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Shannon’s celebrated formula W In(1 + P,/N.W) for the capacity of
a time-continuous communication channel with bandwidth W cps, average
signal power P,, and additive Gaussian noise with flat spectral density
N, has never been justified by a coding theorem (and “converse”). Such a
theorem s necessary to establish W In(1 + P,/N,W) as the supremum of
those transmission rales al which one may communicate over this channel
with arbitrarily high reliability as the coding and decoding delay becomes
large.

In this paper, a number of physically consistent models for this time-
conlinuous channel are proposed. For each model the capacity is established
as W in(1 + P./N,W) by means of a coding theorem and converse.

I. INTRODUCTION

As an idealized model for the time-continuous Gaussian channel (with
bandwidth W ecycles per second, two-sided noise spectral density N,/2,
and average power P,), Shannon'?® employed the mathematical time-
discrete channel which passes 2 real numbers x per second, with the
average of 2° restricted to be P, . Each input x is perturbed by an inde-
pendent ‘“noise’” random variable which is Gaussian with mean zero
and variance N,W. If by “channel capacity” we mean the maximum
rate at which a channel is capable of transmitting information with
arbitrarily small error probability as the coding and decoding delay
becomes large, then the capacity of this time-discrete channel is given
by the celebrated formula W log. (1 + P,/N,W) bits per second (or
Wln (1 + P,/N,W) nats per second).

In order to show that the capacity is given by this formula, it is
necessary to prove a coding theorem (showing the possibility of achiev-
ing “error-free” communication at any rate less than W log, (1 +
P,/N,W)), and a “converse” (showing the impossibility of achieving
“error-free” coding at a rate exceeding this quantity ). For this — purely
mathematical — channel these theorems have been proved, and there
is no question as to the meaning and validity of the capacity formula.
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The way in which Shannon arrived at this time-diserete model for a
‘“‘physical” time-continuous channel is described in detail in Section IT.
It will suffice to remark here that there remain questions as to the relation
of this time-discrete model (and the resulting capacity formula) to a
physically meaningful time-continuous channel. These difficulties center
on the fact that the inputs and outputs of the time-continuous channel
are band-limited signals which are not physically realizable. As we shall
see in Section II, such assumptions lead to a number of anomalies and
absurdities.

Our purpose in this paper is to find physically consistant mathe-
matiecal models for the time-continuous band-limited Gaussian channel,
and to establish their capacity by means of a coding theorem and con-
verse. Schematically our results are of the following form:

Let a(T,W,P,) be a class of functions which are “approximately
band-limited to W cycles per second and approximately time-limited to
T seconds”, and which have “average power” P,. The channel inputs
must be members of a. The noise is additive, stationary, and Gaussian
with flat two-sided spectral density N,/2 in the band 0 — W cycles per
second (or “approximately’’ given as above). Then the channel capacity,
defined as the maximum rate for which arbitrarily high reliability is
possible (using signals from a) as T' becomes large, is given ‘‘approxi-
mately” by W log, (1 + P,/N,W). The term ‘“‘approximately’’ used
here will, of course, be given a precise meaning below.

In Section II, Shannon’s model and results are discussed, and in Sec-
tion IIT our models and results are stated completely and discussed.
Our proofs follow in Sections IV and V. A glossary is included at the
end of the paper.

II. THE SHANNON MODEL
2.1 The Time-Discrete Channel

In order to fix ideas as well as to review some results which will be
required subsequently, let us consider the following class of (time-dis-
crete) channels: Every T seconds the input to the channel is a sequence
of n = [aT] real numbers x = (2,22, -+, @a), Where a(0 < & £ =)
is a fixed parameter. Further, the input sequence must satisfy the
“energy”’ constraint

E(x) = ; i £ PT, (1)

where P > (0 is another fixed parameter, and where F (x) is, as indicated,
the sum of the squares of the ecomponents of x.
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The channel output is also a real n-sequence y = (y1,42, "+, ¥n),
where

yk=3'k+3k, k= 1,2,"‘,1’1, (2)

and the noise digits 2z (k = 1,2, ---,n) are independent, normally

distributed random variables with mean zero and variance N.

Let us assume that this channel is to be used in the communication
system of Fig. 1. The output of the message source is a sequence of
independent and equally likely binary digits which appear at the input
of the coder at the rate of R, digits (bits) per second. Every 7' seconds
the coder input is one of M = 2™7 hinary sequences, each sequence
being equally likely. Let us number the possible messages as 1,2, - - - , M.
The coder contains a mapping of the message set {1,2, --+, M} to a
set (called a code) of M real n-sequences {X;,X;, ---, Xu} (called
code words) satisfying (1). If message 7(¢ = 1,2, ---, M) is the coder
input, then the coder output (and hence channel input) is the code
word x; . Since it takes 7" seconds to transmit a code word, the system
can process information continuously without a “backup” at the coder
input. The transmission rate is R, bits per second or B = (In 2)R,
nats per second,

It is the task of the recciver (or decoder) to examine the received
sequence y, and determine which of the M code words was actually
transmitted. Thus, we may think of the decoder as a rule which assigns
to each possible received sequence y, a code word x; . Let us denote by
P.; the probability that the decoder chooses the wrong code word given
that x; was transmitted. The over-all error probability is then

1 M
P, = — pra

3 ; P (3)
A transmission rate B (nats per second) is said to be permissible if
for every A > 0 one can find a T sufficiently large and a code with
parameter T with M = [¢*"] code words and P, = \. With such a code,
the system could process Ry = R/In 2 bits per second. We define the
channel capacity C as the supremum of permissible rates. For the channel

under discussion the channel capacity is given by the celebrated formula

1!
X; Yy=X_+Z "
CODER CHANNEL RECEIVER p———

MESSAGE L
SOURCE

Fig. 1. — Time-discrete channel.



362 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1966

_ o« P
C_CG_EID(I+QW)' (4)

In order to establish C' as the capacity, one must prove two theorems.
The first (‘“‘direct half’’) states that any B < (' is a permissible rate;
that is, there exist codes with vanishingly small P, as T — . The
second theorem (‘“‘weak converse”) states that no £ > (' is a permissi-
ible rate; that is, for any sequence of codes with rate B > C, P, is
bounded away from zero. This has been done for the present channel
for the case of a finite « by Shannon."** Let us observe that if we let &« —
© in (4), we have C, % P/2N. The fact that C, = P/2N has been
established by Ash.' The reader is referred to Ash [Ref. 5, Chapter 8]
for a complete discussion of the above. The significance of the channel
capacity then, is that it is the maximum rate for which arbitrarily high
reliability is possible using signals in a certain class (i.e., those which
satisfy (1)) with sufficiently long delay T'.

2.2 Application to the Band-Limited Gaussian Channel

Shannon'* has applied the above results to the communication system
of Fig. 2. As above, the message source emits binary digits at the rate of
Ry per second, and after T seconds, one of M = 2" possible messages
appears at the coder input. Corresponding to the 7th message (¢ = 1,2,
.«- , M) the coder output is the function

wil) = 3 wus(t — b/2W), (58)

where 6(¢) is the unit impulse, n = [2WT], and the {xu)i=" satisfy
kZL; xa' £ 2WP,T, i=12---, M. (5b)
As for the time-discrete channel, the coder must contain a set of M real

n-sequences. The channel input s;(¢) is the result of passing x;(¢) through
an ideal low-pass filter with transfer funetion

1
_— = 27w
H(w) = 12 ol = 2xlV, 6
(w) (")V ol > 207, ®
z(t)
Lyl =Syt +z )
!
; xi(t) Silt) ; i
hg%%s‘a}%!i L CODER u H{w) b CHANNEL Y RECEIVER |——-

Fig. 2 — Shannon’s time-continuous band-limited channel.
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so that

= |[sin2xW(t — k/2W)
s(t) = k;“’“‘[ 2 Wt — k/2W) :' (7)
Thus, it takes 7' seconds to generate the filter input, and the system can
process information at a rate of R = (In 2)R, nats per second without
a “backup” at the coder input. Let us also remark that although the
signal s;(t) is generated in T seconds, due to the physical unrealizability
of H(w), s;(t) is nonzero almost everywhere on (— «, . This leads to
a fundamental difficulty which we shall discuss later.

