Some Examples of Comparisons of
Connecting Networks

By V. E. BENES
(Manuseript received August 17, 1966)

In the theory of telephone traffic it is of interest to compare the performance
of connecting networks, as measured by the probability by blocking, when
they are subjected to the same traffic sources. The question arises whether
there are examples of pairs of networks, with the same number of cross-
points, whose respective graphs of loss as a function of offered load cross
each other. The existence of such examples would establish the principle
that some network configurations are inherently more efficient at some traffic
levels than at others, so that the “excellence” of a network is not necessarily
a purely combinatorial notion independent of offered traffic. Examples of
the above phenomenon are exhibited which do not involve only very small
networks.

I. INTRODUCTION

In the theory of telephone traffic it is of interest to compare the
performance of connecting networks, as measured by the probability
of blocking, when they are subjected to the same traffic sources. Natu-
rally, there are cases in which the result of this comparison is inde-
pendent of the calling rate \.! In this connection, H. O. Pollak has raised
the question whether there are examples of pairs of networks, with the
same number of crosspoints, the first of which is better than the second
at one value of A, while the second is better than the first at another
value of A.

The existence of such examples would establish the principle that
some network configurations (in particular, some switch sizes) are
inherently more efficient at some traffic levels than at others, so that
the “excellence” of a network is not necessarily a purely combinatorial
notion independent of offered traffic. We shall exhibit examples of the
above phenomenon which are nontrivial in that they do not involve
only very small networks.
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II. PRELIMINARIES

The notations and conventions of Refs. 2 and 3 will be used. We
shall need machinery for studying the probability of blocking at very
high values of the traffic A\; this is provided by the natural expansion
of the equilibrium state probabilities in inverse powers of A:

Lemma: The state probabilities {p.,x € S} can be expanded in a power
series

pe= 3 dula\™ (1)

m=0
valid for N real and sufficiently large. With w = max | z | , the coefficients
TeS

d.(x) have the property

du(x) =0 for 0=m<w-— |2, 2)
and the numbers d,—,(z) satisfy
Ilz_: du(ﬂ:) =1
T |=w (3)
3(y)duI—lui(y) = EA dW—Izl(z)s Iyl < w,
duw—jz(x) = 0. (4)

Proof: p.(\) is a rational function of A, and so has an expansion of the
form (1) if A is large enough. Substitution of (1) into the equilibrium
condition gives these equations for the coefficients d(-): (No unblocked
call is rejected.)

|2 | dns(z) + 8(z)dn(z) = ZA: dnaly) + vé: A (Y) 7y

It follows at once that if 0 = zero state (with no calls up), then do(0) = 0,
and

s(z)do(z) = 2 do(y)rys,

veBz

so that do(z) = O unless x is maximal in the natural partial ordering
of states.
Thus, if « is not maximal then

du(z) =0 for |z|<w—m

holds for m = 0. Assume that it holds for some m — 1 = 0. For z not
maximal, s(z) > 0 and
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s(2)dn(x) = — |2 | duaa(x) + 22 dualy) + ZB: ()T

yedz

If || < w — m, then dn_1(x) = 0 and y € A, implies d,,_1(y) = 0, both
by the induction hypothesis. Thus, d.(z) is expressible as a constant
times d,(0). But

5(0)du(0) = ‘Z dna(y) = 0,

vl=1

by the induction hypothesis.
If x is maximal with |2 | < w — m, then

|z | du(x) = > i1 (Y)7ye, m = 0.

veBs
But 5 e B, implies |y | = |2| — 1 <w — m — 1, and 50 duna(y) = 0.
(1) and (2) imply (3) and (4).

