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A class of binary block codes capable of simultaneous correction of addi-
live errors and synchronizalion errors is presented. This class of codes con-
sists of coset codes of binary cyclic or shortened cyclic codes, and retains the
implementation advantages of binary cyclic codes. In most cases, the re-
dundancy required lo provide additive-error correction s sufficient to give
synchronization-error correction so that no additional redundant bits are re-
quired.

Synthesis procedures to construct such codes are also presenled, along
with an upper bound on the number of synchronization errors which can
be corrected by codes in this class.

I. INTRODUCTION

In serial-type data transmission systems, alpha-numeric characters
are ordinarily represented by groups of binary symbols. To get mean-
ingful information transfer, it is necessary at the receiver to correctly
partition the incoming bit sequence, i.e., to establish and maintain
“Character Timing”. It is well known that channel noise not only pro-
duces additive errors but also can cause timing errors; consequently,
methods to correct timing errors have been suggested by many authors,
Usually these methods require special coding of the messages, as in
comma-free codes,"**** or the insertion of synchronization sequences
between blocks of messages.’®

A similar timing problem exists in systems where error control is
employed; the problem is transformed from character timing to word
synchronization, or, equivalently, the ability to distinguish information
bits from check bits. Codes that protect word synchronization as well

* This is a part of the Ph.D. dissertation submitted by the author to the De-
partment of Electrical Engineering, Princeton University, Princeton, N. J
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as correct additive errors have been investigated. Sellers’ has proposed
a scheme where a burst-error-correcting code interlaced with additional
check bits is used to give limited protection against synchronization
loss, or provide burst-error correction when synchronization is main-
tained. Stiffler® has derived a necessary and sufficient condition for the
existence of coset codes such that the sequences produced by slipping
the word framing by » bits will not be code words. Such coset codes are
useful for systems where coding is used for error detection only.

In order to utilize such a coset code for both additive-error correction
and synchronization-error detection it is necessary that synchronization
errors not result in decodable sequences. A condition sufficient for this
has been obtained by Levy.” However, a more useful result would be a
condition which would enable correction of both types of errors.

In this paper, a technique for obtaining codes capable of correcting
synchronization errors as well as additive errors is presented. Further-
more, it is shown that in many cases correction of synchronization errors
is possible even in the presence of additive noise. Generally, the scheme
requires no additional check bits and the implementation is simple.

In addition to these fundamental results, a set of coset codes, optimal
with respect to synchronization error detecting ability is obtained; this
represents an improvement of Levy’s results.’

1.1 Definitions and Preliminaries

To correct word-syne loss for an error-correcting code there are two
conditions which must be met in order not to reduce the normal error-
correcting capability of the code. The first condition is that an error
pattern caused by sync loss must not be in any of the cosets which the
code utilizes for correction of additive errors. This will ensure that the
loss of syne will not be interpreted by the decoder as additive noise, and
viee versa. The second condition is that the set of error patterns caused
by misframing in one direction must be disjoint from the set of error
patterns caused by misframing in the other direction. If the second con-
dition is met, one can proceed to correct the word framing error itera-
tively. For the detection of syne loss, the first condition is necessary and
sufficient, while for the correction of sync loss, the second condition must
be satisfied. If the code is used for detection only, the first condition re-
duces to the requirement that the overlapping of any two code words
should not be another code word, so that syne errors can always be de-
tected as an erroneous word, although one would not be able to dis-
tinguish sync loss from additive errors.
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be code words, not necessarily distinct, then:

Definition 1: A synchronization bit loss (or bit loss) of r bits in word
framing is said to occur if the receiver bit counter is » bits behind what
it should be. That is to say, if the sequence a;, -++ , @, , by, -+ , b, is
framed by the receiver as @,—r41, - , @by, -+ , bay where r < [n/2]
and the message is taken in such a way that b, is the first bit of the se-
quence to arrive at the receiver.

Definition 2: A synchronization bit gain (or bit gain) of r bits in word
framing is said to occur if the receiver bit counter counts r bits more

than it should. Thus, a;, -+, a,, by, --- , b, is framed by the receiver

A8 Qryp1, *** 5 Quby, + -+, b, where r £ [n/2].

Definition  3: If (@u—iga, =+, b1, --- ,bui) and  (@ip@iys, - -+,

a,nbs, - -+, b;) are not code words for every pair, A, B and all 7,
0<i=m,

then the code is said to have comma-free freedom r.

Definition 4: A correctable coset of a code is defined as a coset whose
leader is one of the error patterns the decoder corrects.

