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The theoretical capabilities of a ‘“polyphase” coding-modulation scheme
with additive white Gaussian noise are studied. The channel capacity of this
system s found and the error exponent estimated. Bounds are also found on
Ro(pmax), the maximum (asymptotic) rate for which polyphase codes can
be found with mazimum correlation belween code words pmax -

I. DEFINITIONS AND PRELIMINARIES

We shall consider the following (‘“polyphase”) coding-modulation
system (schematized in Fig. 1):

Every T seconds the message source emits one of M equally likely
messages. The information rate is R = 1/T In M nats per second.
Corresponding to the ¢th message (¢ = 1,2, -- -, M) the coder emits an
n-vector x; = (vi, T, *** , Tin), where

-7 =i = om, k= 112$ N, (1)

and where the integer n will be specified later. The time interval [0, T,
during which this information must be transmitted, is divided into n
equal subintervals of length T'/n. During the kth of these subintervals,
the modulated signal is

s() = VB eos (wd +aa), (k=1 L=t <i

k=12 - ,n

Thus, we have employed phase modulation with carrier frequency w,
radians per second and average power S.

We assume that the noise is additive, white, and Gaussian with one-
sided spectral density N,. The receiver must examine the received
signal % (¢), the sum of s;({) and the noise, and determine which of the
M messages was actually transmitted. It is well known that (since all
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Fig. 1 — Polyphase coding-modulation system.

signals are equally likely to be transmitted, and have equal energy ST')
the optimal decoder (which minimizes the average error probability)
selects that signal s;(¢) which maximizes p;, the (normalized) correla-
tion between s;(t) and y({):

pi = %fo s:(Dy (D) dt. (3)

Let us remark at this point that the correct operation of the decoder
depends on its exact knowledge of the possible transmitted signals, so
that in particular all delays and distortions to which the signals are
subjected in transmission must be known exactly by the receiver. This
is a so-called “coherent’’ receiver.

We let P,; equal the probability that the decoder output is incorrect
given that message 7 was transmitted, so that the average error prob-
ability is

1
M

M=

Pe= Pu'- (4)

i

Now, the same channel is to be used by a number of users simultane-
ously, each at a different carrier frequency. Let W cycles per second be
the separation of carrier frequencies between adjacent users (W will be
taken as the “bandwidth’’). Then the carrier frequency for the ath user
(e an integer) is w, = a27W radians per second. Further, we shall set
n = WT (let us say that T is such that WT is an integer), where n is
the number of subintervals defined previously. With ., and n so chosen
and the signals constructed as in (2), it is easy to show that the signals
of the ath and gth (e # B) users are orthogonal on the interval [0, T1.
Hence, the presence of the signal due to the gth user does not affect the
correlator in the decoder of the ath user.

Let us say that the transmission rate B and the bandwidth W are
held fixed, and let T', the duration of the signals (hence n = WT), become
large. Every T seconds the message source will produce one of M = ¢*”
equally likely messages to which the coder must assign an n-vector. The
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channel capacity €' is the maximum rate for which we may make P,
vanishing small for T sufficiently large. Formally, for any B < C and
£ > 0, there is a T sufficiently large so that the transmitter may transmit
one of M = ¢"" messages with P, < ¢. (This will necessitate a set of
M = ¢"" n-vectors stored in the coder.) The channel capacity C of this
coding-modulation scheme is found in Section III.

Let us consider again the decoding scheme. Making use of the fact
that the p; of (3) are normally distributed random variables, it is possible
to write an expression for the error probability P.* which depends only
on the signal energy to noise ratio ST/N, and the matrix of normalized
inner products among signals

1 T ..
pij = _SJT—’ A Si(t}Sj(t)dt, 1,] = 1)2, ‘e ,M. (5)
From (2) we obtain
b= 2 eos (v — ), Gi =12, m. (6)

It is knownTt that the error probability P, (as given in (4)) using the
optimal decoder may be bounded by

Pc é .f(nla'x PI'J'):
i)
where f(x) is an increasing function of x. Accordingly, a reasonable

procedure for designing good coding systems would be to try to make
pmax = Max p;; as small as possible. Alternately we pose the problem as

isf
follows:
With W, T, pmex held fixed, what is the largest rate for (1)
which we can design codes with parameters W, T, puax?
Let us observe that from (6)
l n
pii = 1 — Hk; [1 — cos (i — zj)]
1 ( ) &(x:, x;) ®)
_ _ 4 o \Tik — T _ _ X, X;
1 - zk: 2 sin — 1 o

* Ref. 1, (2.11).
T Ref. 1, (4.7) and Ref. 2, p. 498.
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where the “distance” d (x; , x;) is defined by
£, x) = 3 [2am B BT (9)
k=1

Thus, a code with maximum p;; = pmax , has minimum d* (x; , x;)/2n =
(1 = pmax). In the light of the above, we shall reformulate the problem
as follows:

Let @, be the space of real n-vectors x = (21,22, ---,a,) (where

n = WT) which satisfy
—rT=n =+ k=12 ---,n (10)
Letx = (w1, ,x.) and y = (1, -, %) €@y, and define the

distance between x and y as

n 2774
d(xy) = [k; (2 sin w) :I (11)

It will be shown in Section IV that d(x,y) is, in fact, a metric. A code
is o set of M members of @,, {X; = (Ta, T2, *-*, Tin)}ie1. The
transmission rate is B = 1/n In M nats per symbol. The transmission
rate in nats per secondis R = (1/T)In M = WR. We will define M (n,d)
as the maximum number of code vectors in an n-dimensional code with
minimum distance between pairs of code words d. Then R (n,d) = (1/n)
In M (n,d), and R(n,d) = (1/T) In M (n,d) are the corresponding trans-
mission rates. A problem equivalent to that of (7) is the determination
of B(n,d). In Section IV we shall let n (and hence 7') become large
while the ratio 8 = d°/2n is held fixed (corresponding to a fixed pmax)
and estimate R(8) = lim R(n, v/2n8) by upper and lower bounds.

