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Group Code*
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The wetght distribution of the code vectors of a binary group code has
been referred to as the spectrum of the code. This paper presents a technique
for calculating the spectrum of such a code, the spectra of shoriened codes
obtainable from the code, and what are defined as the level weight structures
of the code.

The method ts conceplually straightforward and readily adaptable to
digital compulers. It involves operations no more complex than the addition
of two (n — k)-tuples, the determination of the weight of certain (n — k)-
tuples, and the ordinary addition of certain integers. Its computational
complexities are independent of the code parameters. In principle, it may
be used for any binary group code, but it vs particularly useful for codes in
which the number of parity check positions per code vector is rather small
although the number of information positions may be large.

I. INTRODUCTION

The need for reliable data transmission systems has prompted the
investigation of various coding techniques which attempt to deteect
and/or correct transmission errors. Because of the relative ease with
which binary codes can be implemented, these codes have received
special attention. It is with certain properties of these codes that this
paper is concerned.

In general, the encoder receives a block of & binary symbols (called
a message) from a message source from which it determines (n — k)
binary parity check symbols (called an ending). The message symbols
and the ending symbols may be interleaved or transmitted sequentially
thus forming a block of length n (called a code vector). Because any

* The material presented in this paper formed Appendix II of the dissertation

“Coding for Numerical Data Transmission” submitted by the author to The Johns

Hopkins University in conformity with the requirements for the degree Doctor of
Philosophy.
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code in which these symbols are interleaved is equivalent' to a code in
which the message and ending are transmitted sequentially, attention
may be restricted to the latter situation.

The elements 0 and 1 form a field. Two vectors (or n-tuples) whose
components are these field elements may be added by adding modulo
2 the corresponding components of each vector. The symbol ® will
be used to denote this addition of vectors.

The set of all possible n-tuples forms a vector space V, of dimension
n over the field of two elements. A subset V is said to form a group
code if the n-tuples in the subset form a group. Over the field of two
elements, a set of vectors that forms a group is a subspace of V, . There-
fore, the vectors of a group code form a subspace of V, .

The weight of a vector  is the number of nonzero components in u
and is denoted by w[u]. The distance' between two code vectors » and
v is wlu @ v]. Because the code vectors form a group, there exists a code
vector t = u @ v. The distance between » and v is thus equal to w[t].

Because of this relationship between code vector weights and distances
between code vectors, it is useful in evaluating the error detecting and /or
correcting capabilities of group codes to be able to determine the num-
ber of code vectors of each possible weight — i.e., from 0 to n. This
information has been called the spectrum of a code and can in principle
be obtained by calculating in detail each of the possible 2* code vectors
and then determining the weight of each of these code vectors. However,
this method is not computationally feasible for values of & which are
most often of interest.

MacWilliams® has determined a system of linear equations which
relate the set of integers that forms the spectrum of a given code to the
set of integers that forms the spectrum of its dual code. The method is
particularly effective for codes in which the dimension of the dual code
is relatively small so that the spectrum of the dual code is readily ob-
tained.

The method presented herein enables the direct computation of the
spectrum of a code without the actual formation of every code vector.
The technique also gives both the spectrum of each of the possible
shortened codes which may be obtained from the given code and the
level weight structures of the given code. The level weight structures
(which are defined later in this paper) have proved useful in the study
of the effectiveness of error-correcting codes for numerical data trans-
mission’ and may indeed be of interest in other areas of code evaluation.

The method is conceptually quite simple, readily implemented on a
digital computer, and does not depend upon the solution of any equa-
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tions. In faet, the only operations involved are the component by com-
ponent modulo 2 addition of (n — k)-tuples, the determination of the
weight of certain (n — k)-tuples and the ordinary addition of certain
integers.

II. COMPUTATIONAL TECHNIQUE

Let & denote the dimension of the code space Vandlet E; (1 <7 = k)
denote the & basis vectors of 1. Take £; in the usual systematic form

E;=¢|C; (1)

where the message e; is the k-tuple with a 1 in position j and all other
positions 0 and C; is the (n — k)-tuple ending assigned to the message
e; . Note that if the code is specified by a parity check matrix' in the
form

H = Uhhz v hed ) (2)

where h; (1 < 7 = k) is the column of A in the 7th position and I,_;
is the (n — k) X (n — k) identity matrix, then C; is simply the trans-
pose of k; and F; is readily obtainable.

The vectors £y, E., - - -, E, generate a subspace of V of dimension [
which we shall denote as I';. T i1s the code itself and I'; is the set of
code vectors in which information positions I + 1,1 + 2, --- , k are 0.
Ty is defined as consisting exclusively of the all 0 code vector.

Let A; = Ty — Ti1-A;, which is called the I-level of the code, is the
set of code vectors in which information positions I + 1,1 + 2, -+, k
are 0 and information position [ is 1. Any code veetor in A; is the sum of
E; and some vector in I'j_; .

