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Weakly focusing transparent media provide possible means for guided
transmission of coherent light beams with relatively small loss. The scalar
wave equation for the eigenmodes of propagation in such a medium is
formally identical with Schroedinger’s wave equation. Hence, the methods
used in the solution of quanium-mechanical problems, such as the Wentzel-
Kramers-Brillouin (WKB) approxvimation, are immediately applicable fo
this problem. Solutions for the eigenmodes and eigenvalues in the case of
focusing in one dimension are given, and the Pdschl-Teller medium, whose
index varies as

n = n,fl — (e/2) tan? x|

is discussed in some detail. In addition, the relationship between the wave
solutions and geometrical (ray) optics is examined.

I. INTRODUCTION

Weakly focusing transparent media, exemplified by the gas lens,! pro-
vide a possible means for guided transmission of coherent light beams
with relatively small loss. The optics of a medium whose refractive index
decreases quadratically away from some spatial axis (the z axis, say) has
been the subject of much discussion in the literature.? In this paper, we
would like to examine the properties of more general guiding media. Some
work on this problem has been carried out recently by S. E. Miller.?

Consider a light beam traveling paraxially in the z direction in space,
guided in a weakly focusing transparent medium. For simplicity, we
shall consider focusing only in one of the two transverse dimensions.
Thus, the refractive index of the medium and the electromagnetic field
will be assumed to be dependent only on the x dimension, and to be
independent of y.

Our coneern is with transparent media whose index of refraction has
the form

n = n,(1 — &f(x)).
321
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We make the following assumptions about f(x)

f(z) « 1 in the range of interest 1)
o' f
s >0 (2)
f0)=0; f() =f(—=). 3)

We will investigate both geometrical and physical optics of such a
medium in the realm of validity of the paraxial ray equation. Of the
assumptions, (1) implies only gradual changes of index, (2) insures
focusing properties, and is used in the approximation procedure of
Section V11, while (3) is made only for mathematical convenience and
can easily be relaxed.

II. GEOMETRICAL (RAY) OPTICS

The well-known paraxial ray equation

2
has the following general solution.
If we let
p= C;—::, (5)
i.e., p is the slope of the ray path; then (4) becomes
dp 1af
Pax =~ "206z
Hence,
p?® + f = const =¢. (6)

Inserting (6) in (5), and solving, we get

dx
z= f ———=—+ const. 7
Vi-i@ T {
Note from (6), (5) and (3) that ==£* is the slope of the ray path as it
crosses the axis z = 0.
III. PHYSICAL OPTICS

In the paraxial ray approximation, the electromagnetic fields are
always very nearly perpendicular to the “direction” of propagation,
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which we take to be the z axis. Hence, we can use the scalar wave equa-
tion. For harmonic [exp (—iwt)] fields that are independent of y, we
arrive at the wave equation

LA "’ Bni(l — fz))¢ =0 [k = w/e] (8)

6:02

where we have used (1) to expand n% We look for solutions to (8) with a
propagation constant 8 in the z direction, i.e.,

P
Yae ? ; Fyy = “ﬁﬂf’ (9)
yielding, for (8)
"‘” ) 182 — B — BAf(x)Y = 0 (10)

where we have substituted n,’k* = 8, = (2r/A)’. With the further
substitution

1—6/8" = ¢ (1)

(10) becomes

&

M 18— [ =0 (12)
Equation (12) is Schroedinger’s wave equation for a particle in a one
dimensional potential well. It has a sequence of eigensolutions ¥, and
corresponding eigenvales &, . The eigenfunctions ., here represent the
transverse distributions of the propagating field modes, while the
eigenvalues £, give the propagation constants. In accord with (1),

the eigenvalues will be much smaller than unity, and so we ecan find
the propagation constants 8,, from (11) as

B = ( E’“) . (13)

If we use the notation of the classical ray path equation (5), and set

p=p) = VE— f(z) (14)
then (12) becomes
6\!/ 2 2, _
o + B.py = 0. (15)

We note from (2) and (3) that f(z) increases monotonically with
| z |. Consider the points x = =+ A, where
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fl@) =74) =& (16)

For |z | < A,p"is positive, and ¢ has oscillatory behavior. For [z | > 4,
p’ is negative, and ¥ has decreasing exponential behavior. The points
|z| = +A are inflection points of ¢. In the ray solution, the points
|z | = A, where p = 0, are the turning points, where the ray has zero
slope and, correspondingly, maximum excursion from the axis.