Since 8 = 1 — puax, R(1 — puax) is the (asymptotic) maximum rate
for polyphase coding with max p;; = puax .
i]

1I. SUMMARY AND DISCUSSION OF RESULTS

The channel capacity is shown in Section I1I to be
c=w[-[ron!Paprmad], a2
0 P e
where
A= S/N,W (12a)
is the signal-to-noise ratio, and
/ F(p) = 2pAe™ "V Iy(2p4), (12b)
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and 7, (z) is the modified Bessel function of »th order. Another formula
for C'is (93). Approximate formulas for C for large and small values of
the signal-to-noise ratio A are obtained in Appendix A. For large values
of 4,

¢="m (4?” A) + a(4), (13)
where £,(A) — 0 as A — . For values of A close to zero
C = WA + 0(4%)). (14)

The capacity C is plotted versus the signal-to-noise ratio A in Fig. 2.
Estimates of the optimal achievable error probability are obtained in
Appendix D.

The upper and lower bounds on R (8) are expressed in terms of the
function Cy(£) which is defined as follows. Let £ be chosen

0<tE=1,

then define X (¢£) as the (unique) solution of

2.25 /// //
200 / —
1,75 /
c/ / ‘
1.50 A\\‘é/ 1
1.25 7

c/w
==

1.00
0.75 [}
y
0.50 /
0.25

o] 2.5 50 7.5 10.0 12.5 15.0 17.5 20.0 22,5 25.0
A=S/NW

Fig. 2 — The channel capacity C vs the signal-to-noise ratio 4 = S/N,W —
(12) (solid line). (Curves A and B are the approximations to the eapacity C for
large and small values of the signal-to-noise ratio A, respectively — (13) and
(14). Curve Cis W ln (1 + A), the capacity of a channel with bandwidth W and
no restriction on the modulating scheme.
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T, L)
57[1 Io(zm(s))]' (15)

The existence (and uniqueness) of the solution to (15) is established in
Appendix B. A graph of A (£) versus £ is shown in Fig. 3. The function
Cy (%) is then defined as

CCo(e) = I LOE) + (L — DA (16)

A graph of Cy(¢) versus £ is shown in Fig. 4. Our bounds on R(B),
which are obtained in Section IV (and plotted in Fig. 5) are

Co(8) < R(B) = Co(v'B), 7)
where Cy(§) is‘_deﬁned in (1) and

2

y=2(0-=v1-8). (18)

1
B
The lower bound is of the same type as the Gilbert bound for binary
coding, and the upper bound makes use of the Blichfeldt density method.?
Let us remark that the upper and lower bounds of (14) agree when
g = 1, yielding R(8) = 0 for 8 = 1. When g is small it is shown in
Appendix E that

El

1 1 — F — 1
1 ln;ag + &(8) = R(8) =3In - + &:(B), (19)
w2 \\
| \\
\
0 0.25 0.50 0.75 1.0

£

Fig. 3 — The function A(§) vs & — (15).
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¢

Fig. 4 — The function Co(t) vs £ — (16).

where ¢, , &, — 0 as 8 — 0. Thus, for sufficiently small 3, R(B) is within
2In2of 4 In (2/meB).

In terms of the modulation scheme discussed in Section I it is more
revealing to rewrite inequalities (17) in terms of puax the maximum
correlation between pairs of signals. Let Ro(pmax, W, T') = Ro(pmax, T')
be the maximum rate (in nats per second) attainable for the polyphase

Pmax
1.0 0.75 0.50 0.25 0

A
BAN
e \\\

0.5} \\\
0 0.25 0.50 0.75 1.0

B

_ Fig. 5— The upper and lower bounds R (8) vs § and pmax — 1 = 8 — (17).
& (8) lies in the shaded region.
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modulation scheme of Section I with parameters pmax , W, and T. Let
Ro(pmax) = limit Ro(pmax, T'). In the light of comment following (9),
00

Ro(pmax) = RI[(1 — pmax)]. The upper and lower bounds on R,(pmax)
are plotted versus pmax in Fig. 5.

Appendix F contains a comparison of the capabilities of this polyphase
system and another important modulation system.

III. CHANNEL CAPACITY

The signals s;(t), 7 = 1,2, -+, M, are of the form
si(1) = V28 cos (o272 Wt + 2), (kK —1) T St< k—T,
n n (20a)
k= 1!21 e, N,
where n = W1 and
-7 S 2a = k=12 ,n (20b)

Alternately, we may write

s:(t) = za® cos a20Wt + z4® sin a20 W1,

kT (21a)

(k—1)§§t< k=12 ---,n,

'n'" ’
where
za” = /28 cos i, 23 = /28 sin za . (21b)

The noise function z(f) is a sample from a white Gaussian noise
process with one sided spectral density N, (so that the covariance is
R(7) = (No/2)8(r)). The received signal is y ({) = s:(t) + 2(¢), where
s;(t) is one of the M signals. The optimal decoder computes

b= gn f sy (D),

and decodes y(¢) as that s;(t) with largest p;. If y(f) is the received
signal, let y* () be
y*(2) = y® cos a2 Wit + 3® sin a2xWt,

(22a)
Gk-DT<i<® o120 n
n n
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where
kT/n
' = 2W y(t) cos a2x Wt di, (22b)
(k—1)(T/n)
and
kT/n
" = 2W y(t) sin a2x Wt dt. (22¢)
(k—1)(T/n)

We may think of y*(¢) as the projection of () onto the space of allow-
able signals. It follows by direct computation that

1 7 .
b—Tfo s:(Dy*(0)dL,

the correlation of 3*(#) and the ith signal s:(f) , equals p; . Thus, without
loss of generality, we may consider the received signal to be y*(¢). From
(21) and (22), it suffices to consider the noise to be

) = y*t) — s:(t) = " cos a2rWt + 2.7 sin a2 Wt

(23a)
G-1DT<i<®™  po12.
n n

where
7'’ = ?jkm — 2" and 2% = m_(2) - $ik(2), (23b)
k=12 ---,n.

From (23b), (22b), (21b), and (20a) we may write

kT/n
2" = 2wf (y(t) — s:(t)) cos a2a Wt dt
(k—1)(T/n)
kT/n (24)
= 2W z(t) cos a2x Wi di, k=12 ---,n,

(k=1)(T/n)

1) - . . . .
so that z," is a normally distributed random variable with mean zero
and variance

kT/n

E(z"") = 4w?
(k—1)(T/n)

T/m (25)
: f cos a27 Wt (cos a2xW)z(t)z(7) dt dr,
(

k—1)(T/n)

where the over-bar denotes expectation. Since z(¢)z(r) = R(t — 7) =
(N,/2)5(t — 7), the variance of 2™ is N,W. Similarly for z,®.
Further, E (z:"z*) = 0, and

E@,Y ") =0 (4,j=1,2) if k #k.
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Thus, these random variables are independent.

