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A binary PCM vegenerator must decide which of two signal states was
transmitted. This decision 1s normally based on whether some particular
voltage ts above or below a certain threshold at some particular time. In a
real regenerator, the voltage in question must differ from this threshold value
by some finite amount in order to cause the device to respond properly. The
purpose of this calculation is lo examine the effect of this “dead zone” on
the probability of error in a differentially coherent PSK system both in the
case where the signal is limited in amplitude (after the noise is added) and
when 1l is not.

It is found that when the expected value of signal power, S, exceeds the
threshold value, T, by more than 6 db and 10 db in the limited and unlimited
cases, respectively, the effect on error probability is less than the effect of a
1-db degradation in signal-to-noise ratio. However, for smaller values of
signal-to-threshold (S/T) the degradation becomes large. Numerical values
for error probability as a function of signal-te-noise ratio are presented
for S/T = =, 12, 9,6, 4, and 3 db for both cases.

1. INTRODUCTION

A binary differentially coherent phase shift keyed (DCPSK) system
is one in which the two (binary) states — “mark” and “space’” — are
transmitted as phase changes between adjacent time slots. In such a sys-
tem, optimum results are obtained when the expected values of the two
possible signal states in a given time slot differ in phase by = radians.
For clarity it will be assumed in the following discussion that the expected
value of phase change is 0 or m, respectively, according to whether a
space or a mark was transmitted, even though phase changes of 8 + 0
and # + = (8 an arbitrary but fixed angle) are equally suitable.
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Such a system usually consists of a limiter, followed by a storage
mechanism and a product demodulator, asshown in Fig. 1. If the signals
in adjacent time slots have amplitudes A and B, respectively, and a
phase difference ¥, the output of the product demodulator is proportional
to

v = AB cos . (1)

If the limiter is ideal, A = B = 1. The ideal regenerator samples the
sign of v and regenerates a mark if v < 0 and a space if v > 0.

The probability that, due to additive Gaussian noise, » > 0 if a mark
was sent or equivalently the probability that » < 0 if a space was sent
has been calculated by many authors."* This probability is given by

II = texp (—8/N) 2)

where S/N is the signal-to-noise ratio.
In a practical system, the regenerator requires some finite value of
v in order to regenerate a mark or a space reliably. While it is true that
the effects of this finite-width decision level can be made arbitrarily small
by providing sufficient gain ahead of the regenerator and sufficient dy-
namic range for the regenerator, it is often difficult — especially with
some solid-state devices — to achieve either this gain or the necessary
dynamic range. For this reason, it may be desirable to operate a regen-
erator under conditions where the decision threshold is important. In
this paper we consider the following model:
(7) An error is made if | » | > & and, due to additive Gaussian noise,
» has the wrong sign.
(#4) No error is made if | | > € and v has the correct sign.
(#%3) There is a 0.5 probability of error if |v| < €, regardless of the
sign of v.
The probability of error in such a system is clearly dependent on both
the signal-to-noise ratio S/N and the signal-to-threshold ratio S/T.
The latter is defined as the ratio of the expected value of signal power

NOISE
INPUT
SIGNAL — LIMITER M < PRODUCT OQUTPUT
WJ } DEMODULATOR
ONE
TIME-SLOT
DELAY

Fig. 1 —DCPSK receiver.
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to the minimum value which causes the output of the product demodu-
lator, v, to exceed ¢ in magnitude.

II. SYSTEMS WITHOUT A LIMITER

If the regenerator were ideal (e = 0), the performance would be inde-
pendent of whether or not the limiter in Fig. 1 is included, since the sign
of v is independent of the product AB (both A and B are positive num-
bers). However, for the case where ¢ > 0, the limiter plays an important
role under certain conditions. In this section, we consider the case where
the limiter is omitted. The received signal can then be thought of as the
vector sum of a unit vector representing the transmitted signal and a
noise veetor with Gaussian-distributed x and y components. The angle
between the two vectors representing received signals one time slot apart
together with their magnitudes A and B determine ». This is illustrated
in Fig. 2 for a “mark”. From Fig. 2, it is apparent that

= ABcosy = A-B = A,B, + A,B,
= (Aa + G;) (Bn + b.r) + arfbtr

where 4, = +1 or —1 and B, = 41 or —1 depending on the message.
Cos ¢ has the wrong sign if the sign of » differs from the sign of 4,8, .