Let s(¢) be the input to the channel due to a repeated application of
the coding process (every T seconds). Then s(t) is bandlimited to W
cycles per second, and

Tol2
limit—l—f s(t)dt = P,. (8)
2

T o+ T, —To/
Inequality (8) follows from (5b) and the orthogonality of

sin 20 W (t — k/2W) and sin 2aW (¢t — k'/2W)
2W (L — k/2W) 2eW(t — k'/2W)

(—w < k < k' < =) on the infinite interval (— o, ). Thus, the
channel input is a bandlimited signal with “average power’ not exceed-
ing P, .

Again turning our attention to Fig. 2, the channel output is a function
y(t) = s(t) + z(t), where z(¢) is a sample from a Gaussian random
process with spectral density

_ |N,/2 lw| = 27W,
Nw) = { 0 | > 2. (9a)
The corresponding autocorrelation function of the noise is
R(x) = ele(0z(t + )] = Now 22270 (9b)
2xWr

where & denotes expectation.

Again it is the function of the receiver (or decoder) to examine y (t)
and determine what the input information was. Let us consider the
signal s;(¢) (7), which was generated during the interval [0,7]. The
coefficients {xa}r—" are the values of s;(¢) at the “sampling instants”
t = k/2W, k = 1,2, --- , n. Since the noise is also bandlimited, the
received signal y () is bandlimited and may be completely characterized
by its values at the sampling instants . = y(k/2W), k =
0, &1, +£2, - - - . Clearly

yk=$ik+2k, k=1,2,"‘,ﬂ, (10)
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where 2z, = z(k/2W) is the value of the noise z(¢) at the sampling in-
stant ¢ = k/2W. Since s;(k/2W) = 0, for k£ < 1 and & > n, the only
useful samples of y are {yi}i—". Further it follows directly from (9b)
that the z are independent, normally distributed random variables
with mean zero and variance N,W. Thus, it suffices to consider the
input and output as n-sequences x; = (i, T, ,%Twm) and y =
(h, ++,¥n) (n = 2WT) related by (10). Let us remark here, that the
code words corresponding to previous and successive intervals will
not cause any interference with the code word corresponding to the
interval [0,T], since these other code words are zero at the sampling
instants.

Inequality (5b) and (10) permit us to apply the results for the time-
discrete Gaussian channel discussed above with parameters o = 2W,
P = 2WP,, and N = N,W. We conclude that this communication
system (in Fig. 2) is capable of processing information at any rate R
less than

C=W1n(1+;———;v), (11)

with vanishingly small error probability as 7 becomes large. Since the
channel inputs are bandlimited to W cycles per second, and by (8)
have average power not exceeding P, , it is generally believed that the
capacity (taken as the maximum “‘error-free rate””) of a channel which
admits only bandlimited signals with average power P, is given by (11).
In fact, it has only been shown that it is possible to do at least as well
as C (using the system of Fig. 2), and no converse has been proven. This
is the first difficulty with the Shannon model which we shall attempt to
remedy.

Further, there are other difficulties inherent in the use of this model.
We are taking “capacity’” to be a (maximum) transmission rale, but
what is the rate for the system of Fig. 2? We have said merely that the
coder can process information at a rate of R nats per second. However,
because of the physical unrealizability of H (w), we must discard all
temporal notions about the channel input s;(z) as well as the output
y (). The notion of rate, therefore, has only a limited meaning. In fact,
since the received signal y(¢) is an entire function, it is perfectly pre-
dictable for all time from observations over a finite interval. Thus the
receiver, by observing y(¢) in a tiny interval, could extrapolate y ()
for all time and obtain sample values at an arbitrarily high rate. This
anomaly is the second difficulty with the Shannon model.

It is the purpose of this paper to present a model for the time-con-
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tinuous band-limited Gaussian channel for which the capacity (defined
as the maximum “‘error-free rate”) is given by (11). This will necessitate
proving a “direct half’”” and ‘“converse” to a coding theorem. Further,
the model should avoid the second difficulty mentioned above. We shall
obtain results of the following form:

Let a(T,W,P,) be a class of functions which are “approximately
bandlimited to W cycles per second and approximately time-limited
to T seconds”, and which have total “energy” not exceeding P,T.
The noise is taken to be stationary and Gaussian with spectral density
given (or “approximately” given) by (9a). Then the channel capacity,
defined as the maximum rate for which arbitrarily high reliability is
possible (using signals from a) as T becomes large, is given “approxi-
mately” by W In (1 + P,/N,W). The term ‘“approximately” used
here will, of course, be given a precise meaning below.

III. SUMMARY OF RESULTS

We shall propose four models for the channel and find the capacity

of each. Each model is of the following form:
(7) Definition of a suitable class of allowable signal functions,
a(T,W,P,), which are “approximately bandlimited to W cyecles
per second, approximately time-limited to T’ seconds”, and with
total energy not exceeding P,T'.
(77) Definition of the noise — taken to be stationary additive Gaus-
sian noise with spectral density N (w), which is “approximately”
given by (9a).
We shall take W and P, to be fixed parameters. A code with parameter
T is a set of M functions (ealled code words) in a (T,W,P,). The transmis-
sion rate R is defined by R = (1/T) In M, so that M = ¢"". A decoding
scheme is a mapping of the space of possible received signals (code word
plus a noise sample) onto the code. If code word 7 (¢ = 1,2, --- , M)
is transmitted, we take P,; to be the conditional probability that the
decoder chooses a code word other than 7, and hence makes an error.
Since all code words are equally likely to be transmitted, the over-all
error probability P, is given by (3), i.e.,
1 M
R—ﬂgﬂb

A transmission rate R is said to be permaissible, if for every A > 0 one
can find a 7T sufficiently large and a code with M = [¢""] code words for
which P, £ \. The channel capacity C' is defined as the supremum of
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permissible rates. We shall find the capacity corresponding to a number
of different a(T,W,P,) and N (w). This will, as for the time-discrete
channel, necessitate proving two coding theorems —a ‘“‘direct half”
and a “weak converse”.

Before beginning the summary we shall need the following definitions.
Let s(t), —o < t < o, be a real-valued square-integrable function
and S(w) be its Fourier transform. Let the norm of s(¢) be

sl = [ [: s’(t)dt]i. (12)

The frequency and time “concentration” of s are

Kp(s2eW) = o ﬂ'wrsm) Fde/|| s, (13a)
and
T/2
Ko(sT) = [ s0aylsll, (13b)

respectively. Further, let D+ be the “time-truncation” operator defined
by

Das = {s(“ H‘l = T/z’_ (14)

With these definitions in hand, we are able to state our results. In each
case we shall define the channel model and then give the channel ca-
pacity. Although there are some difficulties inherent in these models,
each model leads to a mathematical theorem which justifies Shannon’s
capacity formula.

Model 1: To begin with, let us take for the set a of “allowable” inputs.
a, (T,W,P,), the set of functions s(¢) satisfying

s(t) = 0, [¢] > T/2, . (15a)
I s]* = P.T, : (15b)
Kp(s2eW) =21 — qn (0<n<1). (15¢)

Hence, our allowable signals are functions which are strictly time-limited
and approximately band-limited. As  — 0, the allowable signals become
more perfectly bandlimited. The noise spectrum is taken to be
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vo- (i ElEE w

where 0 < » < 1. As » — 0, (16) is in some sense “approximately” the
same as (9a). The average noise power outside the band (| w | > 27W),
however, is infinite. In this case, Theorem 3 establishes

P,

vN, (17)

C=C,,=Wln(1+(l—n)NW)+n

as the channel eapacity. As n — 0, the capacity approaches the classical
formula W ln (1 + P.,/N.W).

The principal difficulty with this model is the assumption of infinite
average noise power, which is hardly a physically acceptable notion.
Further, there are mathematical difficulties inherent in a spectral
density given by (16) which implies a covariance containing an impulse
function. Often the assumption of a spectrum in (16) can be justified
by the fact that it can be approximated as closely as desired in the
frequency range of interest by a spectrum with finite power. However,
the following theorem, the proof of which is Appendix B, renders this
justification meaningless in this case.

