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The synchronization of large systems of geographically separaled oscilla-
tors is of considerable practical interest for pulse code modulation (PCM)
swilching. This study examines the factors that determine the frequency at
which such a system operates, considering both the procedure by which it is
set up and the topology of system inlerconnections. A necessary and suffi-
cient conmectivity condition is established.

I. INTRODUCTION

The synchronization of large systems of geographically separated
oscillators is of considerable practical interest for pulse code modulation
(PCM) switching. Synchronization could be achieved by establishing a
single master oscillator, with every other cscillator slaved either di-
rectly to the master or to another oscillator that is slaved directly or
indirectly to the master. However, the system would then be vulnerable
to failure of a single link or a single oscillator. An alternative called
“mutual synchronization” would permit the oscillators to determine the
system frequency jointly and to exchange synchronization information
over redundant paths. However, the complexity of the system raises
questions concerning the factors that determine the system frequency
as well as system stability and dynamic response.

A broad sufficient condition for the stability of mutually synchronized
systems was first established by Bene&.! This condition has recently been
rederived by a different method, for a slightly more general system, by
Gersho and Karafin.2 The model used in both these studies was over-
simplified so that it gave a paradoxical result for the system frequency
at equilibrium. A model that corrected this oversimplification, by
considering the received signal phases observed at each oscillator station
at the initial moment when all oscillator controls are put into operation,
was first devised by Runyon.? A corrected model based on the same
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principle, but differing in detail, has recently been independently derived
by Karnaugh.* In all these studies, it was assumed that the system was so
interconnected that every oscillator transmitted timing information
either directly or indirectly to every other oscillator. This condition has
been generally assumed to be necessary for mutual synchronization, and
has been proved sufficient by Gersho and Karafin.?

This paper will generalize the foregoing results in two ways that appear
to be significant for practical applications. In the first place, a mathe-
matical model will be described that allows the synchronized system to
be set up by less drastic methods than the simultaneous closure of all
control paths at ¢ = 0. In the second place, a weaker connectivity condi-
tion, which is satisfied by systems in which only some of the oscillators
participate in frequency determination, will be proved necessary and
sufficient for synchronization.

The practical consequence of these generalizations is that a system
with a single master oscillator can be regarded as a special case within
the general class of mutually synchronized systems, and a locked oscilla-
tor synchronized to a remote source can be regarded as a special case of
an oscillator station in a mutual synchronization system. Between the
extremes of a system with no slaves and a system in which all stations
but one are slaves, a variety of hierarchical organizations may be en-
visioned. However, the description of particular configurations is beyond
the scope of this article. The model developed here also provides the
flexibility by which new stations can be added to an existing system, and
the system frequency can be adjusted after synchronism has been es-
tablished.

I1I. THE MATHEMATICAL MODEL

The system is assumed to consist of N oscillators, or “clocks,” num-
bered 7 = 1, --- , N. Each oscillator has its own free-running frequency
fi, at which it would operate in the absence of a control input. Each
oscillator accepts a control input that causes its frequency to deviate from
the free-running frequency by an amount proportional to the control
input. For concreteness, the control input will be referred to as a voltage,
although it may, in practice, take other forms. Thus, the instantaneous
frequency of the 7th oscillator, which will be expressed simply as the rate
of change of phase p/(¢), will, in general, be different from the free-run-
ning frequency f; .

In applications to switched PCM networks, each oscillator controls
the timing of a digital signal which is assumed to be organized with a
fixed number of pulses per frame. It will be convenient to measure phase
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in frames of the digital signal, and frequency in frames per second. Each
station sends a digital signal, controlled by its local oscillator, to a num-
ber of other stations, and this signal conveys timing information, To
simplify the deseription, it will be assumed that all these signals are sent
in the same phase, and this will be taken to define the phase of the local
clock. However, the model could easily be adapted to the case in which
each signal is sent in some arbitrary but fixed phase with respect to the
loeal clock.

The transmission delay from the jth station to the 7th will be desig-
nated as 7;;. Thus, the phase of the signal received at the 7th station
from the jth is p;(¢ — 7;;). The phase is defined principally by a regular
pattern of framing pulses. The pulses between the framing pulses carry
information, and are therefore different in successive frames. Since
successive frames are distinguishable, the cyclic ambiguity inherent in
the measurement of the phase of sinusoidal signals is not inherent in
the digital case.