Definition 5: If the sequences a; @iy, ++, @ubiba, -+, by and a,_;yq ,

-, @uby, -+, b,_; do not belong to any of the correctable cosets of
the code for every pair A, B and all 7, 0 < 7 £ r, then the code is said
to have syne-detection capability r.

Definition 6: A code is said to have syne-recovery capability r if the
code has sync-detection capability ¢ = r and if the cosets containing
@it1, *-* , Guby, -+, b; are disjoint from the cosets containing ¢,y ,

cyCuldy, - dujforall 0 < 7,5 £ r and for every set of A, B, C,
D of the code.

Definition 7: A code is said to have guaranteed noise tolerance of (k,r)
bits, if the code is guaranteed to correct r bits of syne slippage with &
or fewer additional bit errors in the received block.
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Definition 8: A code is said to have expected noise tolerance of E (r)
bits, if with a probability of at least 3, the code can correct r bits of sync
slippage with E (r) or fewer additional bit errors in the received block.

In the subsequent discussion all the error-correcting codes are as-
sumed to correct random errors.

1.2 Summary of the Results

Consider a binary eyclic code which corrects { = 2r + 1 errors, r > 0.
If such a code is shortened by 2r + 1 bits or more, it is shown in Section
1I that the code can be made to have sync-recovery capability r with
expected noise tolerance of £ (8) bits when a slippage of 8 bits occurs

28
B =273 (1—9) (1.2_‘31), 0<B<r

without added redundancy. A similar technique is developed for codes
which correct more than one error. It is shown that by adding 2r zeros
to each code word and shortening the code by 2r 4 1 bits or more that
the code can be made to have syne-recovery capability of r bits.

A scheme which is applicable to a single error-correcting code is also
developed. Tt is shown that for any error-correcting code without an
even-parity check it is possible to have sync-recovery capability of one
bit if two information bits of the code are replaced by two zeros. In
Section III, techniques are developed for binary cyclic codes which are
not shortened. A necessary and sufficient condition is derived for the
existence of a coset code having specified sync-correcting ability. It is
also shown that a cyelic code which corrects ¢ errors and has minimum
distance d,, can be made to have sync-recovery capability

r < dm— 2t — 2

without additional redundancy and an optimal set of codes that assures
r=dm — 2t — 2is given.

For cyelic codes with some special properties, it is shown that a syn-
thesis procedure can be used to construct coset codes of the given code
so that one bit out-of-sync can always be corrected. This procedure
applies to almost all of the Bose-Chaudhuri Hocquenghem" codes
that corrects more than two errors.

Bounds on the amount of slippage which can be corrected are derived.
It is shown that syne-recovery capability for any binary cyclic code can-
not exceed [(n — k — 1)/2]* bits and sync-detection capability cannot

* [z] denotes the greatest integer less than or equal to z.
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exceed n — k — 1 bits, where n is the block length of the code and k
is the number of information bits in the code. A brief discussion on the
sync-detection capability of error-detecting codes is included in Section
IV.

1.3 Properties of Cyclic Codes

A subspace V of I-tuples is called a cyclic code if for each vector
v = (@,a, - +,a) in V, the vector vV o= (@, a0, -, Q1) i8
also in V.

By considering each [-tuple as an element of the algebra A; of poly-
nomials modulo 2' = 1, one may associate each I-tuple (ao, - , @1—1)
with a polynomial f(z) = a0 + aw, ---, a,x"" in the residue class
modulo z' — 1.* It can be shown that a subspace is a cyclic code if and
only if it is an ideal in the algebra of polynomials modulo z' — 1. The
generator g (x) of the ideal is known as the generator polynomial of the
cyclic code. It follows that I, which represents the natural length of the
code, must be the least common multiple of the roots of the generator
polynomial of the cyelic code. Given an (l,k) cyclic code, it is always
possible to form an (I — ¢,k — ) code by making the ¢ leading infor-
mation bits identically zero and omitting them from all code vectors.
Such a code is no longer cyclic, and is called a shortened cyclic code.
Denote the code space of a cyclic code by Cp and the code space of a
shortened cyclic code by C';, where 7 is the number of bits shortened.
Let n be the block length of a shortened eyclic code (ie., n =1 — ),
the higher order I — n bits are identically zero and hence are not trans-
mitted. We can imagine that the receiver will decode the shortened code
by first augmenting the received n-bit code word by I — n zeros and then
decoding it as if it were a full-length cyelic code. (Note that the actual
receiver need not perform these precise functions, but in any case it has
to do something equivalent to this.)