IV. THE WKB APPROXIMATION

A well-known solution to (15), valid in the range |z | < 4 if p can
be considered approximately constant over a few cycles of the oscilla-
tory behavior of ¢, is

;];o:pj'cos{ﬁ,f:'pdx-l-a}. (17)

With the symmetry of f assumed in (3), one can show directly from (12)
that ¢ must be either symmetrical or antisymmetrical in x. Thus, «
must be a multiple of x/2. The eigenvalues of ¢ are then determined by
the condition that ¥ must be matched through the turning point & = A4
(where another approximate solution to (15) is necessary) into the
decreasing exponential solution for > A. Dlscussmns of this problem
may be found in most quantum mechanies texts. If f (z) can be assumed
linear in z over a suitable region near A, then the asymptotic formulae
for connection through + = A are

Y p_% cos (G — ;_r) r < A (18a)
27

- (3p) U360 + Ja0)] z <A (18b)
27l

( ) [—L(8) +14(08)] a2z A (18¢)

— 1p exp (—6) x> A (18d)

where

(18e)

6 = 8(x) = BDL | p(a’) | da’

The phase of ¢ as it approaches the turning point must be as in (18a).

Otherwise the connection through the turning point would give rise to

the increasing exponential in the region + > A, and this is unallowable.
Expressions (18a) and (17) for ¢ can be equated only when
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ﬁ.,j; pd:c=(m+%)g (19)

where m is an integer. Even and odd symmetry solutions correspond
respectively to even or odd values of m. Equation (19) is Bohr’s quanti-
zation rule, and its solutions give the eigenvalues £, . The eigenfunctions
are then given by (18).

V. RELATION BETWEEN WKB AND GEOMETRICAL RAY PATHS

Referring to (19), let

28, [*
16 = 2 [" paa. (20)
™ 0
For successive eigensolutions, I changes by unity. Now,
dl B, f 4 dx
E 2 h D (21)

where we have used (14); i.e., p = v/& — f(z). For a change of I by
unity, the propagation constant (13) changes approximately by

g _dp /dI /2

Brr— ="+ /" =— .
dl  dt/ dE fudﬂf/P (22)

Now from the ray solution (7), the z distance a ray with the same value
of £ takes to go through one complete cycle of its transverse oscillatory
motion is

z. =4 _/: dx/p (23)

hence, putting this in (22), we find
(88)z. = 2. (24)

Hence, adjacent modes undergo a relative phase shift of approximately
27 in the same distance the corresponding geometrical ray takes to
complete one transverse cycle.

We can make the same argument more general by examining the be-
havior of solutions of (15) which are sums of component solutions (17)
with nearby values of £. We look for trajectories x(z) such that the
phase differences between components remain constant. Then if we make
up a wave packet, the packet will follow one of these trajectories.

Putting the z dependence back into (17), and keeping, for example,
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only the positive imaginary part of the cosine term, we have

xb'rP'*{eXPi[Bz+ﬁnj;zpdx+a]}. (25)

The phase we have to maintain constant over a range of £ is thus
Bt 6 [ Dz ta (26)
Differentiating with respect to £, setting the result equal to zero, and
using (13) and (14), we have
o [z, 2
B, dE
To complete the picture, we note that in order to make a wave packet

initially concentrated at some point (z,, z,) should take all the phases
initially equal at that point, so that

(27)

a = —fz —B.,f p dx + const
0
2da_, [
Bo d& '
Hence, the wave packet trajectories of stationary phase are given by

z—zl,:fc—if. (28)
:L',,p

This is identical with the ray path (7). In this last diseussion we have
neglected the discrete nature of the eigenvalues. Such an approximation
should be valid for reasonably large mode numbers m.

VI. THE POSCHL-TELLER POTENTIAL

A number of functions f(z) yield analytically integrable equations.
The square law medium f(z) = (z/b)* and the square well medium
f(x) = 0for |z | < A4, f(x) — = for z > A, suitably joined, are media
with well-known solutions both for the geometrical and physical optics
equations. An interesting function, which in a slightly more general
form goes by the name of the Péschl-Teller potential® in quantum
mechanices, is the function

f(x) = atan® (9z); —w/2n <z < m/2n. (29)
Nearz = 0
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fx) = an’a’ (30)

and there are impenetrable boundaries at * = /2. For this function
the ray equation (7), the wave equation (12), and the WKB approxi-
mation (17) can be directly integrated and compared. As the parameters
« and 7 are changed, the function varies smoothly between a square
well and a square law type.

Consider first the ray equation,

dz
z = f [t — o tan® na] + const. (31)

This integrates to [Burrington # 258]
T j-—a]_! sin” ([1 + a/#] sin nz) + const. (32)

If we set the constant equal to zero, then z = 0 when x = 0. This expres-
sion generates a ray path, with 2 taking on values between the turning
points

t= 44 = 4+ 'sin ' [1 + a/E? (33)
while the period of oscillation is
= 2x/qt + ol (34)
Note that at the turning points, f(z) = £ We see that for « > &, 2
is always small, and (32) reduces to
x = (§/n°a) sin (na'2)

which is appropriate to a square law rnedlum while for a < £, the ray
travels back and forth with constant slope £ between reflecting walls
separated by r/7.