Theorem 5: Let a(T,W,P,) be as in (15) and let the notse be addilive and
Gaussian with spectral density N (w), where

[: N(w)dw < .

Then the capacity Cy = = regardless of how small n may be.

Intuitively, we may see that this is true by observing that, since the
above integral exists, N (w) must be arbitrarily small in some frequency
range. Hence, by placing some signal energy into this frequency range,
we can make the “signal-to-noise’” ratio arbitrarily large, and therefore,
the permissible rate of transmission arbitrarily high.

Accordingly, we shall assume for the remaining models that the noise
is additive, Gaussian, with spectral density

_ N./2 lw]| = 27W,
Nw) = { 0 lw| > 27W. (18)

This corresponds more closely with the usual formulation of a band-
limited channel. It remains to find a suitable class of input signals,
a(T,W,P,). We consider some possibilities.

Model 2: This model defines @ = a.(T,W,P,) as the set of functions s(¢)
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satisfying
S(w) = 0, |w]| > 27W, (19a)
| sl = P.T, (19b)
Kp(s,T) 21— (0<n<1). (19¢)

Thus, a: is a set of strictly band-limited, approximately time-limited
functions. As  — 0, the allowable signals become more perfectly time-
limited. With the noise as defined in (18), Theorem 2 establishes

C=0.=W1n(1+(1—n)§:)+n§f (20)

as the channel capacity. Again, as » — 0, C, approaches the classical
formula Wn [1 + (P./N.W)I.

Model 2 is an intuitively plausible model for the band-limited channel,
and Theorem 2 which establishes its capacity is a mathematically rigor-
ous result which, in the limit, yields the desired capacity formula. There
are, however, two difficulties inherent in this formulation. The first
is that since the allowable signals s (¢) are band-limited, it is not possible
to generate them in finite time. Thus the central idea of a transmission
rate has, at best, a limited meaning. The Shannon model (Fig. 2) also
suffers from this difficulty (see Section II). The other problem with
this formulation is that if code words are transmitted sequentially,
we will have an interference problem (i.e., the tails of successive signals
will overlap), the resolution of which is not known at present. The
following two models contain neither of these difficulties.

Model 3: This model avoids the difficulties of Model 2 by letting the
code words be strictly time-limited and approximately band-limited.
However, as we have seen in Theorem 5, the definition of approximately
band-limited functions employed above (15) yields an infinite capacity.
Thus we seek an alternate way of characterizing ‘‘approximately”
band-limited or “slowly changing” functions. We proceed as follows.
Let 2 (t) be a function satisfying z(¢) = 0, |¢| > 7/2,and [ z|* < =.
If + = D.#, where # is a strictly bandlimited function and Dy is defined
by (14), we may define a “frequency concentration” of z by

= [*

[E2

If we cannot express z as D £, we take K,/ = 0. For example, if z(t)
or any of its derivatives has even a small discontinuity then we cannot
write = D, so that K5 (z,2rW) = 0 and z is not approximately

Ks' (z2«W) = (21)
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bandlimited in this sense. This is so no matter how large Kz (z,27W)
may be. Conversely, it is shown in Appendix C that for any function x

1= Ko (2.24W)
Ky (z22W)

Kg(227W) =21 — 2 (22)
so that a K close to unity implies a K 5 close to unity. Thus, saying that
a function z has a K5 close to unity implies that z is “slowly changing”
and that Kz is also close to unity.

We now choose that set ¢ = az(T,W,P,) of allowable inputs as the
set of functions s(t) for which

st) = 0, [t] > T/2, (23a)
| s]* = P.T, (23b)
KiG2rW) =21 — g9 (0<g<D. (23¢)

Thus a; is a set of strictly time-limited, and approximately band-limited
funetions. In this case, Theorem 4 establishes

0=0,,=W1n(1+;:;;v)+1—-—jﬂ% (24)

as the channel capacity. Again ¢, — Wl [1 + (P,/N,W)]as 5 — 0.

The significance of constraint (23c¢) is that it makes it impossible
for the communicator to make any use of the high-frequency components
which must of necessity be included in the signal (since it is time-
limited). Model 3, therefore, provides a mathematically rigorous
theorem which does not involve any complications coneerning physical
realizability, and yields the desired capacity.

Our final formulation is as follows:

Model 4: Let a = as(T,W,P,) be the set of strictly time-limited,
approximately band-limited functions s(¢) which satisfy

s(t) = 0, [¢] = T/2, (25a)
| sl = P.T, (25b)
Kg(s2rW) =2 1 — . (25¢)

Now Theorem 5 (stated above) tells us that if the noise were as in
(18), then the capacity is infinite. In actuality one could not be sure that
the noise was absolutely band-limited. In fact, whether or not the noise is
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strictly band-limited is not verifiable in the laboratory. It is reasonable,
therefore, to assume that the noise is given by z(¢) = 21(t) + =(t),
where z () is a sample from a Gaussian random process with spectral
density (18). For z; (#) we require only that

T/2
[ 2o (t)dt < »N,WT, (26)
T/2

where » > 0 is small. We place no other restrictions on the spectrum of
2z, or on its probability structure. Since the expected value of the energy
of () in [—7/2,7/2]) is N,WT, (26) implies that the energy of z(¢)
is nearly all in # () (v << 1). We shall assume that z,({) may depend
on the code and decoding rule used, on the code word transmitted,
and the sample z (¢). We require our communication system to perform
well no matter what 2, (¢) may be.

Let us say that a code (satisfying (25)) and a decoding rule have
been chosen. Let us also assume that the rule for selecting z(¢) has
been chosen. Let P, (z:) be the resulting error probability. Then define

P, = max P,(z), (27)

where the maximization in (27) is over all rules for choosing 2 (t) —
with the code and decoding rule fixed. The channel capacity is the
supremum of those rates for which P, may be made to vanish as T — .

It can be shown (see Appendix D) that the capacity C is given by

z\%') + e(nw), (28)

where £(n,») — 0 as g,» — 0 provided »/n > P./N,W, the signal-to-
noise ratio. Since we may consider 5 and » to be limits on the accuracy
of our measuring equipment, the former on measuring the signal* and
the latter on measuring the noise, it is reasonable to assume, as we did
in (28), that  and » go to zero at the same rate.

An alternate and mathematically equivalent formulation of Model
4 is as follows: Let the signals s(¢) be as in (25) and the noise z(f) be
as in (18). Now in reality one could not expect the decoder to be
capable of infinitesimally accurate measurements. It is reasonable,
therefore, to assume that there is an inherent uncertainty in all measure-
ments made by the decoder, and to require that the communication
system perform well despite this uncertainty. Specifically, we require
that the decoding regions satisfy the following condition: If y,(¢) is
decoded as s; , and . (¢) is decoded as s;(7 # 7), then

* J.e., n represents a limit on the measurement of the frequency component of
the signal outside the band.

=0, = Wln(l—l—
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T/2
f- . (1 (1) — (1)) dt = 20N, WT. (29)

In other words, if a received signal y (¢) is close to the “border” between
decoding regions, we cannot, beeause of the uncertainty in the accuracy
of our measurements, be sure to which region y(¢) belongs. Condition
(29) forces the decoder to give up on such a y(¢) and to announce an
error. The capacity for this alternate model is also given by (28). Let
us remark that here » is again a measure of the accuracy of our measuring
instruments, this time at the decoder, so that again it is reasonable to
expect 7 and » to tend to zero at the same rate.

1V. PRELIMINARIES TO PROOFS

4.1 The Product of Time-Discrete Channels

The product or parallel combination of r time-discrete Gaussian chan-
nels is defined as follows. Every 7' seconds the input to the channel is

an r-tuple (x¥, x*, ..., x7), where
(1) @ G @ .
x::(xllerQJ""'Tﬂi‘) (’L=1,2,"',?‘)
is a real n;-vector (n; = «;T, o; a fixed parameter). Each vector x®

satisfies the energy constraint

LXY

Ex =2 " £ P.T, i=12;--,m, (30)
k=1
where the P; > 0 are fixed parameters. The channel output is also an
r-tuple (", ---, y'"), where the y'" are n;-vectors given by

y(i) - x(i) + z(i), (31)

where the z” are n.;-vectors whose coordinates are independent Gaus-
sian random variables with mean zero and variance N;{(7 = 1,2, -+ , r).
Further, the {z”)i_, are statistically independent. Codes, permissible
rates of transmission, and channel capacity are defined as in Section I.
The following is proved in Ref. 6.

