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The effects of varialions in the components of a beam waveguide are con-
sidered. These variations statistically cause the Gaussian beam spot size
of the light propagating down the waveguide to grow and cause the beam
center lo oscillate about the waveguide axis with ever-increasing amplitude.
Random variations in lens focal length and spacing and random lateral
lens displacements are considered. It is also shown how random variations
in foeal length and spacing can be included in the published analyses for
short random bends in the waveguide axis.

When the number of lenses is large, il is shown that the beam displace-
ment and beam spot size both grow exponentially with distance.

As an example, a confocal waveguide with lenses spaced one meler apart
and buill to somewhal optimistic tolerances will require a beam redirector
every 2.5 kilometers to prevent the beam oscillations from exceeding an rms
value of 2 millimeters.

I. INTRODUCTION

A long sequence of spaced lenses is of considerable interest for optical
communications. It is known that the diffraction losses in such an
optical beam waveguide can be kept very small for moderate size
lenses.!* This means that if a transmission line is made of identical
low-loss lenses, spaced identically along a straight line with each lens
centered on this straight line, there is a mode of propagation which is
low loss. However, if there are imperfections in the transmission line,
the light beam will begin to wander from the axis or the beam size will
grow and the beam will eventually strike the edge of the lens and be
lost. Since the diffraction loss of the beam in a perfect line can be kept
very small, it is the line imperfections, the line axis curvature, and the
scattering and absorption at each lens which will primarily determine the
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optical loss. Gas lenses have been considered for reducing the scattering
and absorption losses.?

Rowe* and Hirano and Fukatsu® have shown how the beam position
is affected by random lateral lens displacements. Berreman,® Marcuse,”
and Unger® have considered correlated lateral lens displacements in the
form of bends. All of these analyses have assumed perfect lenses and
perfect spacing and have shown the growth of the beam displacement
due to lateral lens displacements only. It is the purpose of this paper to
show how the previously obtained results are altered when the lens
focal lengths and lens spacings have random variations.

In this paper, we shall consider the statistical effect of random varia-
tions in lens focal length and lens spacing and random lateral lens dis-
placements. We shall also consider random bends whose correlation
length is much smaller than the total line length. It is shown how the
various line imperfections couple to one another and cause the beam
deviation from the axis to grow. The growth of the spot size of a Gaus-
sian beam is also considered.

It is shown here that the random variations in f and L cause the rms
expected value of beam displacement and the rms expected value of the
beam spot size to grow exponentially with distance when the number of
lenses is large. For bends, the variations in f and L cause an exponential
increase in the average allowed bending radius of the guide when the
number of lenses is large. In contrast, when f and L are perfect these
effects grow more slowly with distance, and increase only as the square
root of the number of lenses.

We shall use geometric opties since it is known that in the paraxial
approximation the center of a Gaussian beam in a beam waveguide
behaves as a ray.? The geometric optics analysis is extended to find the
behavior of the beam spot size by replacing the Gaussian beam by its
equivalent ray packet.!?

1I. GENERAL PROBLEM FORMULATION

We shall consider the problem in two dimensions only for simplicity.
It has been shown that the three-dimensional problem can be split
into two independent two-dimensional problems.® For aberration-free
lenses, the motion of the beam in one transverse dimension is dependent
only on the initial conditions and lens displacements in the same trans-
verse direction.

Consider the transmission line shown in Fig. 1. We define r, and Y
as the position and slope of the ray just to the right of the nth lens. The
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Fig. 1 —Beam waveguide notation.

ray position and slope are measured with respect to a straight line
which is the nominal transmission line axis. The spacing between lenses
is labeled L, and the convergence of the lenses as €', where

Crn = 1/fa

and f, is the focal length of the nth lens. The lateral distance between
the center of the nth lens and the reference line is s, . The displacement
8. 18 positive if the lens center is above the reference line.

Using this notation we can write

F'n = o + Lﬂrﬂv—l' (1)
'l"n’ = _Cﬂrll—l + (l_CﬂLﬂ)rﬂ—li + C"S" ' (2)
If we define
Tn
R, = )
!
I'n
1 L.
ﬂfn b ]
| —C. 1 — L.,
and
0
'Vn =
| Cu8n

we can write (1) and (2) in matrix form as
Rn = ﬂ[ﬂRﬂ—] + Ifn . (3)

This relates the ray position and slope at the n plane to the ray position
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and slope at the n — 1 plane. We shall be interested in the rms expected
value of the output beam displacement and hence in the square of the
output beam slope and position. We shall, therefore, square the matrix
(3). To do this, we take the Kronecker product'' of each side of (3) with
itself.