The basic idea is to form for I'; an ending-weight matrix 8. For
convenience we shall deviate from usual practice and number the rows
and eolumns of S beginning with 0. The entry sa,ﬂ(” in row a and
column 3 of S denotes the number of code vectors in T'; of weight o
whose endings are the (n — k)-bit binary representation of 8 (denoted
by B(8)). There must be (n + 1) rows in 8" to allow for all possible
code vector weights and 2"* columns to allow for all of the possible
(n — k)-bit endings. Therefore, S is an (n + 1) X 2" matrix.

The utility of this technique lies in the ease with which S may be
obtained from S‘". Suppose that ‘" is known. The code vectors of
A; are formed by adding F; to the code vectors of I';_; . However, the
special form of F; makes this operation equivalent to placing a 1 in
information position [ of each vector in T;_; and, at the same time,
adding ('; to the ending of each code vector in T';; .
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Any code vector of weight a in T';; whose ending is B(8) becomes a
vector in A; with ending B(8) ® C; and of weight. v where
vy=a+ 1+ wB(@E) & ] — wB(@) 3)
a =n)andy (0 £ v = n) for which (3)

lIA

For those values of a (0
may be satisfied,

W _ (-1 -1
Sy p-1p@®ee] = Sv.E1BAe0] + Sa8 4)

where B (the inverse of B) is the operator such that ¢ = B'B[y].

In general, it is not possible to satisfy (3) for every ¥ (0 = v = n).
However, because all code vectors in T',; whose endings are B(8) (i.e.,
the code vectors giving rise to the nonzero entries in column g8 of 847
become code vectors in A; of weight in the range 0 through =, all values
of a corresponding to nonzero entries in column 8 of S produce
values of v such that 0 £ v = n. For these values of v, (4) may be
applied.

On the other hand, values of ¥ which would require values of « outside
of the range 0 < a = n in order to satisfy (3) are those values of vy for
which it is impossible to have code vectors in T';_; of weight & whose end-
ings are B(g8). For these values of +,

W _ =
Sy.s-ls@ec) = Sya-lB@@C] - (5)

The column numbers referred to in (4) and (5) are independent of
a. Furthermore, as « increases, (4) and (5) simply refer to different
elements in the same column. For this reason, these results may be
expressed as column operations thus leading to a conceptually simple
result.

Let s5” denote column g in S Define ¢*” to be a shifting operator
which, when applied to ss'”, shifts each element of ss"” by j positions
filling in any resulting blank positions with zeros. For example, if

then

0
0
725, ® 0
1
1
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and

-1 n
0'( ‘8 =

= R

In terms of ¢”, the relationships expressed in (3), (4), and (5) may be
conveniently expressed as

Sﬂ_l[ﬂ(ﬁ)@m]“) — 33—1[3(3)83(!;]“-]) + U_(W[B(ﬂ)@ﬂjlﬂu[B(BJ]+l).Sﬁ(l—-l). (6)
Clearly all columns of S are obtained by successively applying (6)
as B runs from 0 to 2"7* — 1.

It is important to notice the great simplicity of (6). In practice, it
involves shifting one column of S~ and then combining by simple
addition the elements of this column with those of another column of
S to obtain a column of 8. Determining the number of positions
that s3'"" should be shifted and the column with which s™" should
be combined is extremely easy. In particular, the operations in (6) are
readily adapted to digital computer operations.

If 8 is known, the remaining ending-weight matrices can be succes-
sively obtained. The only code vector in Iy is the all 0 vector.
Therefore,

Snu(m = 1
and
Sap ) =0

for all other values of « and 8.

Now that the method for constructing the ending-weight matrices
has been presented, the following will serve to indicate how the desired
information is extracted.

(7) Speetrum of the code: The total number of code vectors of
weight « in the code is

Z su.ﬁ(k)- (7)

B=0

The spectrum of the code is obtained from S™

for each value of a(0 = a £ n).

(1) Spectra of shortened codes: Let k' denote the number of in-
formation positions in the shortened code —i.e., k¥ — k' in-
formation positions are deleted. Assume that the deleted posi-

by using (7)
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tions are information positions ¥ 4+ 1, ¥ 4+ 2, ---, k. The
total number of code vectors of weight « in the shortened code is

on—k—]

Z snr.ﬂu-')- (8)
=0
The spectrum of the shortened code is obtained from S*” by
using (8) for each value of (0 = @ = n — k + k).

(#7i) Level weight structure: The set of code vectors A; has been
referred to as the [-level code vectors and the weight distribution
of these code vectors as the I-level weight structure.” Note that
the I-level weight structure is the difference between the spec-
trum of the shortened code consisting of { information positions
and the spectrum of the shortened code consisting of (I — 1)
information positions.