Lemma A: The capacily C of the product of r time-discrete Gaussian
channels, with parameters (a;, P;,N;), 1 = 1, 2, ---, r, is given by
the sum of the capacities of the component channels:

vy P;
cC=2 5 In (1 + a{N‘). (32)

i=1
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Equation (32) also holds when one or more of the e; = . In this case
weread z In [1 + (¢/2)] | 0 85 c.

4.2 The Jointly-Constrained Product Channel

We define the jointly-constrained produet of time-discrete channels
exactly as the ordinary product with constraint (30) replaced by con-
straints of the following form:

Type 1: Letr = 2 and N, = N; = N and instead of (30) we have

E(x) = Ex") + Ex?) = PT. (33a)
If &; £ o we introduce an additional constraint on x®
E(x”) = 4E(x) (33b)

where 4(0 £ 4 £ 1) is another fixed parameter. In other words, we have
constrained the total energy of the two input vectors (33a), and intro-
duced another constraint on the second input vector x* requiring it

to have no more than 4 of the total energy (33b). If s = ey, we replace

(33b) by a similar constraint on x.

Type 2: Let r = 3, Ny = N», and N, = N,;. Further, let oy = o.
Instead of (30) we require that x satisfy

E(x) = Ex"Y) + EG®) + EGY) = PT, (34a)

EEx?) = 4E(x). (34b)

This is a special case of type 1 when @ = 0, N; = N;.

Type 3: Letr = 2, N; = N, = N, and a» = 0. Instead of (30) require
x to satisfy

ExY) = PT, (35a)
Ex®) = 4E(x). (35b)

We now ask what is the capacity €' of these channels? The answer is
the following theorem which is proven in Appendix A.

Theorem 1: The capacity C of the jointly-constrained product channel as
defined above is

Typel (r =2,N, =N, =N):
C = Ci((1 — B)P) + Ca(BP), (36,

where
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— min (7 %2
f = min (n, P ag) , (37a)
and
o xr .
Ci(zx) = > In (1 + a,-N) , 1i=12 (37b)

Again when a; = o, we interpret x In (1 + (¢/x)] | === = ¢. In particu-
lar, when ey = ® (ay < ®), 8 = 4, so that (36) implies that we can
do no better than putting as much energy into Channel 2 as (33b)
will permit.

Type.@ (T=3,N1=N22N3,(x3= DD):

C=ﬂln(1+—~——(1_ﬁ)P)

2 N
e (1 ) (38)
% —#P\, . P
+51“(1+m)+"m
Type 3 (r =2, Ny = No = N,ay = =):
_ @ P 4P

4.3 Prolate Spheroidal Wave Funclions

The following material can be found in Ref. 7. Given any W,T' > 0
we can find a countably infinite set of real functions {y;(t)}:~", called
prolate spheroidal wave functions (PSWT'), and a set of real positive
numbers

I>M>M> - (40)

with the following properties:*

(i) The y;(t) are bandlimited to W eycles per second, orthonormal
on the real line, and complete in the space of bandlimited functions of
bandwidth W cycles per second.

(#i) The restrictions of the ¢;(t) to the interval [—T/2, T/2] are
orthogonal:

/2 N 1=,
Yi(Dys(t)dt = { L (41)
T/2 0 17 .

oo (N())te that the first PSWF is ya(t). In Ref. 7, on the other hand, the first PSWTF
18 1,’/0 t).
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The restrictions of the y;(t) are also complete in £, [—7/2,7/2], the
space of square integrable functions on [—7/2,7/2].
(7%7) For all ¢, the ¢, (f) satisfy the integral equation

_ T sin 27 W (t-5)
7\:'9'/"(” = m‘f/i(s) W

ds. (42)

Thus the A; are the eigenvalues, and the y; the eigenfunctions of the
integral equation (42). It follows immediately from (42) that the time-
limited functions Dry; (see (14)) have frequency concentration (see
(13a))

Ko(Dopi, 20W) = Ni,  d=1,2 . (43)
It can be shown that the A; and ¢, depend upon W and T only through

the product WT. Further,
(¢v) For a fixed § > 0:

)\zwr(l_ﬁ) —1 as WT — = (44&)

and
A2WT‘(1+5) — (0 as WT — . (Mb)

Thus roughly speaking, for large WT, approximately 2WT of the A;
are approximately unity, and the remainder are approximately zero.

4.4 Karhunen-Loeve Expansion

Let z(¢) be a Gaussian random process with spectral density N (w)
given by (18). Then, using the Karhunen-Loeve Theorem®, we may
write z (f) as

- T
2(8) = 2 au(t), — 1

k=1

, (45)

where the ;. (t) are PSWF’s, and the z; are independent random varia-
bles which are normally distributed with mean zero and variance N,/2.
The sum in (45) converges to z(t) with probability 1 for every .

If N(w) is given by (16), then we may formally represent z(f) by

e (D) T T
z(z)—;;izkm, 5 St (46)

where the M\, are the eigenvalues of the PSWF’s (40), and the 2z, are
independent normally distributed random variables with mean zero
and variance
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8(z?) = Azi (1 — ») + 4.

Thus from (44) roughly speaking, for large WT, approximately 2W7T
of the z, have variance N,/2, and the remainder variance vN,/2.

V. PROOFS OF THE THEOREMS

The general ideal of the proofs in this section is as follows. All the
time continuous input signals (i.e., members of a (T,W,P,) can be writ-
ten in a Fourier series in PSWF’s in which, roughly speaking, the first
2WT terms correspond to the part of the signal which is simultaneously
approximately confined to the frequency band |w | = 2xW and to the
time interval |¢| < T/2. The noise sample z(¢) may also be written
in a Karhunen-Loeve expansion in PSWI’s. The result is to reduce the
time-continuous channel into a jointly-constrained product of time-
discrete channel (discussed in Section 4.2). Channel 1 corresponds to the
first 2WT PSWIE’s so that the parameter oy = 2W. Channel 2 corre-
sponds to the remaining PSWF’s so that a; = «. The energy require-
ment on the time continuous signal || s ||* £ PT yields a joint energy
constraint for the product channels (as in (33a) for example), and the
requirement that the energy outside the frequency band (or time-
interval) be small yields a second energy constraint on the input to
Channel 2 (as in (33b) for example). Application of Theorem 1 then
yields the desired theorems. In the remainder of this section we shall
make these ideas precise.

We begin by establishing the eapacity of the channel defined by Model
2.

Theorem 2: Let the allowable signal set be a(T,W,P,), the set of functions
s(t) satisfying

S(w) =0, |w| > 220, (47a)
Is|* = P.T, (47b)
Kp(s,T)=21—70 <9 <1). (47¢)

The noise is a sample from a Gaussian random process with speciral
density
_ [N/2 | | < 2«W
N(“’)‘{o w| > 2. (48)

Then the channel capacity is

c=cq=Wln(1+(1—n)N—P"W)+n§—;. (49)
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Proof:
(7) Direct Half: Let R be given satisfying
P, P,
R<Wlﬂ|i1+(1—ﬂ)h—ra—“7—:|+ﬂm- (50)

Since the right member of (50) is continuous in » and W, we may find
a é > 0and ¢ > 0 sufficiently small so that

R<W(1—5)ln[1+(1 "+")N—W’(Ii_——)]

{7’ _ G')Po

A T CAC*

+ No ACH*,

We see from (36) that C* is the capacity of a type 1 jointly constrained

product channel with parameters

P=P,, N=N,2, f=91—0, as=2W({1—36), = . (51)
We now show how to construct codes for the time-continuous “channel’

with rate B and with vanishingly small error probability (as T' — ).