We conclude from the above that our channel is equivalent to the
following time-discrele memoryless channel. Every T'/n = 1/W seconds,
the channel input is a real number Xe[—m,x]. The output is a pair of
numbers ¥, and ¥, given by

Vi=X\4+2,, Yo = Xo + Z (26a)
where
X1 = V28 cos X, X, = /28 sin X, (26b)

and Z, , Z, are independent normally distributed random variables with
mean zero and variance N = N,W. Consequently, known results for
determining capacity may be used.

If an input probability distribution is specified, the mutual informa-
tion of the input and the output is

I(Y1,Ys;X) = H(Y,,Y,) — H(Y1, V2| X), (27)
where H (Y, , ¥;) is the joint uncertainty of ¥, and ¥, and
H(Y,, V| X)

is the conditional uncertainty of ¥, , ¥, given X. The channel capacity
C, in nats per second is

C = Wmax I (Y1, Y, ; X)), (28)

where the maximization is performed over all possible input distribu-
tions. We proceed to find C. -
Say X = z, and let 2, = /28 cos z, x; = 4/28 sin z, then

H(Y;[,Yz]X =$)
(29a)

+W +ﬂ!
= f . dindyag(n — 21, Y2 — 22) In gy — 21,92 — T2),
where
g(z1,2) = L exp [— (2" + 2°)/2N] (29b)
2xN

is the joint probability density of Z; , Z, . After changing the variables
of integration and integrating (29a), we obtain,

H(Y,,Y:| X = z) = In 27eN, (30)
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independent of x. Thus,
H(Y,Y;| X) = In 2xeN, (31)

independent of the input distribution.

Thus, to find C, we must maximize H (Y, ¥2). Say po(z) is the
probability density of the input X, and pi.(y1, y2) the resulting joint
probability density of the output pair (¥:, ¥,). If we characterize the
output pair by polar coordinates (®, ®), then the corresponding den-
sity for ®, ® is

fiz(re) = rpia(r cos ¢, rsin @), rz0, —TZe=m (32)

where 7 is the Jacobian of the transformation. Hence,

+no +w
H( Ylyﬂ) = - _[ 'p12(y1 ) ya) In Pu(m ’ y-a)dyldya
= — f _[ P12(r cos @, r sin )
r=0 T

‘In [pra(r cos ¢, r sin ¢)]r dr de

T | f12(T',IP)
- j; er12(7:¢) ln T dT' d‘P (33)

[

I

- fﬂ“' ‘[_: Fio(r,0) In fra(rye)dr dp
+ f: f_:fm('r,rp) In r dr de

= H(®®) + f filr) In » dr,
0
where H (®, ®) is the joint uncertainty of &, ®, and f; (r) is the marginal
density of ®@. Now
H(®,®) = H(®) + H(@®), (34)

(where H(®), H (®) are the uncertainties of ®, ®, respectively) with
equality if and only if ®, ® are independent, and

H@®) < In 2, (35)
with equality if and only if @ is uniformly distributed on the interval
[—,x]. Hence, from (33), (34), and (35),

H(Y,,Y,) £ H®) 4+ In2r 4 [nfl(r) In r dr. (36)
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We shall now find f; (), the density of ®, and show that it is inde-
pendent of the input density po(z). To begin with, let us say that X = z.
Then the joint density of (¥1, ¥2), given that X = x is

'pu(yl ,szX = z)

(37)

= Q—JrLNBXP{ [(3n — V28 cos x)* + (y2 — /28 sin 2)*]/2N}.

The joint density of ¥1, ¥, or the corresponding joint density of R, ®
is obtained from (37) by averaging over x:

flz("#) = 1‘:012(?‘ COS ¢, T Sin @)

=1 f Do(@) pra(r cos o, 7 sin o | X = x)dx
T 1
= r‘[ po(x)dz 5N
"exp {f ,%, [r cos ¢ — 4/28 cos z)* (38)
+ (rsin ¢ — 4/28 sin m)g]}
— _1 re—(r2+28)f2N ‘[X p (.'13)
2xN L0

-exp (?“\?273 cos (z — go)) dzx

Now, the marginal density for R is obtained by integrating ¢ out of (38)

5 = [ fulro)de

. (39)
—(r24+28) /2N r
_re ! /28 cos (x — ¢)
__W_Td‘p[rda,pn(:r) exp( i )
Interchanging the order of integration, we get
—(r2 +28)/2N rv<
Alr) = E———f 'po(%)dl_[ de exp sz cos (¢ — )
(40)

?‘e—(rﬁ +28) /2N I \/25?_
N '\ N )
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independent of po(z).* We conclude from (40) and (36) that

max H(Y,,Y,) £ — fmfl('r) lnflg‘—r) dr + In 2, (41)
0

po(z) -

where f; (r) is given by (40).
Let us now say that the input distribution is po(z) = 1/2x. Then
from (38)

fralre) = fi(r) %r (42)

so that ®, ® are independent with the marginal density of ®, fa(p) =
1/2x. Thus, in this case, the equalities in (34) and (35) and hence in
(36) hold yielding

av, v = - [ AW g e, @)

so that (41) is satisfied with equality. From (28), (30), (41), and (43),
the channel capacity C is given by

I% = — j;w fi(r) an-FL(TQ dr — In eN. (44)

If we set p = r/A/28S and A = S/N = S/N,W, the “signal-to-noise
ratio”’, we obtain

c * f(p) 24
W=—fuf(p)1n7"dp+ln7, (45a)

where
f(p) = 24p6 " [, (24p). (45b)

Iv. BOUNDS ON R(8)

4.1 Upper Bound on R(8)

We need the following two lemmas:

* We shall make frequent use of the formula
1 T
1@ =5 [,
2 ),

which can be found in Ref. 4, p. 79.
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Lemma 1: Lel gy, g, *+++ , gp be real numbers. Then
N 2
> g’z
k=1
Proof: IFrom the Schwarz inequality

(kZ: 1 -yra)z =< (i 12) (é} g:f) W (47)

(Zge)". (46)

= -

k=1 k=1
Lemma 2: Let {%;}:21™ be a set of m n-veclors from @, with minimum
distance d between pairs of vectors. The distance s given by (11). Let y be
an arbitrary vector in @, , and denote by d; the distance d(x;,y). Then