Thus it is possible to measure, at the 7th station, the phase difference
pi(t — 7i) — pi(t) between the received signal from the jth station and
the local clock. This phase difference will be called the “observed phase”
of the jth signal at the ith station. In the Bene§' model, used also by
Gersho and Karafin,? the control voltage at the oscillator consists only
of components proportional to the observed phases. However, as Gersho
and Karafin® pointed out, if all the clocks are in phase all the observed
phases will be negative, and every clock will be made to run slower than
its free-running frequency. In the present model, a fixed reference phase
ri; will be subtracted from each observed phase, this reference phase
preferably being equal to the phase difference one would expect to ob-
serve. If the observed phase of each signal is equal to the reference
phase, no control voltage is applied to the oscillator, which then runs at
its free-running frequency.

Historically,' the concept of mutual synchronization evolved in terms
of phase averaging. Thus, the observed phases of the received signals
were respectively multiplied by nonnegative averaging coefficients a.; ,

N

’; ai; = 1, (1)
to form an average phase difference between the local clock and the
signals received from its neighbors. The average observed phase may
then be multiplied by a nonnegative factor A; , having the dimensions of
inverse time, to determine the frequency displacement of the local clock.
This basic notation has been continued in subsequent studies and will
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be used here. Thus, in the present model, the system equations must be

pi(t) =fi+ N ; aylp(t — 1i;) — pi(t) — rifl, 2)

i=1,-N.

The reference phases can be absorbed into the free-running frequency
term by defining a reference frequency

N
v=fi=Nagrg, i=1- N (3)
=
The system equations can now be written as
N
pi(t) = vi + N 2 ailpi(t — 7)) — p®)],  i=1---,N. (4)
=1

These equations have formally reverted to those of the Benes model,!-?
in which the reference phases do not appear. However, while the equa-
tions are the same, their application is different, since »; is not the free-
running frequency, but is normally greater than the free-running fre-
quency, because the reference phases r;; are normally negative. The
reference phases may, in fact, be identified with the initial-condition
terms of Runyon® and Karnaugh,® so that (4) covers their models as
well as the Benes model.

The dynamic response of the system can be modified by using a filter
in each control system. Multiplication by A; is then replaced by convolu-
tion with the impulse response hi(f) of a filter whose zero-frequency gain
is

[ na =, i=1,-N (5)
0

This has been done in all the referenced studies. Gersho and Karafin?
also added a variable term to v, , replacing it formally by v:(t), to repre-
sent the effects of transient disturbances. The system equations there-
fore become, in the most general form to be used here,

pi (t) = vi(t) + hi(t) * ; aslp;(t — i) — pb)],
i=1,---N.

(6)

where the asterisk (*) denotes convolution. Neither of these changes
affects the equilibrium frequency.
It has been assumed that the filter gains and averaging coefficients are
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all nonnegative,

A;

v

0, (7)
0. (8)

The connectivity of the network depends on which of these coefficients
are zero. If the 7th station does not receive from the jth, a;; is zero,
except when the ith station does not receive from any other station, in
which case (1) forbids all a;; to be zero and A; must be zero, and the a;;
are then arbitrary. It is understood that if the 7th station in fact receives
a digital signal from the jth, but uses it only as a medium of communica-
tion and does not use its observed phase in controlling its clock, it will
be said that the 7th station ‘““does not receive from” the jth.

v

a;y

III. THE INITIATION OF SYNCHRONOUS OPERATION

Previous studies have assumed that the system is placed in synchro-
nous operation at ¢ = 0 by simultaneously closing all the switches at each
station that connect the control voltages to the oscillators. It is assumed
that before { = 0 all oscillators are operating at their free-running fre-
quencies, and have been running for a sufficiently long time so that, in
spite of transmission delays, all stations are receiving signals on all links
by the time the switches are closed. Closure of each switch will, in general,
cause an immediate change of frequency at every station, and prediction
of the frequency at which the system finally will settle down would be a
matter of practical importance.

In practice it may be preferable to assemble the system in more lei-
surely fashion — one station at a time — checking for proper operation
after each station is connected before connecting the next one. One might,
for example, realize the reference phases r;; as manually controlled bias
voltages. When a new station is to be connected into the system, the first
connection will be made at the new station, from one of the phase detec-
tors to the input of the clock control filter. This connection will syn-
chronize the new station with the system as a slave station, and adjust-
ment of the corresponding reference phase can be used to establish any
desired phase relation between it and the rest of the system. When each
subsequent connection is made from a phase detector to a clock control
filter, the associated reference phase is adjusted so as to null the voltage
across the switch at the moment when it is closed. There is then no dis-
continuous change in frequency at any time during the connection
process.

