — Ti2) + - + @i — @)
while
@ — @) = — @ — 7:)-
Hence, any other element of the set of differences can be represented as
a linear combination of the selected (N — 1) elements.

When the directed graph, which corresponds to the synchronizing net-
work, is connected the set of differences

(@ — @) | (G7) e R}

has at least (N — 1) linearly independent elements. Actually, only the
weak, i.e., nonoriented, sense of connectedness of necessary for the proof,

Theorem: Let G be a directed graph with N vertices such that the correspond-
ing nonoriented graph is connecled. Associate the N independent real
variables, 41, @2, *++, G~ , one to one with the correspondingly indexed
vertices. Associate the difference (§; — §;) with the edge from vertex 1 lo
vertex 7, for each edge in (. Let T' be any complete tree of (7.

Then, there ts a set of (N — 1) linearly independent differences asso-
ciated with edges of T.

Proof: We shall proceed by induction. The theorem clearly is true when
N = 2.

Suppose the theorem to be true for N = L — 1. Now consider @ to
have L vertices. Since it is connected, it contains a complete tree T,
which will have L — 1 edges, but all L vertices. It follows that not all
vertices can have more than one edge of T" incident on them. Let vertex
7 be an end vertex. Then, only one of the differences associated with the
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edges of  contains §; . It follows that this difference, say +(3: — 7,),
is linearly independent of the remaining (L — 2) differences. But if
vertex j and the edge incident on it are removed from 7', a tree having
(L — 1) vertices remains. By hypothesis, this contains (L — 2) edges
whose associated differences are linearly independent. Hence, there are
(L — 1) linearly independent differences associated with the edges of
T, and the proof is complete.

Corollary: The differences are unchanged when the average of the §’s is
subtracted from each of them. Therefore, the theorem applies even when
the N real variables are constrained to have zero sum.

APPENDIX B

Properties of L(w)

Certain preliminaries concerning convex functions will be necessary
here. While they are familiar to mathematicians, other readers may find
the following review helpful.

All sets to be considered here are subsets of finite dimensional real
linear spaces. All functions will be defined on such sets.

Definition 1: A set of points X is convex if every point of the set
{?\xg—l—(l—)\)xl:xl, XzEX and O_é)\él}
is also a point of X.

Definition 2: A real valued function f(-) defined on a convex set X is a
convex function on X if

Mx + (1 — Nxl = Mx) + 1 = Nf () (65)

wheneverx; ,X; e X and0 = X\ = 1.
A convex function f(-) is strictly convex if the equality in (65) im-
pliesthat A = 0orA = lorx; = Xx».

Theorem 1: If two convex functions are defined on the same convex set,
their sum is @ convex function on that set. If one of the functions is strictly
convex, then the sum s strictly convex.

Theorem 2: If f(-) is a convex function on a convex set X, and if a = 0,
then af (-) is a convex function on X. If f(-) s sirictly convex, and f
a > 0, then of (-) s strictly convex.

Theorem 3: If ¢ 1s a fived vector in an n-dimensional space, and X s a
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variable vector in the same space, and d is a real number, then (¢”-x + d)
18 a convex funclion on the entire space.

Theorem 4: Let f(-) be a convex funclion on an n-dimensional space.
Then the sets of points

xif(x) =d, {x:f(x) <d

are convex subsets of the space for every real number, d.
The above theorems are elementary consequences of the definitions,
1 and 2.

Theorem 5: Let f(-) be a differentiable convex function defined on a convex
set X. Let x;, X2 be distinct points of X. Then the directional derivative,
(d/dN) fIzxe + (1 — N)xil, @5 an increasing function of X in (0,1).

Proof: Select any A > 0, 8 > 0 such that Ao + & < 1. Let
X0 = MXe + (1 — No)X1, ¥y =X — X.
Then
(ho + 8)xs + (1 — o — 8)% = X + dy.

Now select an ¢ such that ¢ > 0 and A¢ 4+ 6 + ¢ < 1 and apply (65)
twice as follows:

f(xn+5Y)=f|: (x0+’5Y+EY)+5+ :I
= 5j_€f(xo+6y+£y) + — f(xo)

f(xo +€Y) = r_rf(xu + 8y + SY) + —‘—f(xo)

Adding these inequalities and rearranging terms,

fxo + 8y + ey) — f(x + 8y) = f(x0 + €y) — f(X).
Dividing both members by ¢ and taking the limits as ¢ — 0 yields the

desired result,

Ao

d d
ﬁf[?\xzf (1 — Nxil IMH = ﬁf[)\xz + (1 — Nzl

Corollary: If f(-) s strictly convexr on the convex set X, and if X1, X;
are distinet points of X, then (d/d\) fAx. + (1 — N)x] s a strictly
increasing function of A in (0,1).
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Proof: Suppose that the equality holds in Theorem 5. If the directional
derivative is nondecreasing in [Ao, (Ao + 8)] and takes equal values at
the end points, then it must be constant on this interval. It follows that
f(+) varies linearly on the line segment from

X=RDXQ+ (1 —Rn)xl to x = (Ao-i"a)x'z—‘- (1 —-)\n—ﬁ)x;.

This contradicts the hypothesis that f(-) is strictly convex on X, and
the proof is complete.

Theorem 6: Let f(-) be a sirictly convex differentiable function defined on a
convex set D. Let C be a closed and bounded convex set in the interior of D.
Then,
(1) f(-) assumes its minimum value over C' at a unique point of C,
(@) f(-) has a vanishing gradient at no more than one point of C, and
(#1) f(-) assumes its minimum value over C' at an interior point of C
if and only if the gradient of f (- ) vanishes al that poind.