Let x = (x, x*) be an allowable input vector for the type 1 time-

discrete product channel with parameters given by (51). Then the

corresponding input for the time-continuous channel is

2W(1—3)T=a T L w=agT )
s(t) = kz=:1 V() + kZ; ;¢ )¢k+zw(1—a)z'(t) (52)

where the {¢.(t)}i=." are the PSWF’s (Section 4.3) with parameters
W and T. We first verify that signals of the form of (52) are allowable
inputs, i.e., belong to a;(T,W,P,) and satisfy (47). That the s(¢) are
bandlimited and satisfy (47a), follows from the fact that the PSWE’s
have this property (Section 4.3). Further, the energy of s(f) satisfies

sl = Z[x WP Z[xk‘”] = E(x) < (53)

where use has been made of the orthonomality of the PSWF’s on (— o,
— o ) (Section 4.3(7)), and the joint energy constraint on x (33a).
Thus s(¢) satisfies (47b). Finally, from the orthogonality of the PSWF’s
on [—T/2, T/2] (41), and the monotonicity of the A, (40) we have

| (1 —Dr)s]*

LK) = TR
RO (1 = MW s~ (1= Mwra-aak) 1o
=& Ew o tE T Ew w6y

Ex")  E(xY)
E(x) E(x) '

= [1 — Mewra—a)
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Now since Aewrasy — 1 as T — o (44a), and E(x")/E(x) = 1,
with T sufficiently large we have

E(X(l))
E(x)
Since ¥ (x®) must satisfy (33b) (with 4 = n — ¢), we have (with T
sufficiently large)

[1 - )\2“’?‘(175)]

IIA

a.

1—Kp(s,T)Ec+n—0a=n, (55)

so that s(t) satisfies (47c). Thus s(t) belongs to a:(T,W,P,).
Now we may express the noise in a Karhunen-Loeve expansion as

#(t) = :;11 2 (1) + ; Zie(z)\l’aluk(t), (56)

where again the ¥, are PSWF’s and the {27} 1<kcr’ " are independent
normally distributed random variables with mean zero and variance
N = N,/2. The output signal y (t) = s(t) + 2(¢) is

y(t) = ;; y: () + ; yk(2)¢alr+k(5), (57)

where the /" are obtainable by integration from the signal y(Z).
Further,

yk(ﬂ — x,l.;“) + zk(l'), (58)

so that we conclude that our time-continuous channel with signals
constructed in this way is equivalent to the type 1 jointly-constrained
product channel with parameters (51) and capacity C* (see Appendix
E). Since R < C*, we may therefore construct codes with rate R for
either channel with error probability P, — 0 as T — «. This is the direct
half of Theorem 2.

(©7) Weak Converse: Say we are given a sequence of codes for our
time-continuous channel with parameters {7.},5%, with code words
belonging to a»(T:, W, P,) (as defined in (47)), with error probability
P,"? and rate

R>W1n(1+(1—n)%)+nf—r:. (59)
We shall show that P,"” must be bounded away from zero so that the
capacity € (the maximum permissible rate) cannot exceed the right
member of (59).
Now as in the proof of the direct half we may (by (59)) find a & >
0 and ¢ > 0 sufficiently small so that
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n P,
R>WA+45)h [1 + (1 1= cr)NJV(l + 5)]

n_ Popen
+1ﬁ~aN¢.:C'

Again, as in the direct half, C* is the capacity of the type 1 jointly-
constrained product channel with parameters

(60)

P="pr,, N =N,/2, d=
(61)

011=2|,V(1+5), gy = <0,

Now if s(2) is a code word from the code with parameter 7';, (so
that s £ a2 (T';, W, P,)), we may write s () as a Fourier series in PSWI's
(due to the completeness of the PSWIs on the space of band-limited
functions) (Section 4.3),

W T (145)

s(t) = E o P (t) + ; ﬂircmlllnzrrm(ua)(t),

(62)
—w < < oo,

Hence, to each code word s(¢) for the time-continuous channel, there
corresponds a vector x = (x*, x*) whose coordinates are the coeffi-
cients in the above Fourier series. We now show that x is an allowable
input to the type 1 jointly-constrained product channel with parameters
given by (61). From the orthonormality of the PSWF’s on (— ,)
we have from (62), | s|* = E(x). Since s(¢) € a2(T:, W, P,), we have
E(x) £ PT;, so that x satisfies (33a). Further, from the orthogonality
of the PSWT’s on [—T/2, T'/2] and the monotonicity of the A; we have

L= Kalary) = 1= Drdsll
Is1?
_ORAE [P\ 2 [P = Nowrseis)
" & o & T (oY)

E(x(?))
E(x) -’

With T; sufficiently large (from 44b) we may put Aawz; a4s = o, and
since 1 — Kp(s,T:) = m,

; []- - }\EWT;(I-H!)]

E(x?) £ 71— E(x) = 4E(x), (65)

so that x® satisfies (33b).
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Finally, if we proceed as in the proof of the direct half of this theorem
and express the noise in a Karhunen-Loeve expansion in PSWI’s,
we can conclude that for each code for this time-continuous channel
we can obtain a code for the time-discrete jointly-constrained product
channel with the same rate and error probability (see Appendix E).
Since the rate R exceeds the capacity of the latter channel we conclude
from the weak converse to Theorem 1 that the error probability is
bounded away from zero. This completes the proof.

The following theorems establish the capacity of the channels defined
by Models 1 and 3.

Theorem 3: (Model 1) Let the allowable signal set be a,(T,W,P,) the
set of functions s(t) satisfying

s(t) =0, [t =T/2 (66a)

Isl* = PoT, (66b)

Kp(s2rW) =2 1 —9 (0 <n <1). (66¢)

The noise is a sample from a Gaussian random process with spectral density
_ |N./2 |w| = 20W,

N(m) - {DN.,/Z (v = 1) | w I > 27W (67)

Then the channel capacity is

_ P, P,

C - Cu.» - W ]-n- (1 + (1 7!) W) + .'VNC, . (68)

Theorem 4: (Model 3) Let the allowable signal set be a3 (T,W,P,) the set
of functions s(t) satisfying

s(t) =0, |t]=T/2 (69a)
| s]|* = P.T, (69b)
K (s27W) =21 —9 (0<n<1), (69¢)

where K ' is the frequency concentration defined by (21). The noise is as
in Theorem 2 (48). Then the channel capacity is

Po n Po
= =7 14 29 e
¢=0 Wl“( +N,,W)+1—1JN.. (70)
Proofs of Theorems 3, 4: Since the proofs of Theorems 3 and 4 parallel
that of Theorem 2 (which was given in detail above) we shall confine
ourselves to a few remarks which will enable the interested reader to fill
in the details on his own.
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Theorem 3: In the direct half we consider, as in the proof of Theorem 2,
a jointly-constrained product channel. In this case it is a type-2 channel
with parameters

o) = 2W(1 - 5), ay = 0, a; = 90, P = Po,
o Nu A 1
=%(1—E): N2=1:2—, n=n1—g0, (7)

where £8,0 > 0 are “small”. In the present proof, this channel plays
the role that the type-1 channel played in the proof of the direct half
of Theorem 2. Since ez = 0, we may write a channel input as x =
(x*,x”). Corresponding to x we construct an input signal for our time-
continuous channel as

s() = D [”“‘g‘j'”xmw(c) sz)m] (72
’ = " A Ngavanr]

where the ¢ are PSWI7s, the A, the associated eigenvalues (40), and
D, the time-truncation operator (14). Equation (72) replaces (52)
in the proof of Theorem 2. It is easily verified that signals of the form
(72) belong to a: (T, W, P,) as defined by (66). If we write the noise
in the expansion of (46) we can, as in Theorem 2, establish the equiva-
lence of the time-discrete and time-continuous channels, and establish
the direct-half of Theorem 3. The weak converse is proved in a similar
manner, the jointly-constrained product channel employed here being
of type-2 with parameters

a = 2W (1 — §), ax = 4Ws, a3 = 0 P=P,,
N, A
Nl""‘_2_') NZ_'_Z_: (73)
—(— N __n
NS_(V E)?j 1’—1_0_)

where again 8,£,c > 0 are “small”.