If the system were built up in this way, starting from one station as the
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initial system, and if there were no drifts in either free-running fre-
quencies or transmission delays, the final equilibrium frequency of the
system would be the free-running frequency of the first station. In this
case the equilibrium frequency could be predicted without any calcula-
tion. In any case, the system frequency can be deliberately changed after
initiation of synchronous operation by adjusting the bias voltages.

The equation for system frequency is still useful as a means of predict-
ing the effects of drifts in the free-running frequencies and the transmis-
sion delays. However, serious questions can in principle arise with regard
to the applicability of the general system equations (6). These equations
represent a system with invariant connectivity, represented by invariant
averaging coefficients a,; and gains A, , while the actual system connectiv-
ity has been a function of time. Karnaugh* and Gersho and Karafin?
have answered these questions for their models under the particular
initiation procedure they assumed. The answer will now be extended to
cover the present model for arbitrary initiation procedure.

I shall take the point of view that there is some specifiable moment #,
at which the system has been completely assembled, so that the a,; and
\; are invariant for ¢ = ¢, and that we need only to predict the future
behavior of the system, for specified disturbances in »,(¢) and drifts in
7:i , having full knowledge of the past behavior of the system. I'or the
purpose of this discussion, if the transmission delays r; are to be allowed
to change, they should be considered as having been written as 7;(¢).

The system equations (6) are actually integrodifferential equations,
since the convolution symbol (%) implies an integration. The initial
conditions on which the solution of this equation depends are the entire
history of the phase variables p.(t), to the extent that this history deter-
mines the state of the filters. The output of each filter for ¢ = ¢, can be
considered as the sum of two components: a transient term determined
by the state of the filter, which is in turn determined by the input for
t < to, and a term representing the response to inputs for { = ¢,. The
transient terms can be calculated from the known filter inputs for ¢ < #,
and included in the »;(t) terms. Equations (6), with these terms included
in v;(f), with the filters considered quiescent at ¢ = #,, and with the
correct initial values of pi(to), will then give a correct description of the
behavior of the system for ¢ = £, .

This argument is included here only to establish the validity of (6) in
principle. In practical calculations, estimates of the effects of transient
disturbances would normally assume an equilibrium state as the initial
condition.
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1V, EQUILIBRIUM STATES

Gersho and Karafin? determined the equilibrium frequency of the
system as a limiting value derived by means of the final value theorem
for Laplace transforms. Karnaugh* used a simpler method, claiming for
it only heuristic value. The following approach claims rigorous validity
for the simpler method.

The first step in the analysis of the system will be the determination
of its equilibrium states, without regard for whether they are stable or
unstable equilibria. These can be determined by assuming that the sys-
tem has been placed in some state, and that it will not change state
spontaneously ; any state that satisfies these conditions is an equilibrium
state. We determine in this step whether the equilibrium state is unique.
The second step is to determine whether the system can respond to any
transient excitation with components that do not approach zero with
increasing time; this step determines the stability of the system. The
linearity of the system now implies that if the equilibrium state is unique,
and the transient response approaches zero, the system will always
approach the equilibrium state in the absence of a disturbance.

It will, in fact, be found that the equilibrium state is not unique,
because the system equations include the phases only in phase differ-
ence terms, and an arbitrary common constant can be added to every
phase variable without changing the phase differences. There is, there-
fore, a continuum of equilibrium states, all of which are equivalent for
practical purposes in that they have the same phase differences and the
same system frequency. Because of this equivalence, the system will be
considered stable if, after a transient disturbance, it approaches any
equilibrium state, not necessarily the one it occupied before the dis-
turbance. This requires only that the transient components of the phase
differences approach zero, while the transient components of the phases
may approach arbitrary limits.

This section will deal only with the first step: the identification, in-
cluding determination of conditions for existence, of equilibrium states.
The stability of the equilibrium states can be assured by the sufficient
condition studied by Gersho and Karafin;? their proof remains valid
under the weaker connectivity condition shown here to be necessary
and sufficient, the statement that at least one M is positive sufficing
to replace their statement that all A/, are positive.

The only equilibrium states to be considered here are those in which
all clock frequencies are constant at a common value; if they are con-
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stant, but at different values, synchronism has not been established. It
will also be required that the existence of such a state should not de-
pend on the values of the free-running frequencies; if it does, the system
is not self-synchronizing, but is synchronous only if the clocks are ad-
justed by means external to the system.

