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The applicability of the Pontryagin maximum principle to signal-noise
ratio maximization is explored. Attention is focused on the reformulation of
the problem so that the maximum principle may be used. The basic aspect
of the reformulation is lo cast the problem into the form of differential equa-
tions inslead of inlegral equations.

Two problems are solved. The first, a variation of the matched filter
problem, could have been solved by other methods. However, the maximum
principle provided a very neat and systematic approach. The second problem,
signal design with both an energy and an amplilude constraint imposed on
the signal, is solved numerically. It appears to be intractable by other
methods. One of the advantages of the maximum principle formulation s
that, by working with differential equations rather than with integral equa-
tions, numerical techniques may be more easily used.

I. INTRODUCTION

The Pontryagin maximum principle may be considered to be a gen-
eralization of methods of calculus of variations that permits solution of
optimization problems with inequality contraints. During the last few
years, it has been extensively used to attack control theory problems. The
use of the principle to solve signal optimization problems is introduced
in Ref. 1. The maximum principle is briefly discussed in connection with
wave-form optimization in Ref. 2.

The purpose of this present paper is to develop techniques for the
application of the maximum principle, in particular to problems of signal-
noise ratio maximization. We shall show how the maximum principle
may be used to solve some problems with inequality constraints (e.g.,
the amplitude of a signal may be constrained to be less than or equal to
some maximum value) which were heretofore considered intractable.
We shall also show how a problem, solvable by other methods, may be
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very conveniently attacked with the formalism of the maximum princi-
ple.

It is interesting to note that the maximum principle is, in a sense,
more applicable to communication theory than to control theory for
which it was originally developed (this is also pointed out in Ref. 1).
The maximum principle yields a function of time to maximize a func-
tional subject to constraints and for prescribed initial conditions. The
answer to most communication theory problems is a function of time.
On the other hand, in control problems, the function of time for specific
initial conditions is called an ‘“open loop” solution. What is actually
needed is the “closed loop” or “feedback’ solution which is a function
of the present state. This is only indirectly determined using the maxi-
mum principle.

After introducing the maximum principle, we shall first solve a con-
strained matched filter problem and then a signal design problem. Atten-
tion will be focused on the reformulation of the problems so that the
maximum pringciple is applicable.

II. THE MAXIMUM PRINCIPLE

We shall briefly discuss the maximum principle. Our discussion is an
abstraction of some material in Ref. 3. Another excellent introduction
to the maximum principle, which is presently available, is the Introduc-
tion and Chapter I of Ref. 4. Consider a system whose state is described

by a veetor x = (21,22, -+ &,) Which satisfies the differential equation

& = f(x,u,t) telto, ta (1)

where w = (u, -+ , %,) isan r-dimensional control vector and f(z,u,t) =

(fi(z,u,t), falrant), ---, falz,ut)) is a given n-dimensional vector
valued funetion of z, w, and . We require that

u(t) e lelb, b] (2)

where the set @ is the set of admissible control vectors. Let F be the
class of all piecewise continuous functions® from [ty , #] into @. If « is
a control function in the class F we denote the trajectory corresponding
to « by z (¢;«) which satisfies the following relations

i) = f@(tu), u(t),t) aetel, b 3)
x(ly;u) = 0. 4)
* Corinthian seript (e.g., «,?) is used to denote control functions. Small Eng-

lish letters (e.g., u(¢), v(t)) denote values of functions at specific times. The
function « is the function whose value at time ¢ is u(%).
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(There is no loss of generality in assuming zero initial conditions; a
transformation of coordinates may be used for nonzero initial condi-
tions.)

The optimization problem is as follows. Let {81, s2, - - , 8w} be a given
set of real numbers where 0 < m =< n — 1. We prescribe the final values
(at t = t;) of the first m coordinates of the state vector  to be

{81,82,"',8"1}

and we require the final value of ., to be maximum. The optimization
problem is formally stated as follows: we are given the set

S={x:a; =38 for 1=1,---,m} (5)
and we want to find a control function 2 in the class F such that
(#) a(ty;2) e S
(i) for all « e F such that (6)
z(ly;u) €S ()
the following relation holds:
Tallisu) £ alh;e). (8)

The control function . is called the optimal control function and x (¢;2)
is the optimal trajectory.

