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A single equation governing the various properties encountered in propa-
gation of Gaussian beams is discussed. These characteristics may be graph-
ically presented on an impedance chart such as a Smith chart or in the form
of normalized curves. The geomelrical representations highlight the relation
between Gaussian mode theory and geometrical optics formulas.

The power coupling coefficient between two Gaussian modes suggests a
complex mismatch coefficient whose geometrical representation is essentially
the same as that of a complex reflection coefficient in transmission-line theory.
Application of the Smith chart in determining a complex mismalich coeffi-
cient 1s illustrated by graphical solution of a beam-matching problem.

I. INTRODUCTION

The propagation of a Gaussian beam and its transformation through
a lens has been well treated in previous literature.!2-*:# This paper will
show that a single, formally identical equation governs three properties
of Gaussian beam propagation: (i) the phase front curvature and the
beam radius in terms of the distance from the beam waist and the
minimum beam radius; (%) the propagation of a Gaussian beam in free
space; (i77) the transformation of a Gaussian beam through a lens.
Geometrical representations of these characteristics highlight the re-
lationship between Gaussian beam propagation and geometrical optics.

Several recent papers®®™® have been devoted to graphical solutions
of Gaussian mode problems. One recalls that the Smith chart is a geo-
metrical representation of complex reflection coefficient in transmission
line theory. It seems logical, therefore, to look for the counterpart of a
complex reflection coefficient in Gaussian mode theory in order that the
full potential of the Smith chart may be realized in graphical solutions
of Gaussian mode problems. In this paper, a complex mismatch coef-
ficient will be defined such that the geometrical representation of this
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coefficient is essentially the same as that of a complex reflection coef-
ficient in transmission line theory. This observation immediately sug-
gests the application of the Smith chart of complex mismateh coefficients
to a graphieal solution of beam matehing problems.

II. THE ANALOGY AMONG THREE PROPERTIES OF A GAUSSIAN BEAM

In order to discuss the Gaussian beam transformation it is convenient
to summarize the relationships among the parameters of a Gaussian
beam propagating along the z-axis first.*?

D 1/14_(1%2)2 (1a)
o= [+ (2] "

In (1), w is the beam radius at which the field amplitude has fallen to
1/e of itg maximum value on the z-axis, ¥ is the minimum beam radius
(called the beam waist) where one has a plane phase front at z = 0, and
r is the radius of curvature of the phase front at z. It should be noted
that the phase front is not exactly spherical; therefore, its radius of
curvatyre is exactly equal to » only on the z-axis. The z-coordinate,
measured from the beam waist, is taken to be positive to the right and
negative to the left; the parameters are illustrated in Fig. 1. Equation
(1) may be solved for @ and z as follows:

[

w(z)

Equations (1) and (2) may be transformed into a single equation of
complex variables:

S DU S -
/N 1 (mP/N) + iz

We are also interested in the transformation of a Gaussian beam going

through a lens of focal length f as shown in Fig. 2. A beam with its mini-

mum beam radius 1, located at dy will become another beam with its



GAUSSIAN BEAM PROPAGATION 289
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Tig. 1 — Paramecters of a Gaussian beam.

minimum beam radius - located at ds. Since the beam radius remains
the same in passing through the lens we obtain from (la)

B V1 + (Mda/mi?)? = B2V T 4 (Ma/m0s). (4)

The thin lens formula states that the change of the phase front curva-
ture may be approximated by the reciprocal of the focal length. Thus,
using (1b), one obtains

Tig. 2— The analogy between the Gaussian beam transformation through a lens
and the Gaussian beam propagation in free space.
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where the sign of the second term on the left side is positive because da

has been taken to be positive to the left of the beam waist following the

convention of Goubau! and Kogelnik 2 Straightforward algebra will lead
to the following solutions for (4) and (5):

(5)

Bo1- %_1_22 (6)
L)
e 1

@ (d_ Y (mo) (7)
-1+ (%)

The above two expressions are essentially rearrangements of formulas
obtained by Goubau.! When m#2/A < |dy — f |, (6) and (7) approach
the thin lens formula and the magnification formula of geometrical
optics.® When mib?/A\f — o the condition for geometrical optics foeusing
of parallel rays is obtained. These two equations have been plotted in
Tigs. 3 and 4 for various values of p = mib,?/Af. There it is seen that the
singularity at di = fin geometrieal optics is eliminated in Gaussian mode
transformations. The maxima and minima in Fig. 3 may be easily found
by differentiating (6) with respect to di/f, and they are given by

dy / di by
;- 1 S/ when 7= 1+ i (8)
The points of inflection are
d1 '\/5’:‘?‘1’!—}12
— =1 and 1=+ .
S A

Equations (6) and (7) can be combined into one equation of complex
variables:

(-6
M 7 (aru')f‘) ny (cil _ 1) (9)
A f
* Simple algebra may easily reduce them to the more familiar forms, dl -+ % =
1 2
Wyt do?

1 and = ==

' w2 - di?’
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Tig. 3 — The graphical presentation of (5) and (14).