Rn, X Rn = (Mn X Mﬂ,)(Rn—l X Rﬂ.—]) + Vn x Vﬂ

(4)
+ (MTLRH—I) X Vra + Vn, X (Man_l).
Now take the expected value of (4)
(Rn X Rn> = ((nlu X Z‘In)(Rn—l X Rn71)> + (I,u X Vﬂ) (5)

+ ((MaRuy) X Vi) + (Va X (MuRusr)).

The expected value of a matrix is the matrix of the expected values.
We will now state our statistical assumptions. We assume small
variations about L and C

Lﬂ

L1+ 1)
C(1 4+ ¢n).
(Iu) = (ea) = (sn) = 0
k) = (encr) = 0 n#=k
(Inck) = {lask) = (casi) = 0 all n

C

(cnz) = ‘-Tcz
(1n2> =0
(3112) = y2-

Hence, I, , ¢, and s, are mutually independent random variables of
zero mean. There is no correlation between the variations in spacing,
the variations in focal length, and the variations in lateral displacement.
The variations in L and C are completely random with no correlation
between adjacent IL’s and adjacent C’s. For the first sections of the
paper we shall consider the lateral lens displacements to also be com-
pletely random with no correlation between adjacent displacements.
In a later section it will be shown how correlation of the lens displace-
ments in the form of random bends in the waveguide axis can be included.
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III. A TRANSMISSION LINE WITH RANDOM LATERAL LENS DISPLACEMENTS

In this section we shall consider only random lateral lens displace-
ments. Hence, we impose the additional statistical restriction that

(sk8.) = 0 n # k.

The lateral displacement of any lens is unaffected by the lateral dis-
placements of any other lens.

If we repeatedly substitute (3) into the last two matrices of (5),
we see that they contain elements of the general form

(G(Lk, Ligry - L., Cv, Cigay--- Cn)sk—lsn), L =n
and
(F(LlyLZ: e Lngcl,cﬂ, e Cﬂ)RnSn)

where G'( ) and F( ) are some functions. In view of the statistical
assumptions, these can be written as

(G(IJI,;, Lk+1 e Lll ] Ck ] Ck+l y V0" Cﬂ)}(‘gk—ls"):l k é n
and
(F(Ll ’ Lg y t Ln ) Cl 3 Cz T Cn)}RO(Sn>

which are zero since (s;_;8,) = 0 for k = n and {s,) = 0. Hence, the
last two matrices of (5) are both zero.

When there is some correlation between lateral lens displacements,
i.e., a wavy transmission line axis, these two matrices are not zero. It
is through these matrices that the correlation will enter.

Also, by using the above statistical assumptions M, is independent of
R,y and (M, X M,) and (V, X V,) are not functions of n. Equation
(5) can, therefore, be written as

n—1
(Ro X R.) = (M, X M,)"Ro X Ry + ;} (M, X MY (V. X V.) (8)

where R, is the matrix of the initial ray slope and position.

The Kronecker products in (6) are either 4 X 4 or 4 X 1 matrices.
These can be reduced to 3 X 3 and 3 X 1 matrices by combining the
two redundant terms." For clarity and ease of computation we shall
reduce the matrices and write them out explicitly below. We have
assumed here that ¢, < 1 and o < 1 hence, we have neglected
oi’oc’ compared to o,° or o’
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{ra")
(Rn X Rn) = (’rﬂ'rn’)

(ra))

[~ 2
To

Ry X Ry = | rard’

”2
To

0

(Vn X Vﬂ) =10

| C*(1 + o)y
1 2L L'+ or)
(M, X M,) =| —C 1 — 2LC L—LC + o)
C*(1 + oo’) —2C 4 2LC* 1 — 2LC + L*C*
1+oc) A+ o+ 0d)
3.1 The Characteristic Roots of {M, X M.,)

To evaluate (6) will require the raising of (M, X M.,) to the kth
power. To do this it will be necessary to find the characteristic roots of
(M, X M,). The characteristic roots of (M, X M,) can be found from
the equation

[ (M, X M,) —IN| =0

where M is the characteristic root and I is the unity matrix. This leads to

the following cubic equation for A:
AN = N3 — 4LC + L’C* + L*C* (o + o)) -
—A[-344LC - I'CC+ L’'C*(6.* + o¢)] — 1 = 0.