The Pontryagin maximum principle is a necessary condition that an
optimal control function must satisfy. To state the principle, we first
define the Hamiltonian, H (x,u,t,p),

H(xut,p) = (f(zaut) | p) )

where p = (g1, -+, pa) is an n-dimensional vector and (a | b) denotes
the scalar product of a and b.

2.1 Maximum Principle

If 4 is an optimal control function then there exists a nonidentically zero
continuous vector valued function p (¢) such that

(1) H(x(tw),v(t), t,p(t)) = H(x(t;2), u, t, p(t))

for a.e { e [fo, &1] and all v € 9, (10)
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o fzp) 0"
@) 5 = — [LEZONT (1)
dx z=z(L:9)
for a.e. t € [t , 6]
(superscript 7' denotes transpose),

() pa(t) 2 0. (13)

Relation () states that the Hamiltonian, evaluated along the optimal
trajectory, takes on its maximum value with v(f). Note that the
maximization is over u, with x(¢;2) and p (¢) held fixed.

Relation (72) may alternatively be expressed as follows:

P!(t) = - Z [M] pJ(t): 1= 1: 2! (2 (14)
i=1 ax; 2=z (t:9)

Relation (#7z) states that the final value of an element of the vector
p(t) is zero if it corresponds to an element of the vector z(¢) which is
left free at ¢ = £, .

Relation (iv) states that the nth element of p (¢), which corresponds to
the element of x (¢) which is being maximized at ¢ = ¢, , is nonnegative
at t = tl .

Verification that the maximum principle is satisfied is seen to be
equivalent to verification that a set of differential equations with mixed
boundary values is satisfied. Conditions on z (¢;2) must be satisfied at
both f, and # and p(¢) must satisfy conditions at ¢ . This boundary
value problem is not always solvable analytically but much progress
has been made in the numerical solution of such problems.

Communication theory problems are not usually stated in the form
just described with differential equations. So the first order of business
in applying the maximum principle to a communication theory problem
is to convert it into the appropriate form with differential equations.

III. A MATCHED FILTER PROBLEM

To illustrate the formalism involved, we first solve a variation of the
matched filter problem. The use of the maximum principle, in this case,
is actually equivalent to using the classical calculus of variations. The
basic matched filter problem is as follows (Ref. 5, p. 244). We have
signal, s,(f), and noise, n(t), entering a linear filter and we wish to de-
sign the linear filter so that the output signal-noise ratio is maximized
at a specific time, ¢, . This problem can be trivially solved using the
maximum principle and by other methods. To make the problem a
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little more interesting, suppose that we also specify that the output to a
second signal input, s,(f), is to be equal to some real number, a. For
example, if we chose a = 0, we could be interested in detecting the
presence of s () while diseriminating against s;(¢).

We assume white noise with correlation function

R.(t — w) = Né(t — u). (15)

Then the mean square noise at ¢, o”(t,), is (if we start the problem at
t = 0 and if we employ the usual formal operations with white noise)

At) = N f W(r)dr (16)

where h(t) is the impulse response of the linear filter. The outputs due to
81 (t) and s:(t) at ¢ = t, are, respectively,

w) = [ 1) sl = 1) dr (17)
w) = [ ) s = 1) (18)
The problem is then to choose A (¢) to maximize
hfg((i‘l))r (19)
while satisfying the relationship
ya(t) = e (20)
If we let
21(t) = u(t)si(th — 1), (21)
Ba(t) = u(t)s:(t — t), (22)
(t) = —Nu' (1), (23)
21(0) = 22(0) = 23(0) = 0, (24)
and if we identify u (f) with (), then
o (t) = yu(h), (25)*
z:(t) = ya (), (26)
() = —a* (). (27)

* Note that for ¢ # ¢, z.1(t) does not necessarily equal 3, (f).
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An equivalent problem is to choose u(t) so as to maximize zs(4) sub-
ject to

n(h) =1 (28)
2o(l) = a. (29)

That is, we can minimize ¢” (f) with y:(41) constrained since the signal-
noise ratio is not changed if A (¢) is multiplied by a constant factor.

Now that we have recast the problem into differential equation form,
we can solve it using the maximum principle. Using (14) we see that,
since f is independent of z.