Next, let us consider the propagation of a Gaussian beam along the
z-axis. One would like to express the beam radius w» and the eurvature
1/7; of the phase front at any given point in terms of the beam radius w,
and the curvature 1/r; at some other point along the axis. Since any
Gaussian beam has a single beam waist at a definite location, one obtains
from (2) the following conditions:

w _ We (10)
V1 + (mw/Ar)? V1 (rwd/Ar)?

T2 1 _ 11)
1+ Owe/mws)® 14 (r/mwd)? — 27 # (

Let L = z2 — 2. Rearranging (10) and (11) yields
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1 1
7rU)12/}\ _ mthz/)\
1 2 + 1_ 2 1 )2 1_ 2 (125‘)
11"!‘1)12/}\ (?‘1) (rwf/?\ + T2
and
1 1
7 4 ~ 7 o e = L (12h)
(wwlz/ ’\) + (7“_1) (W22/?\) + (Tz)
If we also rearrange (4) and (5) as follows:
T2/ Tila?/A
(/N + dE - (2N + d (132)
dl d‘:! 1
(mblz/)\)z T df + (mf)f/)\)z E = }: (13b)

the analogy* between (12) and (13) now emerges with the following
one-to-one correspondences:
T 1
—_— ey —
A 11"!.012/)\

Using the above analogy, one may immediately write down the solu-
tions of (12) for wy and 1/7,
L

L — !

L_ 1=
o L 2 L 2
(-5 1) + ()

* The analogy would look even better, if 72 had been assumed positive to the
left of the beam waist. This fact, of course, results from the sign convention of di,
which is positive to the left of the lens.

(14)




GAUSSIAN BEAM PROPAGATION

2
T
L L=
wwa?/ A h L 2 L 2
— 2 i
(-5-1) + (=)

293

(15)

Except for slightly different normalizations, these two expressions coin-
cide with two formulas obtained by Rowe!® using rather involved alge-
bra. The curves in Figs. 3 and 4 represent (14) and (15), if the coordi-
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Tig. 4 — The graphical presentation of (6) and (15).
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nates and the parameters are replaced by those shown in parentheses in
the figures. When the wavelength approaches zero, the Gaussian beam
becomes the spherical wave of geometrieal opties. The singularity of the
spherical wave is eliminated in the Gaussian beam representation.
Equations (14) and (15) ecan also be combined into one equation of
complex variables:

L . (L ) 1
_  _ilE=1)= .
w2/ 2 ( L )‘l‘ p (_ L 1) (16)
1’r’l'l.712/?\ T

It is interesting to observe that (3), (9), and (16) are formally identical,
and they are amenable to graphical representation on an impedance
chart, e.g., a Smith chart. Thus, the circumference of the unit cirele on
a Smith chart corresponds to geometrical opties, while the interior de-
seribes the properties of a Gaussian beam. The transformation may be
performed by simply taking diametrically opposite points on a Smith
chart. It should be noted that while (3) has not been normalized, (9)
and (16) are dimensionless. Representation of (3) by the Smith chart has
also been proposed by Deschamps and Mast;” the analogy between (9)
and (16) corresponds to the dual forms of the cartesian Gaussian beam
chart.5% Rearrangement of (14) and (15) will yield equations similar to
those discussed in Ref. 8.

III. THE COMPLEX MISMATCH COEFFICIENT DIAGRAM

Using some of the results of the previous section, a graphical solu-
tion of mode matching problems using a properly defined eomplex mis-
mateh coefficient will now be discussed. Equation (3) can be rewritten as

. 1
— —dz =N 7T
A ( 12 ) 4l (19)
7w/ \ r
and one may adopt the following notations:
%—+i£=R+iX=Z (20a)
Tw?/\ 7
—2
"%-iz:@—z‘B=Y. (20b)

Thus, a Gaussian beam may be characterized by either a beam impedance
Z or a beam admittance ¥. Now the following interesting identity can
easily be verified.
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2

Z1 — Zy
Zy + Zo*

where the subseript 1 represents the incoming beam, 0 represents the
fundamental mode of a receiving system,* denotes complex conjugate,
and r is the power coupling coefficient? between two Gaussian modes.
The first two expressions in (21) certainly look like reflection coeflicients
in transmission lines. This observation suggests the designation of
(Z, — Zo)/(Z1 + Zo*) and (Y1 — Yo)/(Y1 + Yo*) as complex mis-
mateh coefficients. They are indeed identical to reflection coefficients in
form except for the complex conjugate in the denominator. If Z (or Y7y)
is normalized with respect to a real Z, (or a real Y), then the complex
mismatch coefficient is formally identical to a complex reflection coef-
ficient. Both the complex mismatch coefficient and the complex reflection
coefficient are bilinear transformations of the impedance or admittance.
The Smith chart is a geometrical representation of the complex reflec-
tion coefficient. The same Smith chart may also represent the complex
mismateh coefficient. With respeet to a reference mode, any phase front
of a Gaussian beam may be represented by two diametrically opposite
points on a Smith chart, i.e., the normalized admittance and the nor-
malized impedance. The propagation of a Gaussian beam corresponds to
travel along a conductance circle, while imposing change of radius of
curvature by a lens, say, corresponds to travel along a resistance circle.
The pair of two diametrically opposite points may be reduced to one
point by imposing a flip-over Smith chart on the original Smith chart,
however, overcrowded coordinate lines are not desirable in practical
graphical solutions. This latter version of geometrical representations
corresponds to a bilinear transformation of the Gaussian beam chart
discussed in Ref. 5, and is the same as that suggested in Ref. 7. It
should be notieed that Collins’ Gaussian beam chart® is a geometrieal
representation of the beam impedance, while Li’s dual form® is that of
the beam admittance. Here, however, the Smith chart is utilized as a
complex mismatch coefficient diagram and its relationship to the power
coupling coefficient between two Gaussian modes is identified.