We assume in (7) that ¢,° and oo are very small quantities, hence
terms of higher power than 2 in ¢, and o are neglected. Since o’
and ¢ ¢ are assumed very small it is reasonable to assume that the roots
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of (7) are very near the roots for the perfect transmission when .’ =
oo =0. For the perfect transmission line, the roots are

20 —2if
A=1 e, e,

where 8 = cos™ (1 — LC/2). We therefore write the three roots of (7)
as

M=14+aq
A= ¢ (1 + o)
?\3 — 8—21'3(1 + q3)

where

gl gl el <L
For the case of LC # 2, i.e., a nonconfocal system, (7) gives

2LC

= 1= IC (0'1.2 + 0'5'2)
—-LC
g2 — Q3 = m‘é(ﬂn2 + oc’).
If we define
2LC
a = 1_ L0 (U'LE + Ucz)
then
k1 =1 + a
A = 82.'9 (1 _ %)
Ra == 2 (1 - g)

For the confocal case, LC = 2, the roots of (7) are

?\1=1—|—a
= —1+4+a
A= —1.

These two sets of solutions of (7) are valid so long as @ < 1. This
means oo < 1, o < 1, and LC is not near 4.
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3.2 Sylvesters Theorem

For raising the matrix (M, X M.,) to the kth power, it is helpful to
use Sylvesters Theorem.” If A;, A2, and A; are the characteristie roots
of the matrix A then

(A= MDA = D)
(A — A2) (M — Ag)

(A — MDA — A3 A
(A2 — M) (he — Na) :

(A — MDA — X)
(As — M) (As — A2)

A

_|_

+ A

where I is the unity matrix.

In (6) we shall be interested in the case where n is a very large num-
ber, i.e., many lenses in the transmission line. The difference between
the matrix (M, X M.)and M X M where M is the perfect transmission
line matrix is very small (terms of the order of ¢ and o .2). For the
nonconfocal case, it will therefore only be necessary to consider the
deviations from a perfect transmission line in A,*, A, and As". In the
coefficients of A%, A", and A\;* we can assume o’ = oo = 0.

Hence, for the nonconfocal case, we can write

_ (M XM =DM XM =) o
(1 — ) (1 — ¢ %)

(MXM—I(MXM==¢""I) sis —ta
+ (821'\9 —_— 1)(821'8 —_ —21'8) 62 ke r (8)
(MXM-I)(MXM- €T _site ka2
(62118 — 1)(8—22'6 — eziﬁ) € € *

(M, X M,

+

Here we have used 1, ¢, and ¢ ** for the roots of M X M and

M= (1+a) =€

k
24%0 a 2ik8 —ka/2
A = (1—5) ~ " Mgt

k
)\ak - e—ms (1 _ g) ~ e—ﬂ:k&g—kalz.
In (6) we shall be interested in only the first element of (R, X R.)

which is (r,”). To calculate this we will only need the first row of ele-
ments of (M, X M,)*. These can be found from (8). The 1,1 element for
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the nonconfocal case is
e [ 4 sin* 6 — 2LC cos 6
4 sin® 8

+ eEu‘kﬂe—ka,’Q[ —2LC cos 8 :I
(e*® — 1)27 sin 26

4 g Rk ka2 [ —2LC cos 6 :I
(e — 1)(—2jsin 26) |’

bu:e

After some simplification

_ 2 ka —ka/2 . _
b][ = m [C + [ cos (2k 1)6].

Similarly, we can write b2 and b3 for the nonconfocal case as

_ 2L ko | —ka/2 4 - LC . P
b = Yy g I:e + e (,‘/ oS 2k6 — cos Zkﬂ)]

by = 2—1"2_ [e — e** cos 2k8).
LC(4 — LC)

For the confoeal case, LC' = 2, we are close to a degenerate case
where two characteristic roots are close to being equal. If we retain
terms to no higher power than 2 in ¢,* and o ¢’ in (M. X M,)" we can
write

(M XM+ I1)(MXM4I) o

(M, X M) = 1
(M. X M) = (1 +‘)Z)I)((M,. X M,)+ 1) (—Dke* (9)

4 (L, X M) — 1+ o)DM, X M) + (1 —a)D)

k
5 1)~

We have retained the o;” and ¢ ¢ in the coefficients of the last two terms
since o,” and o appear in the denominators.