There will ke two probability density functions p_(») and p,(v),
respectively, for the cases A,B, = —1and A,B, = +1. From symmetry,
it is apparent that the error probability is the same in these two cases
The probability of error can thus be determined from either

I 3%,[_2 p-(v)dv +f p—(v)dv (4)

3)

or

—E

1 -
II = 5 f pi(v)de + p+(v)dv (5)

Bennett and Salz’ derive the density functions py () for the quadratic
form of (3) where a, , a, , b, , and b, are independent Gaussian variables
of zero mean and variance ¢°. They are given (in our notation) by

exp [—(2? 4 y*) /207
pe(v) = (2“_):”20.3[ f \/(1 +z)

b+ 1+
o (= o) e

(6)

¢’ is the mean noise power.
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Ay, Bo= UNCORRUPTED SIGNALS
a,b = NoISE on A,B RESPECTIVELY
A,B = RECEIVED SIGNALS

Fig. 2 — Phasor diagram of a pair of received signals.
In Appendix A it is shown that substituting (6) into (4) or (5) gives
B e
H h 81r02 e exp 20’2 EI'fC\/i o ‘\/172 + y2

4 ot 1o
e e vV + )

This integral must be computed by numerical methods. The results
of these computations are shown in Fig. 3.

(7)

III. SYSTEMS WITH AN IDEAL LIMITER

If an ideal limiter* is included in the system as shown in Fig. 1, (3)

reduces to
v = cos y. 8

In this case, it is simpler to perform the calculation of error probability
from a consideration of the probability density of ¥ itself. From Fig. 4
and the eriteria for error listed in Section I, one obtains

1 T4cos—1(—e) cos—le

IT p(¥)dy + o p()dy
2 T4cos—le T4cos—1(—e)

(9)

1 cos~1(—e)

+ p(y¥)dy

2 cos”le

* By an ideal limiter is meant a device which removes all amplitude variation
from the signal without affecting the phase. That is, it transforms the signal
A(t)et® ) into the signal A.e?* ).
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Fig. 3 — Probability of error in an unlimited DCPSK system.
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FOR ApAND BgAS SHOWN

IN FIG.2, AN ERROR IS MADE
IF y FALLS IN THE DOUBLY
CROSS -HATCHED REGION AND
THERE IS A 50% CHANCE QF
ERROR IF § FALLS IN THE
SINGLY CROSS-HATCHED
REGION

Fig. 4— Geometric interpretation of the limits of integration over p(¥).

where p(¢) is the probability density function of y. The function p(y)
is derived in Appendix B. Tt is given by:

1 1 1 1
p(y) = — 5, &P (_ g—z) + 5 &P (ﬁ)

/2
1 f cos @ cos (a + ¢)

dra? J(x/2)

( sin’ a + sin® (a + 1{/)) d
-exp | — o

202 (10)

1 [ﬂg cos a cos (a + ¢)
dra? J(xi2)

sin’ @ + sin® (a 4+ ¢) o $080

P 20° V2e

+

cos (e + ¢)
- erf \/—2‘ - da.

The probability of error is derived in Appendix C by substituting (10)
into (9). The result is

H=1f0me"l’ I:_ U_—EM’D:I df. (11)

T 1 — esin 20
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Again the integral must be computed numerically. The results are shown
in Fig. 5.

IV. CONCLUSIONS

From the form of (2) one sees that for the ideal case (no dead zone)
the probability of error, II(S/N), will plot as a straight line if the scale
of the abscissa of the graph paper is proportional to the logarithm of the
logarithm of the scale of the ordinate.* A grid of this type is used in
Figs. 3 and 5. From these figures one sees that the graph of II vs S/N
is very nearly linear and very nearly parallel to the graph of the ideal
case even when the dead zone is significant.

Since the family of curves of II(S/N) for various values of S/T is a
set of approximately parallel lines, it is convenient to define a “threshold
effect noise figure,” N, as the change of S/N which would give a deg-
radation in error-probability equivalent to that due to the dead zone.
Since these curves are not exactly parallel lines, N, will be a function
of the value of I at which it is determined, but this effect is quite small
over the range of values plotted in Figs. 3 and 5.

The values of N, as a function of S/T (evaluated at II = 10~°) are
plotted in Fig. 6 for both the limited and the unlimited cases. From
Fig. 6 it is observed that N+ = 1 db for S/T = 9.4 db and 5.8 db in the
unlimited and limited cases, respectively. However, as S/T becomes
smaller the effect of N on error-probability becomes quite important.

The difference in the value of Ny for the limited case and the un-
limited case gives a measure of the improvement gained from the ideal
limiting process. This improvement is very small for large S/T'; however,
for S/T = 8 db it already amounts to about 1-db improvement in N,
for S/T = 6 db the improvement is about 2 db, and for S/T = 3 db this
improvement exceeds 4 db.
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APPENDIX A
Dervation of the Error-Rate Equation for Unlimited Systems
Substituting (6) into (4) or (5) and making the change of variable
~ * Tt may be worth mentioning that for 1 db < S/N < 10 db one can calculate

the error rate for the ideal case directly on a slide rule by reading 21T on the
LL3 scale directly opposite S/N (in bels) on the L scale.
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Fig. 5— Probability of error in a limited DCPSK system.
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Fig. 6 — Threshold effect noise figure vs signal-to-threshold ratio.

r—x — 1 gives

I1- 11 [_Zf_:j: exp (_ gf_;%}:_{.—y?)