=1—-7 (21)

IV. A NUMERICAL EXAMPLE OF BEAM MATCHING

In arder to illustrate the application of the Smith chart, consider the
problem of matching the output beam of an optical maser to an inter-
ferometer as shown in Tig. 5. The maser resonator consists of mirrors of
5 and 10-meter radius of curvature separated by 1 meter, and the inter-
ferometer consists of a pair of 10-meter mirrors separated by 10 cm.
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Fig. 5 — The geometry of a beam matching problem.

The maser beam exits from the 5-meter mirror and a lens with a focal
length of 2 meters is available for matching. First, one calculates the
minimum beam half-widths and their locations for both resonators by
the following formulas:*
0" _ VAR — d)(Ry — &) (Ry + Ry — 2d) (22)
A Ry + R, — 2d -
Ry, — d
R+ R, —2d

where B; and R, are the radii of eurvature of the mirrors, d is mirror
separation, w is the minimum beam half-width, and 8§ is the location of
the beam waist from the mirror of radius £;. Now we readily get
mbt/h = 0.705 m, S; = 0.05 m for the interferometer, and m:2/A =
1.727 m, S: = 0.692 m for the maser resonator. If all the parameters are
normalized with respect to w@.?/A, then the fundamental mode of the
interferometer is represented by the unity conductance circle passing
through the center of Smith chart in Fig. 6 where 0 corresponds to the
beam wasit for the interferometer. The maser output beam is represented
by the 2.45 (= w2/ conductance circle passing through M which
corresponds to the beam waist for the maser resonator. The inversions of
these two circles with respect to the center 0 give the beam radius and
the phase front curvature along the propagation path of the beam.
Let it be required that insertion of a 2-meter focal length lens changes
the phase-front curvature of the maser output beam to that of the in-
terferometer beam at the point where the two beams meet. Since the
beam radius remains constant going through the lens, application of the
thin lens formula demands that a segment of the beam resistance circle
between the inverted maser and interferometer circles be equal to the

length A'B = abd/N = (mwd/N)(1/r1 — 1/r9) = 0.3523. After deter-

S=d (23)
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Fig. 6 — The graphical solution of a beam matching problem.

mining the two pairs of diametrically opposite points A-A’ and B-B’
(Fig. 6), the distances from the lens to the interferometer beam waist

and to the maser beam waist can be read off the chart as OB = 4.3 X
0.705 = 3.03 m and MA = 6.5 X 0.705 = 4.58 m. The distances from
the lens to the interferometer input mirror and to the maser output
mirror are 3.03 — 0.05(S;)) = 2.98 m and 4.58 — 0.69(S:) = 3.89 m,

respectively.
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V. DISCUSSION

The advantage of this complex mismatch coefficient diagram over the
Gaussian beam charts discussed in Refs. 5 and 6, is similar to that of the
Smith chart over cartesian impedance and admittance charts. Neither
of thelatter can represent an arbitrary transformation of a Gaussian beam,
whereas the present mismatch coefficient chart, at least in principle,
encompasses all possible transformations. Curvilinear coordinates are
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Fig. 7 — An example of approximate beam matching.



GAUSSIAN BEAM PROPAGATION 299

not a problem here because a good network of circles is readily available
in the form of Smith charts. Sometimes it may be impossible to achieve
perfect beam matching due to limitations imposed by the inadequacy of
a lens or of space. One is able {o minimize the mismatch using the
procedure discussed here.

In the above example, there exists a minimum focal length of the lens
beyond which perfect matching is not possible. In Fig. 6, this minimum

is represented by the maximum are length D (0.64) of the beam
resistance cirele between the inverted maser and interferometer circles

which corresponds to a focal length of mf/)\cfi)' = 0.705/0.64 = 1.102

m. If one had only a one meter focal length lens available, "D’ would
be extended to E’ as shown in Fig. 7 and the reciprocals of C’ and E’
are then found to be € and E. The distances from the lens to the maser

output mirror and to the interferometer input mirror would be cM —

81 = 18 X 0705 — 0.05 = 1.22 m and £F — 8, = 156 X 0.705 —
0.69 = 0.41 m for a resulting mismatch loss | OF |* = 0.015.
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