(&5

2
i
i=1 N

0]

)—4m g%)+2(m)(M—l)%§0. (48)

Proof: Let us define a mapping of @, into K., , Euclidean 2n-space, as

follows. If x = (21, 22, -+, ¥,) & @, , then the corresponding 2n-vector
. !
isx = (w1, 01, Us, V2, -~ , U, Un) Where
U, = COS Ty, v = sin m, k=12 -,n (49)
. - !
Then letting x;, x: ¢ @,, and letting x; = (un, vu, e, 12, ---,
’ .
Ui , V1n) AN X2 = (Usy , V21, sz, V22, =+ + , Usza , U2,) be the corresponding

members of K, , the distance between x; and x, is

n

d2(x1 y xZ) = E [2 Sil]. (_x]f;_xzk)}E

-]

(50)

n

2 {(um — uw)® + (ou — v2)’}.

k=1

To see this we need only observe that if the xy, 20e , bk = 1,2, --- ,n
are considered as arc lengths on a unit circle with center at the origin,
then (uy, o) and (ua , vex) are the Cartesian coordinates of zi:, and
i , Tespectively, (see Fig. 6). The quantity 2 sin [(zyw — 22)/2] is then
the Euclidean distance between (uy , v1:) and (ugs , var). Hence, d (x1 ,x2)
is the Euclidean distance between x;" and x,". This also provides a justi-
fication for calling d (x,y) a metric. We are now in a position to prove
the lemma.

Without loss of generality we may takey = (0, 0, ---,0) so that
Y = (1,0,1,0,-+,1,0). Let X' = (tix, vix, iz, iz, *** , Uin , Vin)
then

n

d' = di(x,y) = 2 {(1 — ua)' + v},

k=1
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Fig. 6 — Proof of Lemma 2.

Since d (x;, x;) = d,

( ) < 2 d(xi,x) = ZZ[(uk—uﬂ.) + (va — v)’}

i<y i<j k=

ElLe ()

i=1 i=1

RN

rle(za-w)

- (m -2 u,-k) +m 2 v

1

()]

=m .E ; 1 — ua)® + va’)

(51)
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2
- Zk: (Z (1-— u:’k))
2
(T
2
= mzdiz"" (E (1— u.-k)).

2

T

1 i

From Lemma 1, (51) becomes

(7;) d=m Z.: di’ — :—b (i i (1 — uik)Y- (52)

k=1 i=1

. 2 2
Now, since uy + v = 1, we have

di’

Zr:: (1 — ua)® + va’} = ; 1 — 2ug + ug’ + va’}
(53)
Substituting (53) into (52) yields
n 2
1 4n \iZ1

The lemma follows on multiplying both sides of (54) by 4/n.

Dertwation of the Bound:
If z ¢ @, let us define the “‘sphere” S(z,p) as
S(z,p) = {xe@,: d(xz) < p}. (65)

Since the distance d defined on @, is a metrie, it follows that if a code
{x:iz1™ has minimum distance (as defined by d), then the spheres
S(x:,d/2) are disjoint.

Consider the maximum size n-dimensional code with minimum dis-
tance d and M (n,d) code words {x;}:—,". Consider the spheres S (x; , vd)
about each code word, where

(1—-41-8) (56a)

1

8
B = d’/2n. (56b)
Note that since ¥y > 2(0 = 8 < 1),* these spheres are not necessarily

* This follows immediately when we write ¥2 = 1/1 + (1 — g)', so that v in-
creases from 1/4/2 to 1 as 8 increases from 0 to 1.
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disjoint. To each point in the sphere at distance r from the center assign
a density ¢(r) = v°d® — +*. Then the “mass” of each sphere is

w=[ o=, (57)
r<yd

where the integration in (57) is performed with respect to the Euclidean
measure, assigned to @, in the obvious way.

In general, a vector y ¢ @, will belong to the spheres-about m code
words say X, X2, - * , Xm . We assign to y, a density equal to the sum
of the densities contributed by each sphere, i.e.,

oy = 2 old)) = my'd — 2 d, (58)
i=1
where d; = d(y,x;). If y belongs to no sphere o; = 0. Thus, we have

mass of @, = f oy dV = M(nd) - p. (59)

Yedn

We will bound M (n,d) by finding an upper bound on the mass of @, .
Letting s = sy = ay/n, (58) becomes

%diz = Mrjd) — % = 2my’8 — s, (60)
where 8 = d°/2n. Substituting (60) into (48) we get
(2my’8 — s) —4m(2my’8 —s) +4(m) (m — 1) =<0.  (61)
Rewriting (61)
0 <5 <mid4B — 2mB(2y'8 — 4v" + 2) — 4s(1 — +B)}. (62)

With v chosen by (56), 2y'8 — 4" + 2 = 0and 1 — 48 > 0, so that
(62) can only be satisfied if

s=2 58/ -8 £ K@. (63)
Hence, from (63) and (59) we have
M(nd) = 1 f o, dV < m (Volume of @,). (64)
H Yan ]

Now from (57)

= f , 2(~ﬁd’ — )dV > dV = V. (/¥ — 1) (65)
r<vyd/

TN/ y2a2—1
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where V, (r) is the volume of the sphere in @, S(z,r), which is inde-
pendent of z (due to the symmetry of @,). Thus, (64) becomes

_ nK(B)(27)»
M(n, ‘\/2,3?1) = V,;(\/Fd?—_-——l)

The asymptotic rate B (8) satisfies

R(B) = limit 1 In M(n, v/28n)

.1 nK(B)(2m)" A -
S lim o dn o — 1) fw(B).

(66)

Applying the result of Appendix C we have R(8) < Co(y’8) establishing
the upper bound.

4.2 Lower Bound on R (B)

Again let us consider a maximum size n-dimensional code with mini-
mum distance d and M (n,d) code words. About each of the code words
x(71=1,2,---, M) consider the spheres S, (x;,d). We claim that

the union of these spheres U S, (x;,d) covers the entire space @, .
i=1

This follows from the fact that if %, ¢ @, is in no S,(x:,d), then
d(xe,x:) =2 d,1=1,2,---, M, so that x, may be added to the code
destroying the maximality. If V,(d) is the volume of S, (x:,d) (inde-
pendent of x;), then

M-V,(@d) = volume of @, = (27)". (67)

Thus, our lower bound is

M(nd) = Vid) (68)
The asymptotic rate R (8) satisfies
R(B) = limit - lnM(n V/28n) = l].nut ln (27)" —R,,(,B). (69)

n—+0 n-—>x n (\/ n)

Again applying the result of Appendix C, we have R(8) = C,(8) estab-
lishing the lower bound.
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APPENDIX A

Asymplotic Estimales of the Channel Capacily
The channel capacity C is given by (12) as
G [l 42 (70)
W 0 p e
where
(o) = 24p67 M1 1, (240). (71)

In this appendix we obtain estimates of C for large and small signal-to-
noise ratio A.