Proof:

(i) The hypotheses imply that f(-) is a continuous function and
that C is a compact set. It follows that f (- ) assumes its minimum
value over C, fuin, at some point of . Now suppose that
X, Xy are distinct points of €' such that

f(xl) = f(xﬂ) = fmin .
Then the striet convexity of f(-) implies that

f(g + ;-) < Fuin

This is a contradiction of the hypothesis that fuin is the least
value of f(-) over C.

(i) Suppose the gradient of f vanishes at two distinet points of
C, %, and X, . Consider the directional derivative of f(-) along
(x; — x1). By hypothesis, this derivative vanishes at x;. Be-
cause f(-) is strietly convex, it is a strictly increasing function
of position along (x; — xi). Therefore, it is greater than zero
at x,, which contradicts the hypothesis that the gradient
vanishes at x; .

(747) Suppose f(X) = fuin and X, is an interior point of C'. All points
in a neighborhood of %, are in C'. If the gradient of f(-) does not
vanish at X,, then there are points in this neighborhood, along
the negative gradient from xo, at which f(-) assumes smaller
values. This contradicts the hypothesis that fui. is the least
value of f(-) in C.
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Now suppose that the gradient of f(-) vanishes at x,, an in-
terior point of C. Let x, be any other point of C and consider
the directional derivative of f(-) along (x; — ). This vanishes
at xo by hypothesis. The strict convexity of f(-) implies that it
is strictly increasing from x, to x; . Therefore, f(x;) > f(xo) and
f(+) has its minimum over ' at x, .

This completes the proof.

In considering the properties of I.(w), an additional result will be
needed concerning the penalty function r(-). Tts properties are num-
bered () through (v). Note that the convergence in (») was not as-
sumed to be uniform over the unit sphere. This property will now be
deduced.

Because r(-) is a strictly convex function on the M -dimensional
vector space, it is also strictly convex on any subspace. In particular,
r(sx;) is a strictly convex function of s for any x; on the unit sphere.

Then, for any real number P, however large,

e(8,x1) = r(sxy) — sP

is a strictly convex function of s. Let E, be the set of vectors, x, on the
unit sphere for which

e(s,x) = 0.

For any fixed s, F, is a closed subset of the unit sphere because e(s,x)
is continuous. It follows that FE, is a compact set.

The corollary to Theorem 5 tells us that along any ray from the ori-
gin, i.e., for s going from zero to infinity, the derivative of e(s,x) is
strictly monotone increasing. From this it can be seen that x; ¢ E,,
implies that x; ¢ E, for s > s . Therefore, the sets F, decrease as s
increases from zero to infinity.

The intersection of a class of compact, decreasing, nonempty sets is
nonempty. Therefore, if

it is clear that there exists an s; such that F, = 0 for s = 8. In this
case, '

r(sx) > sP forall s = so(P)

independent of x on the unit sphere.
On the other hand, if

N E, =0,

8=0
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then there exists a unit vector x;, such that
r(sx;) < sP forall sin (0,%).
This contradicts hypothesis (#) concerning the penalty functions.
Thus, we have seen that r (sx)/s goes to infinity with s uniformly for
all x on the unit sphere.

Now consider the function L (w), defined by (46), with w restricted
to an (N — 1)-dimensional linear manifold orthogonal to Ly . Let

w=v + aly

where « is a real number and v is restricted to the (N — 1)-dimensional
linear subspace orthogonal to lx .
In view of (38) and (42), L(w) can be put in the form,

Lw)=Lw)=c"v+d+r(KAv +b). (66)

Here, ¢ is a fixed N-dimensional vector, d is a scalar constant, and b
is a fixed M -dimensional vector, with M = N. The fixed N X N matrix
A is positive definite. It can be seen from the discussion in Appendix A
and (38) that the fixed M X N matrix K is of rank (N — 1) for con-
nected systems. Its null space is spanned by 1y .

Using the convexity of r (- ),

r(AKAv) £ r(—=b) + r(KAv + b)
r(KAv + b) = 2r(3KAv) — r(—b).
Using this in (66),
Lw) =L = 2r3KAv) +c¢"v+d — r(—b).

The right-hand member is dominated by its first term as | v | becomes
large, uniformly over the subspace orthogonal to ly. Therefore, we
can find a sphere of sufficiently large radius so that

L{v) > L(0)

for all v on its surface. Then the minimum value of L(v) over this
sphere is not assumed on the boundary.

Now it will be shown that L(v) is a strictly convex function of v
on the subspace orthogonal to 1y . Let

X, = I{AV]_ + b
Xy = I{AV*Z + b.
The properties of K and A are such that v; # vy implies x; # X3 . This
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permits us to apply the strict convexity condition,

r[KAN; + KA (1 — X)vi + b]
=M+ 1 —Nx] <M@E) + 1 — Nrx)
= M (KAv, +b) + (1 — A)r(KAvy + b).

This is sufficient to establish the strict convexity of L(v).

Inasmuch as the strictly convex function L (v) takes on its minimum
value over every large sphere at an interior point, its gradient vanishes
uniquely at that point.

The above statement applies to the restriction of L) toan (N — 1)-
dimensional space. However, we know that w' (t) vanishes along ly .
Equation (47) then shows that

V.L(w) = —A"W (1)

vanishes along a direction which is not orthogonal to 1y . It follows that
the unrestricted gradient of L (w) vanishes at a unique point of every
linear manifold orthogonal to Ly .
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