The instantaneous frequencies p.(f) are, therefore, set equal to an
equilibrium frequency denoted simply by f. Then

p.—(t)=ft+P,-, ‘J'::l,--',N. (9)

Equation (4), which suffices even in the most general linear case repre-
sented by (6) for the description of the steady state, becomes

N
f:Ui"}"xiZla"j(Pj_Pi_fTﬁ)’ 7:=1:"')N: (10)
=
or, in more symmetrical form,
N
Z ?\,-(5.;,- - Gij)P,- = UV — f(l + ?\;'r.-), 1= 1, ey, N, (11)
i=1

where
N
T{ = Z: QiiTij (12)
i=1

and §;; is the Kronecker delta, equal to unity for 7 = j and zero otherwise.
The set of equations (11) looks as though it could be solved for the P; in
terms of arbitrary v; and f, but it cannot, because the matrix of coeffi-
cients on the left is singular. This will be stated and proved as a theorem.

Theorem I: Let I denote the diagonal matriz with diagonal elements
i, let A denote the averaging matrixz with elements ai; , and let I denole
the identity matriz. Then the matriz L(I — A), with elements X:(8:; — a.j),
has rank less than its order N.

Proof: By (1), the sum of the elements in any row is zero. Therefore,

the sum of all columns is a column of zeros. Therefore the matrix is
singular and its rank is less than its order, Q.E.D.

It is advantageous at this point to choose one P; arbitrarily as a refer-
ence for the others. With P; as reference, we change to the phase difference

variables
Q=Pi— P, =2 N (13)
The equations (11) then become
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N
S ni(dy — @)@ = v; — f(1 4+ i)y, i=1,--,N. (14)
=2
If the term in f is transposed to the left side, we get the set of N equations
N
f(l'%')\i'f:‘)'l'_z;')\i(éij_ aij)Q; = vi, i=1,--,N, (15)
=

which we expect to be able to solve for the N unknowns f and Q;,j =
2, -+, N, for arbitrary v; .

If we formally solve for f by determinants, and expand each deter-
minant in terms of the elements of the first column and their cofactors,
the result is

N
Z bw;

f= g, (16)
2 b1+ Nir)

where b; is the cofactor (signed minor) of the element in the first column,
ith row, of the matrix L(I — A). The following theorem shows that the
arbitrary choice of Py as the reference for phase differences, and the
definition of b; in terms of the first column, makes no difference in the
result.

Theorem I1: Let M; be the cofactor of the (i, j)th element of L(I — A);
then Mi; = My for all i, j, k, that 1s, all cofactors of elements in the same
row are equal, and hence M;; = b; for all 4,j=1, --- , N.

Proof: If the rank of L(I — A) is less than N — 1 then all M;; are
zero and the theorem is satisfied. If the rank is N — 1, the matrix equa-
tion L(I — A)x = 0, where x is an N element column matrix, has only
one independent solution. It is known from (1) that a solution exists in
which all components are equal, and this must now be true of any solu-
tion. It can also be shown that the cofactors of any single row of the
matrix L(I — A) must be a solution (see, for example, Guillemin®),
hence all cofactors of elements in a row must be equal, M,; = M,
hence M;; = My = b;, QE.D.

Since b; can now be defined without reference to any particular column,
the single-index notation is justified. Since we expect that increasing the
free-running frequency of any oscillator will never decrease the equilib-
rium frequency f, we should expect all the b; to be nonnegative. The fol-
lowing theorem verifies this expectation.
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Theorem II1: The cofactors of elements of the mairiz L(I — A) are
nonnegative, b; = 0,7 =1, --- , N.

Proof: If a matrix is diagonally dominated, i.e., if every diagonal
element is greater in magnitude than the sum of the magnitudes of all
other elements in the same row, it is easily shown (Appendix I, Gersho
and Karafin?) that it must be nonsingular. Consider the matrix L(I —
ed), 0 £ ¢ £ 1. The cofactors of its diagonal elements are continuous
functions of ¢. For ¢ = 0 they are all unity, hence positive. For0 < & < 1
the cofactors are the determinants of diagonally dominated submatrices,
hence nonzero, so that they cannot pass through zero, and must remain
positive. Hence, as ¢ — 1 they cannot approach negative limits. But as
£ — 1 they approach the values b;, hence b; = 0, Q.E.D.

The formal solution (16) is valid if and only if the matrix of coefficients
on the left side of (15) is nonsingular; that is, if and only if the denomina.-
tor of (16) is nonzero. But, since b, , A;, and r; are all nonnegative, this is
equivalent to the condition that at least one b, be positive. The following
definitions and theorems relate this algebraic condition to the connectiv-
ity properties of the network.