A.l Large A: We show here that

%=11ﬁﬂ+am) (72)

where £(4) — 0 as A — «. To prove this we will show that for large
A nearly all the contribution to the integral in (70) is for p in the neigh-
borhood of unity. Part (¢) is an estimate of this contribution. Part

(77) shows that the remaining contribution vanishes as A — =,
(i) We shall show that if § = 4 _*,

A 144
T(4) = —| )1nﬂp) %mj{, (73)
1—
as A — o,
Using the asymptotic formula for I, (x) for large argument®
1()=—5=—[1+0(1] (74)
ol ‘\/ 27x z/ |’

we obtain from (71) (for large A)

f(p) = 1/;}_ ple4 0" [1 +0 (Zl)] 1—-6=p=1+3s (75)

Substituting into (73) yields (after a change of variable)

T(A) = [—1 40 (Zl)] (B, + B: + B (76)

* Ref. 5, p. 86.
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s _ —
B=[ /200t ng/Aeta an
L5 T ™

.
B = [ 1/4 (14 2) I (1+2) de (76b)
—& ™

s
B; = »[-a ,‘/g (1 + )0 (112) dz. (76¢)

Noting that the range of integration is —é = 2 = § we can write

B =K, [ 1/ At 1114/ e dy (77a)

Bg = Kgf /‘/1—:l B_AIZ dl‘ é K2 (77b)

1{30( ) 1/ g < K0 (}I) (77¢)

where (1 — )} = Ky, Ks = (1 +8)4 | Ku| £ (14 8) In (1 +5)' and

= 1/A‘. 1‘10m (77b) and (77¢) we see immediately that B, By —
0 as A — o so that we need consider only B, . From (77a) (letting y =
/24z) and setting 8§ = A, we have

A [VEar 1 - K1 Vit ’f oyt
_ 1 ¥ ‘ " ’
B, =41K:In l Vi V2 e dy — id Vo e dy. (78)

Since both integrals in (78) and K, tend to unity as A — =, we have
B, — L In (A/me) as A — . Applying these results to (76) yields

. . 1 A
Llill T(A) = Ellalo (-——1 + 0 (f—i)) (% ln._;e + B, + Ba> =1 lnj—le

which is (73).
(73) Here we shall show that with § = A7 asin (7) above,

aa) & [

To do this we write

n(4) = f:f(p) lnf(p) dp + Hsf( ) In f(p)d

where

1—;f(p) lnf('Tp) dp—0, as A — =, (79)
146

A1
IVIIA

(80)
+f f(P) hl'ﬂ—pldpzcl+02+cs,
146 P
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where a(0 < a < %) is arbitrary. We will show that for arbitrary £ >
0, we can choose A sufficiently large so that n(4) < &. Let us consider
each of the integrals (', , Cs and ('3 of (80) in turn,

Cy:For( = p = o we may write
&’? < 24 *1y(240), (81)
p

since Ip(x) is an increasing funetion of x. Making use of the asymptotic
formula for Iy(z) (74) we obtain from (81)

F(—p)} < ie_’”bm (1 + 0(1—)) —0, as A — =,
p amT A

since & < 1. Thus, with A sufficiently large,

o) g 50| 2 g2,z
2] - .J 3 - -
and
* 2¢ £
|Ci ] = \ 32pdp 3 (82)

(s : Again using the asymptotic formula for I(z) (74) we may write,
fora = p=1-—4,

ﬁpﬂ _ %‘;eﬁﬂlfﬂ)z(l + 0(%)) < 1/% e (1 + O(IZ))

. (83)
=/'/£ "A!(l-i—O( ))—>0 as A — o,
T A
Thus, with A sufficiently large
]:(L) lnf(_pl> é %S,
P p
from which
1-3
AEE| pdp < 5. (84)

('3 : As above, we may write for p = 1 4 4,

f(_:) = Vf:pe‘“”‘“z (1 +0 (12)) ) (85)

Substituting (85) into the defining integral for C3 (80), and making
change of variable y = (p — 1), we obtain
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o= [/ 20+ e g/t

+ f 4 A4+ ye* (1 +y) dy
§ ™

- _ (86)
+ f 1/4 (1 + y)% ¢ In e dy
5 T
i )
-E—_I;/‘/W(l»{-y)e ln(l—I—O(AI di
Since fory = 8, (1 + y)' < 2" and | (1 + y)'In (1 + y) e,
we have from (86)
ICy] < f 4/é ¢ v [% md 4240 (L)] dy
5 T T A
(87)

+f 1/4 ¢TI Ayt dy.
& ™

Using the well known a,symptotw formula for the cumulative error
function, and the fact that 6 = A7} it is readily shown that for large A,

= E —(A—1)y? —~ i —at
and
” Z —(A—1)y? 2 ~ A: —at
Equations (88a and b) tell us that with A sufficiently large |Cs| =
e/3.

Taking the above results together yields
[ | = |C|+|Ca| +|Ca| £ &,

with A sufficiently large.
(#47) The final step is to substitute (73) and (79) into (70) and ob-
tain
C e 24 4
W—»%ln%Jr In== = 4In="4, as A,
which is what is to be proved, (72).
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A.2 Small A: We show here that

C
— = A(1 +0(4
7 (1 4 0(4)), (89)
as A — 0.

Substituting (71) into (70) yields, after a bit of straightforward
manipulation,
C 2 —a [T 5 —ap
p=A-14 24% "fo pe " Io(2pA)dp

(90)

— 24¢ 74 fn pe " Io(2pA4) InIy(2pA )dp.