Theorem 4: For the direct-half we consider a type-3 jointly-constrained
product channel with parameters

w=2W(1—5), =, P=P, N=2t f=y—0 (1)
The signals are constructed from vectorsx as in (72). For the converse

we use a type-3 channel with parameters
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N, 1
2 bl

o =2W({1 +35), a= o, P=P,, N= (75)

<=
Il
f—

APPENDIX A

Proaof of Theorem 1

We shall give a proof of Theorem 1 for the type-1 jointly-constrained
product channel only. The proofs for types 2 and 3 are similar.
The proof as usual is in two parts.

A.1 Direct Half

Weset P, = (1 — B)P, P = 8P and consider codes for the ordinary
product channel (Section 4.1). If (30) is satisfied for all code words
with these values of P; and P, then the joint constraint (33a) is also
satisfied. Further since 8 < 4, (33b) is also satisfied. Hence the direct
half of Lemma A for the ordinary product channel implies that any
rate less than C1(Py) + Ca(P2) = C1((1 — B)P) + C.(BP) is per-
missible, and the direct-half of Theorem 1 follows.

A.2 Converse

Let us define C* = C,((1 — B)P) + C»(8P). We must show that
any rate B > €™ is not permissible. Let us assume the contrary, i.e.;
for some R = C* 4+ e(¢ > 0), there exists a sequence of numbers
{T3:=™ where T'; — « asi— «, and a corresponding sequence of codes
for the jointly constrained product channel (satisfying (33a) and
(33b), with parameters 4 and P); with the ¢th code ({ = 1,2, ---)
having parameter T = T; and ¢""¢ code words, and error probability
P, = P.” where P."’ > 0asi— =.

Since C:(x) is uniformly continuous on the closed interval [0,P],
let us choose an integer J, (sufficiently large) so that

(71(3:)—01(3:—%13) <§, 0 =z = 4P (76)
We now partition the #th code (z = 1,2, - - - ) into J, classes S;(j) (j =
1,2, ---, Jo). A code word (x"",x*) in the ith code will belong to the

jth class S:(j), according as the energy of its second component satisfies

A na A .
G- 1)L S pep <P e g, )
Ja k=1 Jn

" satisfies (33b), each code word belongs to exactly one class.

Since x®
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(To be precise, we assign code words for which the energy in x? is
zero to class S;(1).)

For each i(i = 1,2, ---), let S;* be the subcode of the ith code
(with parameter T = T';) consisting of the class S;() (7 = 1,2, --- , J,)
containing the most members. Since 8,* is the largest class in a partition
of a code with ¢ code words into J, classes, the number of code words
in 8;* = ¢®"/J,, so that the corresponding transmission rate for S,* is

R*Z R =g, (78)
Further, since S;* is a subcode of the ith code (which has error proba-
bility P.'”), the error probability of S.* is not more than P,”.

Since there are a finite number (J,) of classes in the partition of the
ith code ( = 1,2, - --), there must be at least one j, (1 = j, = J.)
such that for an infinite number of 4, the largest partition S;* is the
j.th partition S;(j.). Let (¢1,%, ---) be the subsequence of i’s for
which S;* = 8:(7,). Thus the {S8;*,-" are a sequence of codes with
rate R* satisfying (78), and error probability not more than P,
where P, — 0 as { — «. Further, if a code word (x",x*) ¢ 8,,%
it belongs to the class S, (jo), so that from (77) the energy of the second
component satisfies

ng . .
BG®) = 3. n P s 9 e (79)
k=1 Ja
and from (77) and (33a), the energy of the first component satisfies
E(xm) — Z [ka]z < [1 _ (-7";_1)’?] PT,,. (80)
k=1 0

We conclude that {S;‘*],zlw is a sequence of codes which satisfy the
constraints for the ordinary product channel (30) with parameters
Pi=[1-={{ — 1)/ P and P,= (ji/J,) P.

Since the error probability for S;, * P —0ast— =, weconclude that
the rate R* is a permissible rate for the ordinary product channel. By
the converse half of Lemma A we have that R* does not exceed the
capacity of this product channel, i.e.,

R* < G, ((1 _ (l—;i) a)P) + G (f,—" P), (81)

where C;(z) (¢ = 1,2) is defined by (37b). Applying (76) to (81) we
obtain
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R* < Ci((1 — 8)P) + Cy(3P) + % (82)

where § = jo/J, . Now it follows immediately (by differentiation) from
the definition of C; (z) and Ca(z) that if a» = e, f(8) ACI((1 — 8)a) +
(s (dx) is an increasing function for & for & < aa/ (a1 + a2), and f(8)
is a decreasing function of & for & > as(en + a»). We conclude that since
b= (Jo/Ju)h = 4,

CL((1 — 8)P) 4+ 2(6P) = C1((1 — B)P) + (=(8P) = C*, (83)

where 8 = min (%, a»/(es + a)). Combining (78), (82) and (83),
we obtain

1

R<C*+ S+

InJ,. (84)
If we let { — e, then 7';, — = and have from (84)

<+t
R=C +2-

But R = C* + ¢, and the contradiction establishes the weak converse
to Theorem 1.

APPENDIX B

Proof of Theorem 5
Theorem 5: Let a(T,W,P,) be the set of all s(f) satisfying

(1) s(t) =0, [t > T/2, (85a)
(i) [sll* = P.T, (85b)
(ii7) Ky(s2eW) =21 —1n (0 <n<1). (85¢)

Let the Gaussian noise be additive with spectral density N (w) where
[ N@io = ¥ < = (86)

Then €, = = (all 3).

Proof: Let R > 0 and € > 0, and (0 < n = 1) be specified and fixed.
We shall construct a code satisfying (85) with M = e*" code words
with error probability P, = e.

To begin with let us choose T sufficiently large so that
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1
V4zRT

=< & (87a)

Mz 1— (87b)
where ) is the first PSWT eigenvalue (40). With T fixed we now con-
struet the code.

Let us expand the noise in a series of PSWEF’s

2(t) = f‘,zk 'h(t) — g <t= % (88)
k=1
where
T/2
2 = L» z(t) fﬁ dt, (89)

and the {z};—" are Gaussian random variables with mean zero, but
not necessarily independent.
Now from (86) we have

sfmz (dt = NT, (90)

where ‘& denotes expectation. From the orthogonality of the PSWIs
(41) we have from (88)

_ T/2 oo
NT =& [ 2#a= T 8(ad). (91)
—T/2 k=1
Thus we can find an integer K sufficiently large so that
ﬂP ) = - ..
g(zﬁ'-r' ) = ISR’ 1= 1;2’ :M- (92)

With K so chosen, let the M/ code words be

8i(t) = Dr[ P.T (1 )%m 1/ P T‘#\Z:j)] (93)
i=12---, M

Let us first verify that s;(¢), as given by (93), satisfies (85). Equa-
tion (85a) follows from the definition of D, (14). From the orthogonality
of PSWI’s (41) we have

[Is;lz=(1—f)PT+ PT = P,T (94)
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so that (85b) is satisfied. Finally,

POT'( - ‘_1;) ?\1 + gPoTAK-H

&

e

;?:g(l —;)hlg(l—g)(l—g) (95)

.2_1_7]!