Definition: The jth station is said to send to the 7th, or equivalently,
the 7th station is said to receive from the jth, if A;a;; is positive.

Definition: The jth station is said to send directly or indirectly to the
ith, or equivalently, the 7th station is said to receive directly or indirectly
from the jth, if there exists a chain (ordered set) of stations such that the
first is station j, the second receives from j, each receives from the one
before, and the last is station 4.

Theorem IV : If the kth station does not transmit directly or indirectly to
all other stations then b, = 0.

Proof: Let Ay be the submatrix formed by deleting the kth row and
column of L(/ — A). Let S, be the set of indices of all stations that do
not receive directly or indirectly from the kth. By hypothesis S; is
nonempty; choose i ¢ S, . By the definition of Sk, Mai; is zero if 7 is not
in 8, hence, from (1),

Z )\,‘ai}‘ = >\i, ?:E}S’k. (17)
jeSg
Let B, be the square submatrix of Ay consisting of all elements whose
row and column indices are both in S;. . Then (17) shows that B; can be
written in the form L’(I — A’), where A’ is an averaging matrix satisfy-
ing (1). Hence, by Theorem I, B, is singular, and the rows of B, are
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linearly dependent. But since the 7th row of Ay , for all 7 € Si, is the ith
row of B, augmented with zeros, the same linear dependence holds among
the rows of A, . Hence, A is singular; hence its determinant, which is
be , is zero, Q.E.D.

Theorem V: If by is zero, then the kth station does not transmit directly
or indirectly to every other station.

Proof: Let A be defined as in the proof of Theorem IV. By hypothe-
sis, A is singular; hence there exists a column matrix x, with elements
z; not all zero, such that A2 = 0, or equivalently

Z N, = Ni%q, i #= k. (18)

7k

Let M be the magnitude of the x; having the largest magnitude. Let S

be defined now as the set of all indices ¢ for which | z; | = M obviously
S is nonempty. Now (18) implies
1 E AT | = 7\,‘M, 7€ 8. (19)
i#k

Now (1) and | 2;| £ M imply that this can be true only if A;as = 0 and
|z;| = M whenever \a;; > 0. Hence, for all 7 € Sx, Mai; = 0 except
when 7 e S , and thus the 7th station cannot receive directly or indirectly
from the kth. Since S is nonempty, the kth station does not transmit
directly or indirectly to all stations, Q.E.D.

It follows from these theorems that the formal solution (16) is valid
for the set of equations (15) if and only if there is at least one station
that transmits direetly or indirectly to all other stations.

If there is no such station, the matrix of coefficients on the left side of
(15) is singular, and the set of equations has either no solution or an
infinity of solutions, depending on the values of the v; . Since a solution
defines an equilibrium state in which all oscillators run at the same fre-
quency, this means that the oscillators will run at the same frequency
only if their free-running frequencies are appropriately adjusted; that is,
the system is not self-synchronizing.

If there is only one station that transmits directly or indirectly to all
others, that station is the master, setting the frequency for the whole
system. A single master receives from no other station, since any station
that transmitted to it would thereby transmit indirectly to all other
stations. Thus, a station can become a master simply by the loss of all
inputs from other stations. However, if two stations lose all their inputs,
the system fails to synchronize, since neither station sends directly or
indirectly to every other.



1748 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1966

If more than one station sends directly or indirectly to all others, these
stations are mutually synchronized, and jointly establish the system
frequency. Any station that does not send directly or indirectly to every
other station is in effect a slave station.

V. SUMMARY AND CONCLUSIONS

The process for initiation of synchronous operation described in Sec-
tion III is not necessarily recommended as the best possible. It is in-
tended as a constructive existence proof, showing that there exists a
method of setting up a synchronized system of geographically separated
clocks that will lead to a final frequency that can be determined in
advance. The second part of that section shows, in perhaps unnecessary
detail, that the behavior of a system, once it has been set up, can be
determined without considering how it was set up, so that it is not neces-
sary to specify the set-up procedure before studying its steady-state or
dynamic behavior.

Under these circumstances the equation for equilibrium frequency
developed in Section IV plays no part in the process of setting the system
in synchronism and adjusting it to run at the desired frequency. It
serves to identify the factors that affect the final frequency and indicate
the quantitative effect of each factor, and as such would appear to find
its greatest usefulness in the design and control of the configuration of
system interconnections,

The connectivity condition evolved in Section IV permits the inclusion
of single-master systems in the same general class as completely mutually
synchronized systems. It is suggested that these two types are in fact
opposite extremes of a more general class in which the most useful con-
figurations may have some intermediate hierarchical form.
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