We again are interested only in the first row of (M, X M ). For the
confocal case, the elements of the first row are

b“ — eka
bl2 — L [eka {)( ]-) ( 2 —Aa ULZ)]

L’ e 2(—1)
E[" a

by =

(o + ) |.
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3.3 Calculation of (r.>)

For the nonconfocal case using (6) and the values for the elements
in the first row of (M, X M,)", we can calculate (r,’).

(') = ﬁ, {1‘92[6’"' + e ™ cos (2n — 1)6)

+ roLrd I:e’"‘ + g e (/‘/ éE—CLC sin 2nf — cos 2nﬁ):|

2 1
LTo

LC

[" — e~ cos 2nf)

+

n—l1

+ Loy 20 (¢ — e *™® cos 2kﬂ)} .
=0

In the 3,1 position of (V. X Va.) we have neglected the o ¢° as compared
to 1.
The summations can be evaluated as

n—1 na na
Zekn=e -1 e"—1

= e — 1 a

n—1
> e % cog 2k6
k=0

_1- e cos 20 — ¢ "™ cos 2n0 + ¢V 605 2(n — 1)8

1+ e — 2e2/% cos 26
1 n e " gin (2n — 1)0
~ 39 2 sin 6 )

We have used the facts that a << 1 and n > 1.
The expected value of the square of the output beam position for the
nonconfocal case is therefore,

2
2-_.
) =31 —1¢

+ rolro [e"“ + g ( 1/ 4 z GLC sin 2n8 — cos 2n6)]

Lz'rﬂ’z na —(na/2)
Tl e

{r'uz[e" + ¢ " cos (2n — 1)6]

(10)
cos 2nf)

2 2 sin 6

na __ —(nal2) _s _
+ Loy [e 1 1 e sin (2n 1)6:,}
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where

_2LC 2 2
a = 4—_1? (0' L + oc )
For confocal spacing, LC = 2, the square of the expected value of
Ta I8

(ra’) = 10'¢" + roLro’ [e’"' - 2(;1),. (oec’e ™ + :n.z):l

2 12 n
L;D I:enu _ 2('—;1) (O_eﬁe-—na_f_ 0’1,2)] (11)

+ 2y2 [ena -1 B l _ ac?g-—rm + (__l)nng:I

a 2 a a

+

where, for LC = 2,a = 2(s, + o¢).

It is of interest to consider how close to LC' = 2 one must be to have
(11) hold rather than (10). If we retain terms to only the first power
in @, it can be shown that (11) is valid when

|LC — 2| < ol + o
If
ILC—2E>O‘L2+O'(;2

then (10) holds. Since ¢,* and ¢ ¢ will be of the order of 10~ we must
be very close to LC = 2 for (11) to hold.

If the lenses and spacing are perfect so that @ = 0, the first three terms
of (10) and of (11) give the square of the output beam position due to
the input beam slope and position. The last term gives the increased
displacement due to random lateral lens displacements. Both parts
agree with Hirano and Fukatsu® when ¢ = 0.

The random errors in focal length and spacing cause an exponential
increase in the expected value of the square of the output beam dis-
placement. This can be seen more clearly for the case where n is very
large. If na > 2, then (10) and (11) reduce to the same result. In this
case,

2\ s 28'” 2 ’ L2r0'2 2LC 9 e’m -1
<'”">~m[”° +roln + LC':I+4—LCy[ a ] (12)

IV. TRANSMISSION LINE WITH RANDOM BENDS

We will now assume the axis of the beam waveguide is bent so that
there is some correlation between adjacent lateral lens displacements.
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As noted in Section ITI this correlation will appear in (5) in the last
two terms, ((MRa—1) X Va)and (Va X (M.Rpa)).

It is shown in the Appendix that these two terms to first order do
not contain ¢’ or o, i.e., they are not affected by the random varia-
tions in focal length and spacing. It is also shown that if the axis of the
guide is composed of a series of uncorrelated bends whose average bend
length is much smaller than the total length of the transmission line,
these two terms are not functions of n. This type of bending might
typically be the case for a very long transmission line laid to follow the
gentle bends of the terrain.