I

Ky(s;, 2xW)

where the next to last inequality follows from (87b). Thus s:(f)e
a(T,W,P,). It remains to show that P, = .
We can write the received signal () in a Fourier series in PSWI's

-~ ()

) = S;(t) + 2(1) = = 96
y(t) (0 + 20 2; v n (96)
where the y; are recoverable from y(f) by integration. Say that the
receiver disregards all the y, except ¥x41,Yx42, -+, Yx+ar . We may
write

ZK+J'+/‘/7_;;P0T} .7=1”

Yx+i = = (97)
ER+7 s 31,
(-j = 1,2? Tt Jﬂ{)'

If yx4: is the maximum of the {yxij} i1, the receiver decodes y(t)
as s;(t). Thus if code word 7 is transmitted, the error probability is

P, = P, U ]:z;prj > 2x+i + /‘/E PnT:I
FE 2

(98)
< MP. l:z5+,- — Zrpi > 4/ % POT:I.
Now 2x4; — 2x4q is Gaussian, with mean zero and variance
8((Zx+j - Zx+:')2) = [E(2K+]’2)% + E(Zx-i-iz)%]z
< 7P (80)
= 4R’
where the last inequality follows from (92). Thus (98) becomes
P. = M erf (— \/2RT), (100)

where
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® 1
erf (z) = [mﬁe_zz’zdx

is the cumulative error function. Since erf (—z) = ¢ =%/ (V/2mz),
(100) yields with the help of (87a)

eRTe ET 1

< = <
Pe= /GRT = ViRT = © (101)
Thus the theorem is proven.
APPENDIX C
In this appendix we verify inequality (22)
1 — Kg'(x,2aW)
Kg(x,2 =1 .
plx22W) =21 —2 /‘/ Kz oal) (102)

where K is defined by (13a) and K, by (21). Let f(¢) be a function
with Fourier transform F (w), and define the operator B by

g = Bf, (103a)
where
1 2r W ,
g(t) = — Flw)e'™ do. (103b)
2 Jorw

Thus Bf is the result of passing f through an ideal low-pass filter with
bandpass W cycles per second. Then

5]

Ka(f2aw) = LB/ (104)

[FAS

Say that z(¢) = 0, |t| < T/2 and ||z | * < «. We assume that we

may write £ = Dri, where £ is bandlimited to W cycles per second.

(If we cannot then K, (2,22W) = 0, and (102) follows immediately.)
Let us write

£(t) = =) + y (@), (105)
where y(t) = 0, |¢t| = 7/2. Then
T2l =12+l (106)

and from the definition of K 5,

Ky (22xW) = (107)
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Hence, from (107) and (106),
I sz _ 1= KB’(-'E,QWW)

T2~ Ralaze) (108)
Now, since & is bandlimited, B¢ = £ and we have
| &|° = | B¢|*= || Bz + By |* = [|| Bz|| + || By || I
(109)

S Bzl + 1yl =Bz +wl*+ 2] Bzl vl -
Combining (106) and (109) we have

lzl*+ Nyl =120F =B« P+ yl*+ 20 Bzllllyl, (110)
so that (from (104))

Kp(x2xW) = LB“’W =1- 2M =1- 2M. (111)
|2 | [E2E [z |l

Finally, from (108) and (111) we have

1 — Kp'(x27W)
KB'(m,27rW)

Kp(z2eW) 21 — 2 (112)

This is inequality (102).
APPENDIX D

The Capacity of Model 4

To establish the capacity of the channel defined by Model 4 we must,
as always, prove a direct-half and converse. In this appendix we give
an outline of the proof of the direct-half, and a remark about the proof
of the converse.

D.1 Direct-Half

Ilet R < Win [l + (P./N,W)] be given. We show here that for »
sufficiently small we may construct codes for Model 4 with rate R and
with vanishing error probability (as T — o). By the continuity of the
“In” function we may find a 6 > 0, @ > 0 sufficiently small so that

R<W(1 -3 [1 +N%ITI__—%] =Cx  (113)

We observe that €™ is the capacity of a single time-discrete channel
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(Section 2.1) with parameters
P=PrP0 — a), N = N,/2, a=2W(Q1 — §). (114)

Since R < C*, we can find a code @ = {x};=™ for this time-discrete
channel (so that E(x:)) £ P,(1 — a)T) with M = ¢ code words,
and with error probability given that x; is transmitted (@ = 1,2, ---,
M) (using the minimum distance decoder)

Pc" = Pr .L.J. [dg(x;' ,y) > dE(xJ'!Y)]
i#i

o (115)
O IEI RS ] B
i 2

where y is the received vector, dg(u,v) is the Euclidean distance be-
tween n-vectors u and v, di; = dx(X:, X;), 2" is the projection of the
noise vector z on the line passing through code words x; and x;, and
|u]| = [E(u)) is the square root of the sum of the squares of the
components of u. The exponent 8 has been estimated by Shannon.”
Since || z"/ || is a Gaussian random variable with mean zero and variance
N,/2 we may lower bound P,; by

Pu = Pr[u 27 || > d_] = erf (— dis )
2 V2N, (116)

(j=1:2:"':M 3#7')

where

* 1 —u2/2
erf x = ]:w N 2r e du

is the cumulative error function. Since for large z,

~ 1 —z%/2
e[‘f (—:E) ~ (mx) [ »
(115) and (116) yield for large T

dii = 48N,T, =12 -, M 17 J. (117)
From the code @, let us construct a new code @ = {X}ia™, where
1 )
xi=1_ax|': 1=1:2:"'$M° (118)

Thus the members %; of @ satisfy
E%) = P.T. (119)

Let us now assume that there are two noises in the channel, i.e., the
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noise vector z = z; + 2» . The first noise z, is the usual spherical Gaussian
noise (with variance N,/2), and the second z; is an unknown n-vector
(n = aT = 2W(1 — 8)T) for which we require only

B(z) < sNW(1 — 0T = v, (120)
We place no other restrictions on the probability structure of z.. The
vector z, may depend on the code €, the code word transmitted and
the value of z, . The noise vector z, corresponds to the noise function
z1(t) in Model 4, and the noise vector z; corresponds to z:(¢) in Model 4.
If we use € on the time-discrete channel with this noise and use the
minimum distance decoder, we have an error probability given that
%; 1s transmitted

Pui = PI‘ U [dﬁ?(ifaﬁ) > dﬁ(ilxﬁ):l
i . (121)
=pr U [n (2 + 2)7 || > %]
FEat]

where

. di;
dij = dg(%:,%;) = =a —-Ja)'

Now since “|| || ” is a norm
@+ 2)"| < 27 + | 2"] < 2" + VNV (T — 8)T. (122)

Thus the event

i ‘Ai"f
[H (24 2)7| > ?] (123)

dj VN (1 — 6)’1"],

2(1 — a)
where “C”’ denotes set inclusion. Now we would like to say that the
right member of (123)

v i N W (1 — 87 i dij
I:” Z ” > m - ‘\/VN,J‘V(l - 5)T:| _C.,[I Z ” > 2:| (124;)

If this is so, then P,; < P.; — 0 as T — o In fact (124) is satisfied if

i NIV = 8T, (125)

2(1 — a)

SIEE

[

d;
2

or
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di; a
< .
vV = '\/4_N,_-,Wr(1 — 6)T (1 — G)' (126)
Now from (117), dij = +/48N,T" so that if

5/ i (7 2a) (20

(126) is satisfied. Hence P,; %> 0.

If we now make the same correspondence between the time-con-
tinuous channel and the time-discrete channel which was made in the
proof of Theorem 3, we deduce the existence of codes for Model 4
(with rate R < W In [1 + (P,/N,W)]} with P, - 0as T — =« (pro-
vided » is sufficiently small — the choice of » depending on W, P,/N,,
and R). Note that this construction was done for any 5. Thus we have
shown in effect that the capacity of Model 4 is

P,
N,,W) + eilv), (128)

where & (v) — 0 as » — 0 independent of 7.

C=C, 2 Wln(l—i—

D.2 Converse

The proof of the converse also parallels the proofs of the converse
halves of Theorems 2, 3, and 4. However, since the noise may depend
on the entire code and decoding scheme used (which is not the usual
assumption of information theory coding theorems), it is necessary to
go back and re-prove Theorem 1 (which in turn depends on Lemma
A) for this new situation. Although this task is not a terribly difficult
one it is rather tedious and we shall side step this chore here. It will
suffice to state the version of Lemma A which is required here and to
leave the rest of the proof to the interested reader.