P (t) = constant = p, (30)
p2(t) = constant = p. (31)
ps(t) = constant = 1 (32)

(we let p;(t) = 1 for convenience).”
The Hamiltonian, H, is

H = pu(t)si(ts — 1) + pau(t)se(h — 1) — Nu*(t). (33)
Since there are no constraints on « (¢), we maximize H by differentiating
and get
1
ult) = oN [ps(ts — t) + posa(t — 1)) (34)

To satisfy (28) and (29), we must have

t1
2_1J\—7 [psa(ts — 7) + pasalty — 7)1 silth — ) dr =1 (35)
0

% L- 1 [P1S1(t1 —7) + pzs2(tl — )] sty — 7) dr = a. (36)

We can then solve for p; and p. and get

_ ZN(Sz —_ OtSu)
P TS — S (37)

_ QN(C!Sl —_ S]_z)
P = S]_SQ — 8122 ) (38)

* This involves an assumption of normality (in the sense of the classical calcu-
lus of variations).
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where
ty
S = j; $'(ly — 7) dr (39)
Sz = j; '822“1 - 'r) dr (4:0)
Si2 = '/; l silty — 7) 8oty — 7) dr. (41)

As a simple example, let
sit) =1 tel0] (42)
s(t) =1 te[0,6/2]

0 te (t1/2,tl]. (43)

We would then get

2(1 — a) s

u(t) = h(t) = t.

(b — 1) + ? (2a — 1) ss(ty — 1), (44)

IV. A SIGNAL DESIGN PROBLEM

The following problem is taken from the thesis by M. I. Schwartz
(Ref. 6). The system is depicted in Fig. 1. We have a signal passing
through a linear time-invariant filter, represented by impulse response
function h(f), after which the signal is corrupted by noise. The resultant
signal plus noise is processed by a correlation-type receiver. The object
is to maximize the signal-noise ratio at the output of the receiver at
t = & by choosing forms for both s(f) and receiver function g¢(f). M. I.

CHANNEL
| |
ty
S(t) h(t) x(t) —~ yt) I RECEIVER —.f y(t)qlt)dt
o
n(t) |
- ]

Fig. 1 — Signal design problem.
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Schwartz solves this problem with an energy constraint on s(¢). We will
show how to simultaneously handle an energy constraint and an ampli-
tude constraint on s(f). That is, we require that

fo“ s(r)dr = 8& (45)

and
| S(t) | é Smnx . (46)
To make the problem meaningful, we require that

(Smnx )251 > &.

It may be easily shown that the problem is equivalent to the problem
with the equality of (45) replaced by =.
Again, we assume that the noise is white, i.e.,

R.(t — u) = N&(l — u), (47)

and we further specify that k() has a rational Fourier transform with
just poles® for simplicity. The assumption of rational Fourier transform
facilitates recasting the problem into the differential equation form. Thus,

Fh(D)] = —= (48)

where « is a real number and D (iw) is a polynomial in iw. Letting
D(iw) = (i)' + a(iw)™" + @)™ + - + aa(iw) +ar.  (49)

(i.e., we have an Ith order differential equation in k(f)) and

Ty = & (51)
2 = 2 (52)

we can represent the effect of h(t) by the following set of first-order
differential equations

C*If we also assumed zeros in the Fourier transform, we would solve for a de-
rivative of h(f).
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o 0 1 o o --- 0 || =
Ty 0 0 1 o --- 0 T3 0
= : B (53)
0 0 0 1
L 1| |~ —m — e —a || [as
21(0) = 25(0) = -++ = 2,(0) = 0.

We have converted an lth order differential equation into [ first-order
differential equations.
211—|
T2
Lk

Let
z* =1 (54)
EJJ

and let B be the I X [ matrix in (53). Then (53) may be more concisely
written as

0
i* = Ba* +| (55)

as
x*(0) = 0.

Now that we have put the effect of & (¢) into differential equation form,
it remains to cast the signal-noise considerations into differential equa-
tions. Recall that the object is to maximize [so(t;)])’/a” () subject to
(45) and (46) where

so(t) foldtq(t)fu du s(u) h(t — ) (56)

o' (t)

N fu“ ¢'(t) dt. (57)

If we let,
alt) = §'(@t) (58)
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&(t) = Nq'(1) (59)
() = x(t)g(t) (z(t) = so(tr)) (60)
2(t) = 2z3(t)x (£)g (L) (za(tr) = s0'(tr)) 61)*

21(0) = 2(0) = 2(0) = z(0) =0 (62)

control vector = u(t) = (s(1), q(t)),

then the optimization problem is to choose s(t), subject to relation
(46), and q(t) to maxumze 2:(t) (Wthh equals si'(f1)) subject to
z(h) = & and z(th) = o". That is, we fix ¢ *(t,) at some arbitrary real
number and maximize s (f). Just as in the matched filter problem,
multiplying ¢(¢) by a constant does not affect the signal-noise ratio.