It was shown in Section III that to first 01der {(Vu X V,) also has
these properties, i.e., it is not a function of ¢ .2, ¢ ¢’ or n. Because of this
similarity, the matrix ((M,R.a) X Vi) + (Va X (M 2ftn—1)) can be
considered as an added part of (V, X V.) and can be carried through
the analysis in this manner. Hence, the random errors in focal length
and spacing affect the beam displacement due to short uncorrelated
bends in the same way they affected the beam displacement due to
random lens displacements.

From (10) or (11) for “a” small we can show how ¢’ and o¢ couple
to the random displacements by writing

et — 1

na

(r”) = (I Jamo

In this expression, (r, ) is the expected value of the square of the
beam displacement due to random lens displacements when a = 0.
Because of the similarity pointed out above, the beam displacement
due to short random bends is also multiplied by (e"* — 1)/na to account
for the focal length and spacing errors. Let us assume a transmission
line axis is specified which fits the conditions, i.e., it is composed of a
series of uncorrelated bends whose bend length is much shorter than the
total line length. From this we can calculate (r,’) assuming L ::Lnd C are
perfect This has been done for some specific cases by Marcuse,” Berre-
man,® and Unger.’ To include random imperfections of L and C if a is
small we multiply this result by

e — 1

na

This analysis does not hold if the correlation extends along the entire
line (for example a serpentine bend) or if the correlation extends over a
large portion of the line.
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V. STATISTICAL GROWTH OF BEAM SPOT SIZE

We have been concerned thus far with the behavior of light rays in an
imperfect transmission line. Our primary concern, however, is the
behavior of Gaussian light beams rather than light rays. It has previously
been shown that in the paraxial approximation the center of a Gaussian
light beam does behave like a ray.® We can regard 7, and r,’ therefore,
as the position and slope of the center of a Gaussian beam at lens n and
ro and 7o’ as the initial conditions of the beam center. We lack infor-
mation on the effects of the transmission line imperfections on the size
of the beam.

Using the complex beam parameter law of Kogelnik®® it would be
possible to find the statistical growth of the spot size due to the line
imperfections. It will be simpler, however, to use Steier’s ray packet
equivalent to the Gaussian beam.'® This approach conveniently uses
the already derived statistical behavior of the light rays to find the beam
size behavior.

Just to the right of a lens, the ray packet equivalent of the normal
Gaussian mode of the transmission line is

L .
To = Wp COS ¢ + ESIDQQ
0

¢ has all values from 0 to 2= (13)

T = —2 sin
¢ Fkwo ¢
where
wo = spot size at the beam waist = [M]‘
k*C
2
k= 5

A = wavelength.

If the path through the transmission line of each ray of the packet is
found then the behavior of the equivalent Gaussian mode through the
transmission line can be found. At any point in the transmission line,
the envelope or the distance between the extreme rays of the ray packet
is equal to twice the beam spot size and the curves which are perpendicu-
lar to the average ray slope are the beam phase fronts.

To find the effect of transmission line imperfections on the beam
spot size, let us launch the ray packet given by (13) into the trans-
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mission line. If we substitute the value for 7o and ro’ from (13) into (10)
for the nonconfocal case we find

9 2o’ na QWe'  —(nas)
W2y = os (2n — 1
(ra’) 4—LC€ +4—L06 [cos 2¢ cos (2n e (14)

— sin 2¢ sin (2n — 1)6]

where ¢ ranges from 0 to 2r. We have not included the last term of (10)
since the lateral lens displacements have no effect on the growth of the
spot size.

The expected value of the square of the spot size at the nth lens,
{w.), is given by the envelope of these rays. Taking the maximum value
of (14) as ¢ goes from 0 to 2.

2 na —(na,
(w“ ) — wD ( ( 12))‘

The normal mode spot size at a lens, w, is given by

wz — 4'wt)2
4 — LC'

Hence, for the nonconfocal case

(wnﬂ) _ enu + e*—(na.'?)

w? 2 (15)

where

a4 =-——=x 2LC (O’L + oc’).

For the confocal case, LC' = 2, we substitute from (13) into (11).
Taking the maximum value as ¢ ranges from 0 to 2.