If we change the variable of integration to x = 2pA, we obtain from
(90)

C _ E—A fw 3 —z?/44
W—A—+@Um1¢,($)e dx
4 (91)
_ B_ o\ —x2/44 .
54 o xly(a)e In Iy(z)dz.
Now the first integral of (90) is known™ and is
f 2 To(2)e ™ de = 84%(1 + A)e?, (92)
0
so that
¢ =24 — B—A fmxl ()™ In Io(2)de = 24 — £D (93)
W 24 J, 7° o 24

We can estimate the integral D for small A, by noting that most of the
contribution is for small x. Making use of the asymptotic formula for
Io(x), for small z

I(z) = 1 + T + 0("), (94)
we have

D= fo i [z— + 0(;;5)]8—"“‘ da. (95)

* Ref. 6, p. 198, (4a).
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Since
oe 3
xr —z2/44 _ 2
j; 7° dr = 2A°,
and
[ e de = 644°r(3) = 0(4Y),
0
we have

D =24*(1 4+ 0(A4)). (96)
From (96) and (93) we get

% — 24 — Ac*(1 + 0(4)) = A(1 + 0(4))

which is what was to be proved (89).
APPENDIX B

The Function ) (£)
In this appendix, we show that for ¢ satisfying
0<E=1, (97)

there exists a unique A (¢) which satisfies

_ . L(A(g)
£=1 Lo®) (98)
If we define the funection £ (A\) by
. _ L) w
tN) =1 LN’ 0=A< », (99)

it will suffice to show that
(z) £(\) is strictly monotone decreasing,
(@) £(0) =1,
(i11) Lirtlf(h) = 0.
If (i), (#1), and (4i7) are true, £(\) is a one-to-one mapping of the half
line [0, ) onto the interval (0,1].
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(i) Making use of the fact that Iy (\) = I,(A) we can write
dt(\) _ —LVL' (M) + L'V

P (To(\)® : (100)
Since®
o) = = [Téed,
™ Jo
we have
LN = I/(\) = —f cos ge" ¢ dp,
and
IL'A) = lf cos” e ¢ do.
m Yo
Thus (100) becomes
dt(\)
d\

’ " o . : (101)
"‘lf e““”’dvpf cos“tpe“"”dw-%i(f coswe"°°"‘°d¢)
= 7{2 0 0 11,2 o .
[o(M)]?

By the Schwarz inequality

T 2 T T
(f cos ¢ﬂk €08 @ d(P) < (f (3052 ‘Pek o8 ¢ d‘P)(f e?\ cos ¢ d‘P) ,
0 0 0

(the striet inequality holding). Hence dil(:) < 0 and (7) follows.
.. _,_nL) _ . _0_
(#2) £(0) =1 7(0) = 1-7=1

(711) We make use of the asymptotic formula for I,(z) and I,(z)

for large 7
W = o= [1+ g +0(5)]

e* 3 1
1 = Za 1=+ o ()]

Substitution of (102) into (99) yields (777) immediately.

* Ref. 4, p. 76.
t Ref. 4, p. 86.

(102)
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Let us remark here that since Ip(z) and 7, (z) are even functions of z,
if A(£) = @ = 0 is the unique nonnegative solution to (98), then A (¢) =
—a is the unique nonpositive solution to (98).

APPENDIX C

Completion of Asymptotic Estimates of R(B)

We have defined V, (r) as the volume of the sphere S,(z,r) = {x ¢
@, : d(x,z) < r}. Due to the symmetry of @, , V. (r) is independent of
z. Thus, we shall take V, (r) as the volume of

n 2
S(0r) = {x = (21,22, "+ , &) £Qn: d(0x) = kZ: (2 sin ‘%“) < 1'2} .
=1
In this appendix, we evaluate
lim 1 (2ar)"
_ —_— A
" n In Va(+/an) 2.

We shall find F. by solving an equivalent probability problem: Let
X1, X,, - - be a sequence of independent random variables uniformly
distributed on the interval [—,x]. Let

n 2
Y, = E(zsin%‘) .

k=1

(103)

It is clear that

21 _ Vﬂ('r)
PI'[Y"<T] W’ (104)
hence,
—lim(1/n) In Pr[¥, < an] = E,. (105)

We now make use of

Chernoff’s Theorem:" Let Zy, Z. , - - - be a sequence of independent identi-
cally distributed random variables with moment generating function Ele”*']
= M(t). Let

P, = Pr[ZZ; = an],
k=1
where a = K (Z:). Then

1.121, 1 In P, = Inm,
n
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where m = min e M (¢).
t<0
If we set

. ¢
— | 2.gin 2k
Zy [ sin ] ,
where X} is the above random variable, then
Vo= 2 Z.
k=1

Thus, from (105) and Chernoff’s Theorem, E, = —In m.
The moment generating function of Z, is

M(t) = Ele®*) = 2%_ [r' exp {(2 sin %)2 t} dx

L e (106)
- e(2£—2£ coB 1) d:z: — 82‘]—9(215).

27

Hence,
m = min eI, (2t). (107)
t<0
To find the minimum, set the derivative of (107) equal to zero:
0 = e“ (2 — a)ly(2t) + 21, (21)],
so that the ¢ which minimizes (107) satisfies
a _ o ©i(21)

The solution to (108), fort = 0,is 2t = —A(a/2), where A (¢) is defined
by (12). (See the remark at the conclusion of Appendix B.) Hence,

from (107)
o[ (PO

v )+ -0
()

where Cy(¢) is defined by (16).

so that

=
I

(110)
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Applying (11.0) to (66) yields Ry (8) = Co(y’8), and applying (110)
to (69) yields R, (8) = Co(B).

APPENDIX D

Exponential Error Bounds

It is known that for any time-discrete (amplitude eontmuous)
memoryless channel the smallest attmna.b]e error probability P,*(n,R)
for an n-dimensional code with ¢"* code words may be written

PXn,R) = exp [—nE(R) + o(n)], (111)

where E(R) > 0when R < C (the channel capacity in nats per symbol ).

Although E(R) is not always known exactly it can be estimated by
upper and lower bounds. The best known lower bound on E (R) is
given in Gallager (Ref. 8, Theorem 10) and the best known upper bound
on E(R) by Shannon, Gallager, and Berlekamp.’