Let n;,. denote the number of code vectors of weight a on
the [-level. The number of code vectors of weight « in I';_; is
an—k—1

(1—1)
Z Sa,p .
a=0

Similarly, the number of code vectors of weight « in T is

on—k—1 a
)
E Sa,p
=0
It follows that
gn—k—1 u an—k—1 .
-1
Me = 2 Sag — 2 Sap e (9)
f=0 A=0

III. CONCLUSIONS

The spectrum of any group code, the spectrum of any shortened code,
and all level weight structures are obtainable in a straightforward
manner by means of operations no more complex than the addition of
two (n — k)-tuples (to determine the columns to combine), the com-
putation of the weight of certain (n — k)-tuples, and the repeated
addition of integers two at a time (to actually combine the columns).
The number of computations does depend upon the parameters n and k&
but the method has the advantage that the complexity of the operations
is invariant. Because the number of computations and the number of
computer storage locations required for the ending-weight matrix are
sensitive to changes in (n — k) but rather insensitive to changes in F,
the method is most effective for codes in which (n — k) is moderate al-
though k& may be quite large.
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As presented, the method treats each of the k ending-weight matrices
in a similar manner by determining all of the (n + 1)-2" entries of
each matrix. Computing time can be saved by realizing that the maxi-
mum possible weight of a vector in I';is I + n — k and, thus, that it is
only necessary to compute the first I 4+ n — k rows of S because the
remaining rows contain zero entries exclusively. Additional programming
sophistications, including processing only those columns of S~ which
contain nonzero entries in obtaining S (particularly for the smaller
values of [), improve the computing efficiency of the method.

This technique was originally developed for computing the level
weight struetures of certain codes. Thus, if the level weight structures
and/or the spectra of the shortened codes are desired, this method offers
a straightforward and effective means of obtaining such information.
However, if all that is desired is the spectrum of the code, then under
some conditions the method developed by MacWilliams® may be prefer-
able from a computing time point of view although the conceptual sim-
plicity of this method is still appealing. In any case, the relative ad-
vantages of the two methods should be considered before deciding which
to use for a specific application.

The method has been used successfully to compute the level weight
structures and the spectra of the (15,11), (31,26), and (63,57) Hamming
perfect single error-correcting codes. In each case the information was
obtained on an IBM 7094 digital computer in less than 0.01 hours.

IV. NUMERICAL EXAMPLE

The parity check matrix for a (7,4) Hamming code is

1110100
H=|1 10101 0}
1 011001

The basis vectors for this code are

E, = 1000 111
E; = 0100 110
E; = 0010 101
L, = 0001 011

—— S —

message ending.

The sets of code vectors referred to as T'; and A4 are listed in Table 1.
The appropriate values of « and 8 are given next to each vector.
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Tasie I

I ¥ a B A a B
0000 000 0 0 0001 011 3 3
1000 111 4 7 1001 100 3 +
0100 110 3 6 0101 101 4 5
1100 001 3 1 1101 010 4 2
0010 101 3 5 0011 110 4 6
1010 010 3 2 1011 001 4 1
0110 011 4 3 0111 000 3 0
1110 100 4 4 1111 111 7 7

Tabulating this information yields $ and 8.

B 8

01234567 01234567
0/10000000 010000000
1100000000 1100000000
2100000000 2/00000000
3/01100110 3111111110
S@®:a 400011001 S 4101111111
5/00000000 5100000000
6/00000000 6100000000
7100000000 7100000001

We now turn to use the method herein developed to obtain S
from S%. Specifically, we use (6) first with 8 = 0 and then successively
inerease 8 until 8 = 7.

When 8 = 0, B'[B(0) ® C4] = 3. Thus, (6) reduces to

07 07 07
0 0 0
0 0 0
6® = 59 + oW .5® = (1) + (1) _ i
0 0 0
0 0 0
0 L0 L0

which is indeed correct.
Now let 8 = 1. Then B™'[B(1) @ C4] = 2 so (6) yields

['O_ FO_ T-O"\
0 0 0
0 0 0
0® = 59 4 oV.g® = (1) + (1) — i )
0 0 0
0 0 0
L0J L0 L0
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The remaining columns of S are obtained in a like manner as g8 in-
creases to 7.

The spectrum of the code is obtained by summing across the rows
of S“. The spectrum of the shortened code resulting from the deletion
of the fourth information position is obtained by summing across the
rows of 8. The 4-level weight structure is the difference between these
spectra. This information is tabulated in Table II.

TasLe 11
Weight Code Spectrum Shtgxgeegfrclllgode 4-Lsel\;tl:-llc¥\:li§ht
0 1 1 0
1 0 0 0
2 0 0 0
3 7 4 3
4 7 3 4
5 0 0 0
6 0 0 0
7 1 0 1

For an illustrative example, it was necessary to confine ourselves to
a code in which k is small. However, it should be realized that the true
utility of the method lies in the fact that it can, without modification
or additional complexity, be used for codes in which % is quite large.
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