2 2 —na 2
(’EI)n):l{ena-*_O'ce +U'L}- (16)

’w2 2 O'(_'2 + 0'[,2

If na is small so that
"~ 1+ na,
then for the nonconfocal case (15) becomes

('w,.)w LCn
Lt s@— 1oy

('TL + 0’0) (17)
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and for the confocal case (16) becomes

2
% =1+ no. (18)
Equations (17) and (18) agree with the results of the perturbation
analysis of Hirano and Fukatsu.’

Hence, for na small, the random errors in C' do not affect the spot
size in the confocal case. However, as pointed out in Section 3.3, LC
must be almost 2 for this to be true. If | LC — 2| > ¢,° + o¢ the result
for a nonconfocal system should be used. Since ¢,°, oo° =~ 107", this is
a very stringent requirement on LC. It is doubtful if LC can be held
close enough to 2 to gain this advantage in reduced spot size growth.

If na > 2 then the nonconfocal and the confocal results are very
nearly the same and for both cases

(wn2> ~ 1 na
w2 ~ ’2‘ e -

VI. SUMMARY

The results derived here show statistically how imperfections in an
optical transmission line affect the output beam from the transmission
line. The imperfections cause the heam center to wander from the
transmission line axis and cause the beam size to grow. We have con-
sidered the errors in focal length and spacing to be random and the
lateral lens displacements to be random or with short correlation lengths,
For this case, statistically the size of the beam and the distance of the
beam center from the axis grow exponentially as the number of lenses
when there are many lenses.

For na > 2, and random lateral lens displacements, the results can be
summarized as follows. The beam center launched at 7o, r,’ has an rms
expected value of

— 2 na r | L'n"” "1
\/(rnz) = Vm I:e (1',,2 + 7oLy + LTE‘ ) + LCy ¢ a ]

The beam spot size has an rms expected value of

\/W = e na/2 \/wi‘

For random transmission line bends of short correlation length the
random variations in L and € increase the expected value of the square
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of the output beam displacement as

e — 1

(ra) = (1 Ja=o

na

where (rn’)amo is the value computed assuming no variations in L and C.
If a beam is launched into a straight line on axis with no slope its
position is not affected by random errors in f and L and only the size
of the beam is affected. This is obviously true since a ray through the
center of a lens does not bend no matter what the lens focal length.
If, however, the axis is curved or the lenses have random lateral dis-
placements, the beam begins to wander from the axis and is now affected
by the errors in f and L. This coupling is clearly shown in these results.
These calculations are pertinent when n is large. This is the case of a
transmission line with relatively closely spaced lenses which would be
able to control the light beam around gentle bends in the terrain.
As an example, let us consider a confocal beam waveguide with lenses
spaced every one meter and built to the following rms expected value
tolerances:
(1) focal length variations — 1 per cent
(#7) spacing variations — much less than 1 per cent
(747) random lateral lens displacements — 2 X 10~ mm.
These tolerances give

2 x 107"

a
=4 X% 107" m%

If we assume an rms output beam deviation of 2 millimeters is
acceptable, we can go approximately 3.5 kilometers (n = 3.5 X 107)
with the line described above. If the line is allowed to have gentle
circular bends of an average radius of curvature of 5 kilometers and
an average bend length? of 100 meters then the distance which can
be traveled before there is an rms beam deviation of 2 millimeters is
reduced to 2.5 kilometers (n = 2.5 X 10%). This means a beam redirector
is required every 2.5 kilometers.

In the above example, the dominant Gaussian mode spot size at each
lens for the perfect line is 0.45 mm rad. Because of the line imperfections,
this grows to an rms expected value of 0.48 mm rad at n = 2.5 X 10%
This spot size growth is insignificant compared to the beam deflection.
In general, unless LC is very small the spot size growth is not as im-
portant as the beam deflection growth for closely spaced lenses.

In calculating these numbers we have assumed the lenses are perfect
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and have neglected any aberrations. Additional work is required to
determine the effects of aberrations on these results.

These numbers were calculated at LC = 2. If we make LC smaller
the effect of the random lens displacements becomes less but the effect
of correlated bends becomes larger.” At very small LC, the effect of
spot size growth’ becomes important. If we increase LC the effect of
correlated bends is reduced” but the effect of random lens displacements
is increased. Clearly there is an optimum LC' depending on line con-
struction tolerances and line laying tolerances. It appears this optimum
is near LC' = 2 in a typical case.