The formula

> do(z) =1,

lz|=w
follows from
Pz = Z dm(x)x_m

m=w—|z|

and D .es P = 1 by letting A — =.
It follows from the lemma just proved that for sufficiently high values
of the traffic parameter A, the probability of blocking has the form

Z l‘szdw—k (1: )

Pr {bl} = 1= +0(1), N — =,
;Z ar o di(z
a2k j=uw—|r|

where k is the greatest integer such that some states with & calls in
progress have blocked ealls (8; > 0). In particular, we see that

0 if k<w
lim Pr{bl} =

A

III. COMPARISONS

The examples to be studied are the networks A and B in Figs. 1 and
2, respectively. Both are three-stage networks of the type due to C.
Clos,! each with nr inlets (outlets). We show that there are values of



1832 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1966

m, n, and r such that (i) A and B have very nearly the same number
of crosspoints, and (#7) A has lower blocking than B at all sufficiently
low values of the traffic A, while B has lower blocking than 4 at all
sufficiently high values of X. The calculations forming this comparison
will be carried out in the traffic model of Chapter 8 of Ref. 2; familiarity
with this model is assumed.

In A, at least m calls must be in progress in order for there to be any
blocking. Hence,®

Pribl}, = &A™ 4+ o(A™), A—0.
In B there is a least integer £ = 0 such that
Pr{bl}s = eA* 4+ o(A"), A —0
with ¢ > 0. We shall show that & < r 4 1, independently of the routing

used to run B. It has been shown?® that the probability p. of a state in
the model of Ref. 2 is of the form

= =Po Z Ri[i(r)+txl] H l ; | + hs(y) ,

where the sum is over paths 7w on (S, =) permitted by the routing rule
in use starting at 0 and ending at z, the product is along the path, and
() is the path-length.

In B it takes r calls in progress to block a call. Choose an outer switch
on each side of B and consider a sequence of r attempted calls, each of
which is from one of these switches to the other, together with one

(5)

rxr

1
nxm / \ mxn

_-f\mf-_

Fig. 1 — Network A: 2mnr -+ mr2 crosspoints.
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Fig. 2— Network B: 2nr2 + rn? crosspoints.

more call ¢. The last call, ¢, will have to go on one of the 7 middle switches
each of which already has exactly one call. (Fig. 3, upper half.) If now
the other call on the switch carrying ¢ hangs up (Fig. 3, lower half), we
will have reached a blocking state from 0 with positive probability
along a path = of length I{(x) = r + 2. Since the blocking state reached
has 7 calls in progress, there is a contribution in formula (5) of the form

et c>0.
It follows that if m > r 4 1, then
Pr{bl}, < Pr{bl}s

for all A sufficiently small.
Now take n > m, so that Lemma 1 gives

Z Bzd[}(z)
Pr{bl}A = %m + 0(1)

lz|=nr

=14+ o(1), A— o,

At the same time, it can be scen that in network B, 8. = 0 for |z | >
nr — 2, so that

Z ﬂzd2(33)
Pr{bl}, = ZlZnr? + o(1).

2
a2, di(m\

lz|>nr—2 j=nr—|z|

For |z | = nr,
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,‘Il du(.’lﬁ) = Z dl(y):"yz-

yeB,
Thus,
=2 leld@ = X X an. = 3 dy)sy)
=Iul=zﬂ:r— (),
and since e, = O for |2 | = nr,and @, = s(y) = 1for |y | = nr — 1.
Pribl I2 iznrg2 Beda(2)
bl = L2, wh(@) N B a0

The leading term is <1, and so for all A sufficiently large
Pr{bl}s < Pr{bl},.

rxr nxn rxr
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Fig. 3 — Blocking state of A reached in r + 2 steps (only links in use in-
dicated)
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Tt remains to show that there are values of m, n, r such that n > m >
r + 1 for which the number of crosspoints of A is very nearly equal to
that of B. Picking m = r 4 2, the condition for equality is that

n=2+ 4+ 2+
With [¢] the integer part of ¢, we pick n as
2+ [d+2r+m®>2+Q+2r+® =r+3>m

With this choice of n A actually has more crosspoints than B and yet
gives higher blocking at large values of X than B does.
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