- (21r)‘”2cr3§ ‘\/.1:2 + 2

[v F 2f* ) ,
exp ( % ¥ o dr dy dv

oup (= =220
N 1 fuo fm [uu p 252
(21!‘)3"2 ot Jy —w J—ow ‘\/.’1’:2 =+ y2

. _ [Fov 4+ x]Q) '
exp( m da,dy dv.

(12)




316 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1966

Making the substitution
v+
YT V2oV 4 g

and changing the order of integration gives

(a:—l)2+y) et
H*_‘lwf f eXp( 25 2 VeVt g
j——tt? fo—m bl dzd
“”wa\/xzﬂ TNz oV + Y

where erf (z) and erfe (2) have the usual definitions

(13)

2 z
erf(z) = Tf exp (—¢) dt, erfe (z) = 1 — erf (2). (14)
m Jo
Equation (13) is readily simplified by means of (14) to give (7).
APPENDIX B

Derivation of the Probability Density p(¥)

Bennett® and Davenport and Root® give the probability density of a
(see Fig. 2) as

(a) —iex (-—i +l L cos a ex] (—Sinﬂa
pla) =5 P\ 7" 22) T3V 2r 0 P P

(15)
¢ cos o 41
[er \/2 ]
A similar argument gives
fay 1 1 1_1 sin® B
p (B) —Eeﬁm(— Q;,) +§\/27racosﬁexr)(— 262)
(16)
fcos.t? _1
[er \/’2—0. ] .
From these results, one can evaluate p(¥).
p) = [ [ 84 + a — Bp(a)p (8)deds
(17)

= [ p@p'(« + ¥)da
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Cahn’ gives numerical values for p(y) for a wide range of values of 8/N,
However, an expression for p(y) suitable for calculation of error-proba-
bilities is obtained as follows. Substituting (15) and (16) into (17) and
performing the indicated multiplication gives

1 [7]1 1 11 1
p(¥) —%fw{é;exp(— a2>—l—§\/§;raexp(— 2—02)0080‘

sin® & f'?OSQ 1_1 1
e\~ ) o e T 5 a « P\ T 2
sin? (a + \(/)) cos (e + ¢)
7 erf

ccos (o + ¢) exp (—

20 '\/icr
+ 1,,c05acos (e + ¢) (18)
4¢?
sin? o + sin? (a + ¢)
eXp A T 2
cosa cos(a+y) 1
-erf 5 o erf V3o 1 cos a cos (@ + ¢)
exp (_ sin’ a + szin: (a + 1//))} dex

where the other terms vanish because they are odd with respect to
a— o+ T
Consider

L 2
I = f cos (a + ¢) exp (— e (;;j_ 111)) er{cos\(;;; v) de. (19)

We observe that the integrand is periodic in period = and the result
is therefore independent of . Thus, we can write

j"” sin? o ¢ coS « i
cos aexp| — ) erf —=— da
—(x/2) P 20 V2a

which is easily integrated by means of the change of variable + = sin «
and the definition of the error funection. The result is

I=2\/2_1ra[1—exp(—9iﬁ)i|. (20)

Substituting (20) into (18) and observing that all of the terms of the
integrand of (18) are even with respect to « — a + =, gives (10).

I =

oo
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APPENDIX C

Dertvation of the Error-Rate Equation for a Limiled Sysiem

Designate the four terms on the right of (10) pi, p2, ps, and ps,
respectively. We observe that

pilg) =p;(¢ +m) for =124
p(¥) = —ps(¢ + 7).

From this we have

II = f z Am) + pa(¥) + pa(y) }dy

T+4co8™

cos ™ le (21)
+ f pa(¥)dy.

w4cos— 1 (—e)
The integration of p; and ps is trivial. p, can be integrated by changing
the order of integration and applying (20) twice. Performing the first
integral in (21) and making a change of variable in the second integral
gives

‘\/l—z'lcua ¢+ zsin
H § 41ra‘2f f == . j exp ( 2+ y) drdy, (22)

\/l—zicos ¢+ z8in g

where
¢ = sin~! e.

Inspection of the limits of integration in (22) reveals that the integra-
tion is to be performed over an ellipse centered at the origin. Since the
integrand is spherically symmetric we can integrate over any quarter of
the ellipse — say the first quadrant. Then

1 e -\/l-am.:um? ] r?
II = 5~ o f exp( 202) rdrd8,

where we have made the change of variable x = r cos §, y = r sin 6.
This can be easily integrated over r to give (11).
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