Now our state veector is the (I + 4)-vector, (z* 21, 2, 2, 21). Equa-
tion (14) will take the following form (p(¢) is an (I + 4)-vector):

[ B 0 0 g 2zyq
x|l o000 O

J 000 0
p(t) = — 0 0000 o p(t) (63)
0 0000 O
0 0 0 0 0 2mgq
o .- 0000 0 |
(B is the I X I matrix in (53)).
The final conditions on p (¢) are
mt) =0 (64)
p2() = 0 (65)
m(t) =0, (66)

P (t), Prye(t.) unspecified (they correspond to z (i) and z (t) which
are fixed at ¢ = t,)

* This differential equation is derived as follows:
di (22(1) = 2z()z:() = 2z(zi (g (@)

) = 23(h) = so(ly).



SIGNAL-NOISE RATIO MAXIMIZATION 483

Prsa(l) = 0 (67)
piya(t) = 0. (68)
An example of the use of the maximum principle for this signal design
problem is given in the next section.
V. EXAMPLE OF SIGNAL DESIGN
We shall consider the case of

«
w + a

Following the method described in Section IV, the problem is first re-
cast into the following differential equation form

Fh(1)] = (69)

T = —ar + as (70)

Hh=2¢ (z:1(k) = &) (71)
a=Ng  (a) =) (72)

Z = 2q (z:(h) = 8o0(hh)) (73)

2y = 2z37q (24(t) = s’ (b)) (74)

2(0) = 2(0) = 2(0) = 2(0) = «(0) = 0. (75)

For this problem the necessary condition (maximum principle) for an
optimal solution is that there exists a nonzero vector function p () =
(pr(t), p2(t), - -+, ps(1)) such that

H = pi(—ax + as) + ps” + pNG' + parg + pi2zszq  (76)

is maximized over the allowable s and ¢ and such that

Pr = apy — qps — 22 (77)
Pa=0 (78)
ps =0 (79)
Ps = —2aq (80)
ps =0 (81)
mh) =0 (82)
pi(h) =0 (83)

ps(ti) = 0 (84)
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(we can let ps(t) = ps(t) = 1 under a normality assumption).
The maximization of H leads to

_ pa(t) x(2) + 2z5(t) (1) -
(1) = — [ 2020 240 20 ] (85)
S(t) = S*(t) if IS*(t) | é Smu: (86)
o s*(e) . *
= T Smax if | 8*(2) | > Smax, (87)

where

e _ —mDa
§ (t) = z_pz.

To verify satisfaction of the maximum principle, it is necessary to
solve the differential equations (70) to (74) and (77) to (81) with
satisfaction of the above mentioned initial and final conditions and in
such a way that maximization of the Hamiltonian is satisfied.

The numerical method of satisfying the maximum principle is based
on iteration of the initial values of p-vector to successively improve the
final conditions. That is, we know the initial conditions of z, 2, 2,
2z, 2 (see (75)) and we wish to constrain the final values of 21, 2,
m, and py :

() = & (88)
z(h) = o (89)
p(h) =0 (90)
pi(t) = 0. (91)

Suppose we guess at p(0) = (p1(0), p2(0), p3(0), ps(0), 1) and inte-
grate the differential equations (70) to (74) and (77) and (81) and
evaluate the following error in final conditions

E=|aMt) —&l+ |at) — |+ |nt)| + |p@)]| OV
We wish to decrease E. To this end, let
(P1(0))new = (P1(0))o1a + 8p1(0) (92)

and re-integrate the differential equations. If F decreases, change

*Since pa(t) + 223(¢) = 0, g(¢) is proportional to z(Z). Thus, we are equivalently
maximizing the signal energy into the receiver (see (73)) and then correlating
with z(f). This is consistent with (and, in fact, rederives) well-known properties
of matched filters.

t Actually, the second term is not required as ¢* can be adjusted by changing
q{¢) by a multiplicative factor (without changing the signal-noise ratio).
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p2(0). If E does not increase, try

(pl(o)new = (pl(o))old - 6?1 (0)

Again see whether E has decreased. If it has, change p; (0) to (p1(0) ) new
and change p(0). If E has not decreased, retain (p;(0))o1a and try
changing p2(0).