Let P(y|z) be the channel transition probability density. We assume
that any n-sequence of input symbols is an allowable channel input
—i.e., no “input constraint”. The bounds of Refs. 8 and 9 can then be
stated as follows:

For any p = 0 and input probability density f(z), let us define

E(P!f) = Eo(P;f(T)) - PRO(P’f(I))r (112)

where
14-p
Epi() = —in [ ay[ [[aestrptyer ] 1z
v z
and
d
Ro(p,f(z)) = ‘%Eu(ﬂ,f(.’l:)). (112b)
With p = 0 specified let f,(z) be that input density which maximizes
E(p.f(x)). It is shown in Ref. 8 that with p fixed f,(x) is the unique
density which satisfies
fv‘dy Ply|2)""*a,r(y) 2 fa,,(y)”"dq, allz,  (113)
v v
with equality if fp(xz) # 0 (all z) where

a(@) = [ 1,@PQy| )" (113a)
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It can be shown that with p = 0, fo(z) is that input density which
achieves capacity C, and R,(0,fy) = C. In most channels of interest
Ro(p.f,) decreases from C to 0 as p increases from 0 to <.
We define the rate R parametrically in terms of p by
R = R(P) = Rn(P)fp(x))- (114)
Then for 0 £ p < 1, which corresponds to R,(1,fi(z)) = B = C, the
exponent is known exactly:
E(R) = E(pf,) = Eo(p.f,) — oR (115)

where E, E,, and f, are defined by (112). For p = 1, which corresponds
to R £ R,(1,f1), the (“sphere-packing”), upper bound on E(R) is

ER) < Eo(pf,), (116)
and the (“random-coding”) lower bound is for 0 = B = R,(L,f;)
E(R) = Ey(1f:) — R. (117)

This estimate of K (R) may be improved for low rates R. It is shown
in Ref. 9 that if E* (R) is an upper bound on E (R) which is sharper than
the sphere-packing bound (116) for low rates R (such a bound can al-
ways be found ), and if E*(R) and the sphere-packing bound are plotted
versus R, then their common tangent is also an upper bound on E(R).

The lower bound may be sharpened for low rates R as follows. For
p = 1, and input density g(z), define

E.(p,9) = Eo:(p,g) — pRoz(0,9), (118)
where
Eo:(p,g)
= —otn [ g@)is [ o [ [ P(ym*P(yw)*dy]”' (118a)
and
Ro:(p,g) = %Eoz(p,g). (118b)

Then for any fixed g (z) and with R again given parametrically in terms
of p by

R = RW(P;Q)) (119)
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the (“expurgated’) lower bound is
E(R) z E:(p,9)- (120)

We shall now apply these results to our channel using the time-dis-
crete model defined before and after (26). Here the input is a number
X ¢ [—m,7], and the output is a pair of real numbers (¥,, ¥,). If X =
z is the input, then the conditional transition probability density is the
two-dimensional

P(yr, 2| z)

21N exp {—[(3n — V28 cos 2)* + (y. — V/28 sin z)*)/2N}
or in polar coordinates

P(re|z) = rP(r cos ¢, 7 sin ¢ | z)

_ T —sIN N . 28’ _
=5w¢ ¢ exp( T cos (¢ :c)).

It may be verified by substitution into (113), that the input density
f(z) = 1/2x maximizes E (p,f(z)) for all p = 0. Further a direct sub-
stitution of (121) into (112a) yields after a straightforward computa-
tion

(121)

_ o ) A 1+p
Eo(p,fo) = —In 24e ‘l_/; ve " [Io (lz—l—up)] dv, (122)

where A = S/N, the signal-to-noise ratio. The rate, R, can be gotten by
differentiating (122) with respect to p. This yields

R(p) = aiEo(p,f,)
p
® 2 24 \'* 204
- [_ f ve 1.,(1 +,,) 1“I"(l +p)d”
24 o —ae2 24v \° 240 /
g [ () 1 () )

“ —Av? ZAU Ite
fo ve In (Tr) dv.

After some manipulation one ean show that R(p) | om0 = C, the channel
capacity as given by (12). The estimate of the exponent E(R) of (115),
(116), and (117) is plotted versus R in Fig. 7 for signal-to-noise ratio
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Fig. 7 — Upper and lower bounds on the error exponent & (R) vs. R for signal-
to-noise ratios of (a) A = 2, (b) A = 20. (Curve A is the exponent E () in the
range where it is known exactly (115). Curve B is the ‘‘sphere-packing’ upper
bound on E (&) (116). Curve C is the “‘random coding” lower bound on E (R)

~(117). Curve D is £* (R), the low rate upper bound (133). Curve E is the common
tangent to £* () and the sphere-packing bound. E (R) lies in the shaded region,

A = 2,20. The sphere-packing upper bound and the random-coding
lower bound diverge for small rates . We shall improve this situation
by computing the low-rate expurgated lower bound on E (R) (120).
"If we again choose the input density to be g(z) = 1/27, — 7 Sz = =
we have from (121)
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LP(ylx)*P(ylw’)*dy = fu er—;‘Wexp (—8/N. — #/2N)

_[: exp (— ILV /'/g [cos (¢ — x) + cos (¢ — ac')]) de

[ —Q/N —
—‘/; dr 2wNexp( S/N — r/2N)

.‘[* exp (— %Br cos (¢ — a)) de

= ﬂ(gr_S/N_) fow rexp (—r"/2N) Lo (%S Bf‘) dr,

where

cos T + cos x’

B=+/T+cos({z—2) and a= tan‘lliw].
This integral is tabulated [Ref. 6, p. 198, # 5] so that we have
[ P10y e dy = exp (—(S/2N)1 = cos (z — )], (124)
v
Substituting (124) into (118a) yields
"dx [Tdx
Fulpg) = —otn [ 5 [ 52
.exp [—8/2Np — (8/2Np) cos (z — a')]
" dx S
—pln [T 5, CXP (—8/2Np)Iy (m)

= —pInlexp (—A4/20)10(4/20)], (p2 1)
where A = S/N. The rate R is given parametrically in terms of p by

(125)

BEUI — li Il(A/2P) _ 1
an (g) = 5 T(a 2y — 0 o(A/20) (126)

(p = 1).

Let us note that as p — « R(p) — 0. The expurgated bound is given
by (120), (125), and (126). It is easy to show that as p — =, (R—0)
the lower bound E,(p,g) — A/2.

We shall now obtain a sharper upper bound for low rates E*(R)
which will in fact have E*(0) = A/2, establishing that E(0) = A/2.