Poschl and Teller have found exact solutions for the wave equation
(12) with this potential. They have shown that the eigenvalues follow
the simple law

= (2'/B,") (m* + 2ma + a) (35)
where a is the positive root of the equation
ala — 1) = aB,’/n". (35b)
The corresponding eigenfunctions are
odd.
Ym = cos’ (nx) kﬂZ';ven ¢ sin® (nz) (36)

k=1,0dd
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where
cep2 _ (m — k)(m + k + 2a)
Ck (k+ 1)(k+ 2) '

From (35) and (13), we find that the propagation constants of the
modes follow the law

Bm = Bo — (n'a/28,) (1 + 2m + m?) (37)

To examine the square law limit, we set « >> £ Then [see (35)], ¢ ~
a'o/n > 1,

and, from (37)

B A By — ma'(m + ) (38)
while from (36)
¥m R exp (—4ma'8r’) Hu (na'Ba’). (39)
To examine the square well limit, we set @ << £ Then a &~ 1, and
Bm— Bo — §(1°/Ba) (m + 1)° (40)

Ym —cos [(m + 1)gz] for m even 1)
¥m — sin [(m 4+ 1)gx] for m odd.

Returning now to the general solution for the propagation constants,
note from (37) that the average of the propagation constant differences
between the mth mode and its two neighbors is given by

6 = 3 (ﬂm—l - ﬁerl) = (’Tﬂ/ﬁn) (m + a)- (42)

If we look at the ray equation, and insert the values of « and £, (35)
into (34), we find

_ = 2m/88. (43)

This is a more precise version of (24).

Using the Poschl-Teller potential, the WKB result (19) for the
eigenvalues £, can also be integrated. Referring to (21), (23), and (34),
we have

T~ /) [ dn/p = ftin
= ﬁ:/zﬂ(f + a)i-
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Hence,

I =8+ a)l/n — Bal/n. (44)

Here the constant of integration is determined by the condition that
I = 0at¢ = 0. Thus, (19) [see also (20)] is

Bolkm + @)i/n = Bal/n + (m + }) (45)

or

[

[(n/8.) (m + 3) + '] — a
(n/B)[(m + 1) + 2m + 1) Va(a — 1))

where we have used (35b). We see that the WKB result (46) agrees
with the exact result (35a) in the limit of the square law medium,
a > 1. In the square well limit, a — 1, the WKB method gives eigen-
values proportional to (m + 3)° rather than (m + 1)* as does the exact
result (35). This last discrepancy can be traced to incorrect matching
of the boundary conditions by the WKB method, since here the WKB
wave function (17) is the correct one. The factor 3 in m 4 3 arises from
matching the boundary condition, and in fact, we can get the WKB
answer to equal the exact one for all @ and m here by the artifice of
replacing m + % in (46) by

m+a—\/a(a—1)=m—|—a—a’ﬂ.,/n. (47)

The number added to m varies between the value § for large a to one
as a approaches unity.

o (46)

VII. FURTHER APPLICATION OF THE WKB METHOD

The results of Section VI give us reasonable faith in the WKB method
of obtaining eigenvalues even at small values of m. The number we add
to m may however, take on values between 3 and 1 depending in general
on m as well as on the form of the potential.

Let us consider the WKB result further. Equation (19), which we
repeat here for convenience, may be written

ﬁnfo " VE =@ de = (m+3) (48)

E
2
where

f(‘zlm) = Em .

We can see two simple bounds. For functions that satisfy (2) and (3),
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we have that in the range 0 < =z < A,

Em ; Em - f(x) g Em (1 - A—T;,,) (49)

hence, performing the integral for the two bounds, (48) gives
Bo VEndn Z (m + 1) 5 = 360 VEnAn

We can write this as

Vindn = r(m + §)7/28, (50)
where
1=r 215
Note that
- mf VE = f(z) dz. (51)

If we further remember that we should replace the % in m + % by some
number between £ and 1 which we can denote by s, we have

VEndn = r(m + s)7/28, (52)
with
1<r=15 and 05 s = 1.

Let us examine the implications of this formula in a definite example.
We take the potential to be a pure power law®

f(z) = (g)2 (53)

We need the value of 4., ;
f(An) = £m therefore, A, = btn"".
Then (52) is easily solved, yielding

B w(m_l_s)lﬂnln-l-l
o 5 o

In this case, examination of (51) reveals that r is given by

1
o [ VITEa (55)
0
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- 80 that r is independent of m, and varies between

for n=1 and 1 for n— .
T

Further, we know that s =  for n = 1 (square law), and s = 1 for
n — o (square well). As a guess, we would be tempted to try

= M
n+1
as a suitable interpolation. Then we have as our final result
En = {(m + E%I) %B}MH (56)
hence for the phase constant [repeating (13)]
Bm = Bo(l — Eu/2). (57)
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