Thus, the method is to successively change p;(0), p2(0), ps(0), ps(0)
to decrease E. When E becomes sufficiently small, the maximum prin-
ciple may be said to be satisfied. After we present some results, we will
discuss the method further.

5.1 Results

Two cases were run. They were for the following parameters:

i =1
E =1
N=1
a=1

(As mentioned previously, ¢* is determined by the scaling of ¢(t).) The
difference between the two cases is that in the first, the amplitude con-
straint was not imposed and in the second, Sn.c was set at 1.1. The first
case was already treated by other methods in Ref. 6. Our results for that
case were in agreement with those of Ref. 6. Fig. 2 shows ¢(t) for both
cases and Fig. 3 shows s(¢). For the case of no amplitude constraint the
signal-noise ratio (\/s,(#;)/¢?) was 0.44 and the signal-noise ratio for
the amplitude constrained case was 0.43. One could (nonoptimally) im-
pose the amplitude constraint by scaling down the results for the ampli-
tude unconstrained case (and not use all the signal energy available).
That is, the peak amplitude of the signal in the first case is 1.27. The
entire signal (s(t) for ¢ € [0,4,]) could be reduced by a factor of 1.1/1.27.
The signal-noise ratio would also be reduced by that factor (0.865).
Whether or not this signal-noise ratio reduction is significant is not
actually germane to this investigation. What is of consequence is the
fact that the optimum can be determined and any sub-optimum scheme
can be compared with it.

5.2 Comments on the Numerical Method

The basic method is similar to that of Ref. 7. In Ref. 7, the gradient
(relating changes in the error to changes in p () ) is evaluated and used
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1.5

AN\
13 /Ak-\\\
1.2 //

Smax =00 A.i

7/

0.8

/
Y/

q(t)

0.5 /
0.4 /
0.3 /
17

o}

o] 0.1 0.2 03 04 0.5 06 07 0.8 0.9 1.0
TIME IN SECONDS

Fig. 2 — Optimum correlation waveforms.

to determine a steepest descent change in p(f). This was not done in
the present problem for two reasons. First of all, the evaluation of the
gradient (as done in Ref. 7) is not valid for the problem with inequality
constraints. Secondly, even if the gradient can be conveniently evalu-
ated, it still requires extra integrations and the problem of step size is
left unresolved. (This is not intended as criticism of the method of Ref.
7 which may be quite useful in many applications.) We decided to
frankly treat the problem as a systematic trial and error. Our method of
seeing how the error changes as p;(t) is changed to p:(t) + op:(to)
may be loosely interpreted as evaluating dE/dp;(ty) - 8pi(to).

The numerical method may be considered to be semiautomatic. There
is little @ priori information available as to the initial choices of the
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/—\\

Smax=00 11
|

(o] 0.1 0.2 03 04 05 06 07 08 09 1.0
TIME IN SECONDS

Fig. 3 — Optimum signal waveforms.

pi(to) and the &p; (). A few runs on the computer offer the optimizer
some insight as to appropriate choices. About 30 iterations were found
to be needed for convergence (approximately 0.01 hours of computer
time). No convergence proof is offered for this method. In fact, even
though it did not happen in the problem considered in this paper, it is
conceivable that 0E/dp;(fy) (assuming the derivative exists) can be so
large that the smallest 6p;(f) that can be used by the computer would
result in a much too large change in E. There is also the possibility of
local minima of E (with £ > 0). These problems (which may not even
occur; we are trying to anticipate the worst) could be presumably re-
solved by changing the metric defining E and by trying a wide range of
pi(t).* It may be noted that convergence proofs do not seem to be avail-

* More efficient methods of adjusting the pi(%) may be possible. See, for ex-
ample, Wilde, D. J., Optimum Seeking Methods, Prentice-Hall, 1962.



488 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1966

able for competitive algorithms (e.g., steepest descent) for these op-
timization problems.

VI. CONCLUSION

The maximum principle has been used here to attack two signal-noise
ratio maximization problems. The first one (matched filter problem)
could have been solved without the maximum principle. However, the
maximum principle provided a very neat and systematic approach. The
second problem (with the amplitude constraint included) appears to be
unsolvable except by the maximum principle.” In this paper, it was as-
sumed that the noise is white. The handling of non-white noise merits
further attention, in particular, the conversion to differential equations
and the presence of impulses (see Ref. 5, Appendix 2). It should also be
noted that the maximum principle is not conceptually limited to time-
invariant problems.
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