Lemma A': Let us say that we are given time-discrete channel as defined
in Section I (with parameters a,P) where the noise vector is z = z, + 23
where 7, is the usual spherical Gaussian noise with variance N and z
18 an unknown vector for which require only

E(z) = ¢T. (129)

We place no other restriction on the probability structure of Z» . The noise
veclor z; may depend on the entire code and decoding scheme, the code word
transmitted and the value of z, . We define the error probability P, as we
did in (26) for Model 4 and do likewise for the capacity. Let C (e, P,N,£)
be the capacity of this channel.
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Now consider the product of r time-discrete channels as in Section 4.1
with parameters (e , P;,N;) i = 1,2, ---,r. Here too, we assume a
second noise vector

= ("2, -, "), (130)

which is unknown but must satisfy
2 E(z") £ T, (131)
i=1

and as above may depend on the enlire code and decoding scheme, the code
word transmitted, and the values of the spherical Gaussian noises.
Lemma A’ states that the capacity C* of this channel satisfies

C* £ 2 Clai, Pi, Ni, 7ib), (132a)
i=1
where
>y = 1 (132h)
i=1
APPENDIX E

Equivalence of Time-Discrele and Time-Continuous Models

In this appendix, we give some details on the validity of the equiva-
lence of the time-discrete and time-continuous channel models which is
the key to the proofs of our capacity theorems.

To begin with, let us consider the direct-half of our theorems. In these
proofs we deduce the existence of time-continuous coding and decoding
schemes from the existence of time-discrete coding and decoding schemes.
To be specific let us consider the proof of the direct half of Theorem 2.
We may omit the reference to the Karhunen-Loeve expansion (5.10)
and consider the received signal y({) = s:(t) + z(t). Now it follows
from Loeve (Ref. 9, p. 472, A) that

T2 T /2

e Fwa= [ RO =NWT < w, (133)
/2 —7 2

so that with probability 1, z(¢) and, therefore, y () is square-integrable.
It then follows that the integrals

72

1
y = "\/TL[ y(EOg(8)dt  and

7/2
T/2

1
1 @ = ———— )
v VN ri ./: Y(O¥ara(t)dt  (134)

T2
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(where ¥ (t) and the A, are the kth PSWF and eigenvalue, respectively )
exist for all & with probability 1. IF'urther, it follows directly on sub-
stituting y (t) = s:(t) + 2(¢) into (134) that

g = su + 20, i=12, (135)

where the z,'” are independent normally distributed random variables
with mean zero and variance Np/2. Thus, the decoder for the time-
continuous code may obtain the y,'” from the 5 (t) and make use of the
decoding scheme for the time-discrete code and obtain the same error
probability. Hence, the direct-half of this and the subsequent theorems
is valid.

Let us now consider the converse half of our theorems. In each of
these proofs we assume that for a fixed rate R exceeding capacity, we
are given a sequence of codes for the time-continuous channel with error
probability P.. We must show that P, is bounded away from zero. To
do this we deduce the existence of a corresponding sequence of codes
with rate R and error probability P, for a time-discrete channel with the
same capacity as the time-continuous channel. Since we can invoke a
converse for this time-discrete channel (Theorem 1), we then conclude
that P, is bounded away from zero. We will now show how to make
this correspondence precise. Again let us refer specifically to the proof
of Theorem 2, the others following similarly.

Let {s;(t)};.s™ be the code for the time-continuous channel, and
x = (x¥ x*”) be the corresponding input to the time-discrete (product)
channel. Further, we may write the noise signal z(¢) and the received
signal ¥ (¢) in Fourier series in PSWF’s where, as above, all the coordi-
nates are finite with probability 1. We then let z = (z",z%) and y =
F™,5*) be the vectors whose coordinates are the coefficients in these
expansions, We can easily show that

y=x+z (136)

where the coordinates of z are independent random variables with mean
zero and variance No/2. Thus, we have established the correspondence
of the time-continuous and time-discrete channels and codes. We must
now show that the time-continuous and time-discrete codes have the
same error probability. In other words, we mush show that there exists
a decoding scheme for the y which has the same error probability as the
decoding scheme for the continuous received signal y(l). We proceed
as follows:

Let ® be the usual (Kolmogorov) e-algebra on £[—7/2,7/2], i.c.,
® is the o-algebra generated by the “intervals” of the form
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@ :y) € p,ylta) E gy -oe, y(E) = pale

Corresponding to the code for the time-continuous channel {s;(¢)}i™,
we define M probability measures Py, Py, -+, Py on & as follows.
If B € ®, then

Pi(B) = Prob [(s:(t) + z(1)) € @], (137)

where the probability in (137) is computed for z(f), a noise sample
function. A decoding-coding rule for this code is a set of M disjoint
A E® (=12, ---, M), called decoding regions. The error probability
given that s;(¢) is transmitted is

P, =1 — P:(Ad). (138)

Now let 8 € ® be the sub-c-algebra on £,[—7/2,T/2], consisting
of those sets determined by the coefficients of a representation of a
funetion in PSWEF’s, That is, if y(t) € £.(—T/2,T/2), let

() L e (2) 1 e
W = T [ vonwd w0 == [yt
Then & is the o-algebra generated by intervals of the form
®: e 2 0w £ 0”0 Yk Z e,
i@ 2 p®yn® < p® s < e,

- A decoding rule for a time-discrete code with M code words is a set of
M disjoint A; € ® (1 = 1,2,---, M) (decoding regions), and the
error probability given that vector x; (x; is the representation of si(¢)
in PSWI’s) is transmitted is

Pc;= ]. —_ P,(Kl)

Kadota [Ref. 10, Appendix D] has shown that for each A; € ®, there
exists a A; € @ such that

P(AAR) =0,

where A denotes “symmetric difference”. Thus, if { A" are the de-
coding regions for a time-continuous code we can find a set {A; € &)™
of decoding regions for the corresponding time-discrete code such that
the error probabilities P; = P.:.

We conclude that the error probability for the time-discrete code
equals the error probability for the time-continuous code, and the
converse is valid.
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The following symbols are used throughout the paper:

M = the number of members of a code.
T = time required to transmit a code word.
R = (1/T) In M = transmission rate in nats per second.
(' = channel capacity = maximum “error free” rate.
P,; = probability that the receiver makes an incorrect decoding
decision when code word 7 is transmitted (¢ = 1,2, ---, M).
P.= (1/M) > P.; = over-all error probability.

&(X)
l[/k y A = kth

expected value of the random variable X.

prolate spheroidal wave function (PSWF) and eigen-

value respectively (k = 1,2, -+ ).
The following symbols are used in eonnection with time-discrete or
~ time-continuous channels:

Ttme-Discrete Channels:

X,¥,Z2 = input, output, and noise vectors, respectively.
n = aT = dimension of above vectors, so that « is the rate at

which the channel passes real numbers.

= sum of the squares of the coordinates of the vector x.
= parameter constraining £ (x) (x is channel input).

= variance of the normally distributed noise.

= number of components in the product (or parallel

combination) of channels.

’ = input, output, and noise vectors, respectively for the

ith component of a product of channels ( = 1,2, --- , 7).

ni, o, P, N; = parameters n,a,P,N, respectively, for the ¢th compo-

nent of a product of channels ( = 1,2, -+, 7).

= parameter constraining the relative values of E(x)

in the produet of channels.

Time-Continuous Channels:

s(t),y (t),z(t)
S(w)

I's I

= input, output, and noise signals, respectively.
= Fourier transform of s(¢).

+m
[ sS(t)dt = “energy” of s(t).

1 2r W

Ka(s2aW) =5 | |S(w) [* de/ | 5 ]*

= (energy) concentration in frequency band O-W cps.
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/2
s'(t)dt/ || s||° = (energy) concentration in time
/2

Ko(s,7) = [

interval [— (7/2), (T/2)].

an alternate measure of frequency concentration
defined by (21).

Dy = operator which truncates a signal outside the time
interval [ — (T/2), (T/2)] (see (14)).

£s [—T/2,T/2] = the space of square integrable functions defined on

[—=T/2,T/2].
W = bandwidth of channel.
P, = average “power” of input signals.
N, = one-sided spectral density of noise z(¢).

a = a;(T,W,P,) = set of allowable channel input signals
(for Model 4, i = 1,2,3,4). These signals are approxi-
mately time-limited to T secs, approximately band-
limited to W eps, and have energy not exceeding P,T.

n = parameter which measures the extent to which signals
in a are not strictly time or bandlimited.

v = parameter which measures the extent to which the
noise spectral density is not zero for [w | > 2xW.
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