Fig. 2 shows rms expected beam deviation as a function of n for a
confocal line. This clearly shows how the distance between redirectors
must be reduced as the errors in f and L become larger.
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APPENDIX

Analysis of Matrices for Bent Waveguide Azis

We are interested in the last two terms of (5) since they contain the
correlation between lateral lens displacements. These terms are

((MuRnt) X Vo) 4+ (Vo X (MaB1)).

For simplicity let us consider only {(M.R.—1) X V.), since the two
terms are very similar. By repeated substitution of

Rn = MﬂR'n—l + Vﬂ
into
(MﬂRn—l) X Vn )

we find
(Man—l) X Vn = (MnPIRD) >< Vn + kzﬂ (MnPka—l) X Vn (19)

where
Py = Mo Mo oM s - MMy .
If we take the expected value of (19), the first term on the right side
is zero since it is the product of independent terms and (V,) = 0.

We must look at the individual elements of (MaPiVio) X Va. We
can write the matrix P; as

Pran  Prea.m
P, = .
Prie,n)  Pk2,2)
The p; contain Ln1, Lns2, -+, Lk, and Cay, Caz, - -+, Cx but only
to the first power.

Pray + LnPren Pran + LaPreo
M.Pi =
k —Capra,y + Pren —Cuprany + Prean(l — LaCh)
(1 — L.Ch)
and
0
(MoPiVia) X Vi = | peasCn + DrealnCa Cr—18k—15x .

—DeanCn + Prea (Ca + LaCh)
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From this result we can write the last two terms in (5) as
((Man—l) X Vn) + (Vn X (ﬂ{an—1)>
r 0 A

(Pr1,)C + LC(pra,)

Il
M=

(Pran)C + LC(puan) C{spasy). (20)

=
I
o

20°(1 + o¢”) (L{pre.ny) — (Pran))
L + 2(pic.n)C

Since the p; contain the L’s and C’s only to the first power in each,
{px) will contain only L and C and will not contain ¢,* and o¢". If we
neglect o ¢* as compared to 1 (the same approximation is used in (V, X
Va)), then ((MuRn—1) X Vay 4+ (Va X (M,R._;)) does not contain
oL orag.

We will now find under what conditions {(M,R._;) X V.) 4+ (V. X
(M,R.-1)) is independent of n,

The n dependence of (20) is in the terms

J; (Pra,2)(Sk-1 8a)

and
; (Pr2,» )(Sk—1 8n)
Since
(Py) = (M)
( >_Lsin(n—k)i?
P97 = sin 6
_ L*Csin(n—1k) 6
(Pri2n) = — Ssn g + Lcos (n — k) 6.

And we can write
in @ « .
ﬂ?f 2 (Pra»)(Si1 8,) = {(8:8,) sin (n — 2) 6
=2
4 (sesa)sin (n — 3) 0 --- 4+ (Sp—28a) sin @ + {s,35.) 0.
We will assume, as did Marcuse,® that

(Sksn> = f(n - k)
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The correlation depends on the distance between the lenses. We also
assume that

fn — k) =0 for n—F%k> N.

That is, the correlation length is finite and extends only N lenses away.
This means the waveguide axis is a series of random bends, the “average
length” of each bend is NL. Therefore, if n > N we can write

_S_i%f g (Preo)(se 8a) = f(2) sin 6 + f(3) sin 26

“f (N —1)sin (N — 2)8 + f(N) sin (N — 1),

which is not a function of n. We can write a similar equation for

; {Pre2.2){Sk—1 8a)-

However, we must consider all » down to 1. For these small
ny, ((MaRa1) X Va)y + (Vo X (MR.—y)) will be a function of n. This
means that all bends contribute the same to the output beam displace-
ment except the initial bend which is within NL of the beginning of the
transmission line. However, if we assume that n >> N (the average bend
length is much smaller than the length of the transmission line) the
contribution of this initial bend will be very small and can be neglected.

In summary, the conditions imposed on the transmission line axis
are that it is composed of a series of random bends whose average length
is NL. The average bend length is much smaller than the total length
of the line. We have neglected the effect of any bend within NL of the
beginning of the line. These are essentially the same conditions used by
Marcuse,” Berreman,® and Unger® in their analyses of random bends of
the transmission line.

Under these conditions {((M.R._:) X V.) and (V, X (M.R..))
are independent of n.
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