R =R =
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Let us denote by p, (M), the smallest maximum (normalized) correla-
tion obtainable for an n-dimensional polyphase code with M code words.
Paralleling arguments of Shannon (Ref. 10, pp. 647-648) it is not hard
to show that the error probability for a code with M = exp (nR) code
words satisfies

P, =z iPr [error in a code with two code words with energy ST
and correlation p, (M /2) in white Gaussian noise with
spectral density N,).

The right member of this inequality is known [Ref. 11, (38)], and is

equal to
wl— /5T( — (M )
(- /% (- (2))) (127)
~where
1 ¥ —u2/2
®(x) = \/"_2—_[ e du
W J—o

is the cumulative error function.

We now bound E (R) by finding a bound on p, (M/2). Since for large
M, a code with M /2 code words has about the same rate as one with M/
code words, it will suffice to bound p,(M). With M = exp (nR) and
n large, we have from (17) (since 8 = (1 — p))

R = Co(1 — V/pa (). (128)
If we define B parametrically by

R=R()=Coe), 0=¢=1, (129)
we have from (129)
o 21— pa(M) (130)
or
1 — pu(M)] 02— o). (131)

Substituting (131) into (127) yields

@ (— 1/%F (2 — o)). (132)

Making use of the well-known Eymptotic formula for the cumulative
error function ®(—zx) &~ (1/4/2xx) exp (—2*/2) (large z), we obtain

P,

IIA
e



556 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1966

from (132) for large T (and therefore large n = WT'), the upper bound
on the error exponent

ER) = —Im P, <402—0) 2 ExR)  (133)

n-»oo 1

4
2

where A = S/N,W = S/N. When R = 0,0 = 1, so that E(0) = A/2.
The expurgated bound and the bound of (133) are plotted in Fig. 7.
The upper bound is, of course, sharpened by drawing the common tan-
gent of E*(R) and the sphere-packing bound.

APPENDIX E

Asymptotic Estimates of Cy(£)
In this appendix we obtain estimates of Cy(£) as £ = 0 and £ — 1.
E.1 Small £&: We show here that
Co(e) = $In % + axl®) (134)

where £,(() - 0ast — .

From proposition (7¢7) in Appendix C, we know that as £ — 0,
A(E) — . Again making use of the asymptotic formula for Iy(z) and
I (z) for large x (102), we obtain by substitution into (15),

52"21?([1 +0(§)]. (135)

1 1
A =2—£+0(1) = Q—E-I-Fc-l—e(f), (136)

or

where £(¢) — 0 as £ — 0 and k is a constant. Substitution of (136) into
(16), and another application of the asymptotic formula for I,(z) yields
(134).

E.2 Large £: We show here that
Co(g) = (1 — ©F1 + 001 — &N (137)

as £ — 1. As above our first task is to estimate A (¢) when £ is near unity
or A(£) is near zero. We need the asymptotic formulas for Iy(z) and
I, (x) for z near zero (Ref. 4, p. 77):
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Mw:l+§+mﬁ,
] (138)
Liz) =2+ % 400
' 2 16 ’
Substituting (138) into (15) yields
_ Il(h) _ _ h 3
£E= ﬁm*l §+0()\)- (139)
Setting £ = 1 — ¢ we have,
=2+ 000, (140)

We show that
AN=2f4+0(8) =201 —£) +0((1 — &)*). (141)

Equation (141) follows on setting @ = X — 2¢ and observing [from
(140)] that

0(x%) :
[g 4 o(m)s:l

as A — 0 or £ — 0 (¢ — 1). Substitution of (141) into (16) and another
application of the asymptotic formula for Ip(x), yields (137).

— k,

X
?

APPENDIX F

Comparison of Modulation Schemes

In this appendix, we shall describe an amplitude modulation scheme
and compare its performance with that of the phase modulation scheme
studied in this paper.

Referring to (21a) we see that our phase modulated signal may be
written (during the kth subinterval)

si(l) = v sin a22Wt + 215 cos a2x W, (142)
where from (21b)
e P+ %P2 =28, k=12, ) n (143)

Consider an amplitude modulation (AM) scheme in which the signals
#(f) are given by (142) but with (143) replaced by the “mean square”
constraint
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> {[eaP + [ea®]} < 280 = 2WST. (144)
k=1

The resulting signals s;(¢) are then amplitude modulated signals with
carrier frequency a2 W radians per second and average power

kT /n

T n
L swa= 23 [ sioass. (145)

T Jo T i=t Jg=1)7/n
Thus, in this case the signals are constrained to have average power not
exceeding S. It is clear that, as for the phase modulation, the signals of
the ath and Sth users of the channel are orthogonal so that we may again
take the bandwidth (i.e., difference in carrier frequencies of adjacent
users) to be W eps. Further, it follows from the analysis in Section III
that this channel is mathematically equivalent to the time-discrete
channel Gaussian channel considered by Shannon.'®® This channel
accepts real numbers at a rate of 2W per second and adds to each num-
ber an independent Gaussian variate with mean zero and variance NoW.
Messages are encoded in blocks (vectors) of 2WT real numbers (which
take T seconds to transmit), each 2WT-vector having the sum of the
squares of the coordinates not exceeding 2WST. Shannon has found the
capacity of this channel to be (in nats per second)

S
N W

where A = S/NoW, the signal to noise ratio. Equation (146) is plotted
in Fig. 2 so that it may be compared to the capacity of the polyphase
system. Note that for small 4, In (1 + A) ~ A so that from (14) the

Wln(1+ )=W111(1+A), (146)

1.2

T

04 ~

\\ Cp Ca
o ——— J
o 0.2 04 06 08 10 1.2
R/W
Fig. 8 — Lower bound on the exponents E,(R) (curve A) and E,(R) curve B).C,
and C, are the capacities of the polyphase and AM systems, respectively. The
signal-to-noise ratio A=2.
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capacities of this AM scheme and the polyphase scheme are nearly the
same.

Further, letting P, *(T,R) and P..*(T,R) be the smallest attainable
error probability for a code with parameter T and rate R nats per sec. for
the polyphase and AM systems, respectively, we can write

Pop*= exp [-TE,(R) + 0(T)]
P.* = exp [—TE.(R) + 0(T)].
The exponent £,(R) is estimated in Appendix D and may be written
E,(R) = WE(R/W),

where E(R) is defined by (111). The exponent FE,(R) is estimated in
Refs. 10, 8, 9, 13. The exponents are compared in Fig. 8 for A = 2 by
plotting their known lower bounds. It is also possible to show that
E.(0) = E,(0) = AW/2 for all A.
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