Now let us investigate what will happen if an r-bit loss oceurs as
shown in Fig. 1. Given that the transmitted message is R (), the re-
ceived message is

PR(x) + A(x) + 2"B(x) (1)

where A (x) is the portion of next word entered into the framing and
B(x) is the higher order r-bit portion of R (x) out of framing. In general,

*This paper discusses codes over binary field only so that the coefficients of
polynomials are either 0 or 1 and + or — signs are used interchangeably.
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Tig. 1 — The situation of synchronization loss.

A(x) and B(z) are not predictable and one may write the received
message in the following form

PR (x) + &' (x) + "8 () (2)

where 8, (x) represents a polynomial of degree at most r — 1 with ran-
dom coefficients. For eyclic codes, » = I and &' = 1. Therefore,

&' (z) + 2% (2) = &' (2) + & (2) = & (@), (3)
so that the received message is
TR(x) + & (z). 4)

Since 2'R (z) is an element of Cy , it is divisible by g (z) so that its syn-
drome is 0. The coset leadel of the coset to which 8" (x) belongs must have
a weight of no more than ».* For the same reason, with a shortened cyclic
code the coset leader of the coset of & (x) = [& () + z"8& (x)] must
have a weight of not more than 2r. It can be shown that a similar result

holds for an 7-bit gain. It follows that:

Theorem 1: A slippage of r bits in synchronization can resull in a vector
at most distance 2r from a nearest code vector if the code is a shortened cyclic
code and at most distance r from a nearest code vector if the code is cyclic,
where code vectors are elements of Co .

II. SCHEME FOR SHORTENED CYCLIC CODES

2.1 Codes that Correct at Least Three Random Errors

Suppose a fixed polynomial, P(z) is added to every code word at the
encoder and the same polynomial is subtracted from the received mes-
sage at the decoder. If the sync is maintained properly, the effect of
P(z) will be canceled. However, if sync is not maintained, an error

* We assume that the coset leader is the minimum weight element of the coset,
which is the desired case for a random-error correcting code.
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pattern may be detected. By choosing P(x) in a suitable way, it is con-
ceivable that one may be able to detect or even correct syne slips.

Let the code word be R (x) e C; = (., where ' = 1 and n is the
length of shortened code word. The transmitted word is B (z) + P(zx).
At the receiver, assume the word framing has an r-bit loss as shown in
Fig. 1. The received word, @ (z), according to (2), takes the following
form:

Q) = 2'[R(x) + P(x)] + & (x) + 2"8 (). (5)
The receiver then subtracts P (x) from Q (z), i.e.,
Q@) = Q) + P(x). 6)

The syndrome of @, (z) is the remainder of @, (z)/g (x), i.e.,
{Qu(x)} = {Qx) + P(x)
=[(1 + 2)P(x) + & (x) + 2"8 (z))

where {z} represents either the residue class of * modulo g(z) or the
polynomial of at least degree in that class; the context should make it
clear which is meant. If P (z) is chosen so that the coset { (1 4+ 2")P (x))}
coineides with {27 + 8" (x) + ©"6. (x)}, where n £ ¢ < [, and 8, (z)
is a polynomial of degree at most » — 1, forj = 1, 2, then,
{1+ 2P () + & () + 2"8 (2))

= {at + 6, (x) + 2"6 (x) + & (x) + 2"8 ()} (8)

= {z' 4+ & (x) + 2"8 (z)} .
Note that ' + 8 (z) + 2"8, (z) has at most 2r 4+ 1 nonzero terms.
Thus, if the code Cy corrects t = 2r + 1 errors, the polynomial

'+ & (x) + a8 (x)

must be a coset leader of Cy for all possible § (z)’s. Thus, if n + r = 4,
zi cannot be canceled by the & (x)’s and the decoder will indicate that
the ¢ 4+ 1 position of the received word is in error. But n = 7 < [, so
the 7th 4+ 1 bit was not transmitted; this can be used to indicate that a
misframing has occurred,

Similarly, it can be shown that if the receiver has an r-bit gain, then
the message to the decoder is

Qe(x) = z [R(x) + P@)] + 278" () + 2”78 (x) + P(z) (9)
(@)} = a7 + a8 (v) + 2" 78 (x)}
= {2 Q(x)} for some @, (z).

)

(10)
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Since each possible @, (x) is a coset leader for all 8" (x), so is =™ '@ (x).
Thus, by reasoning similar to that employed in the bit loss case, an r-bit
gain can be detected.

In order to recover synchronization, one must be able to distinguish
the syndrome due to bit loss from the syndrome due to bit gain. This
implies:

(2° 4+ 8 (x) + 28 (@)} = {a" "+ 278 () + 278 (x)} . (11)

That is, the error patterns must not be in the same coset.
(@ + 27 4 & (x) + 278 (@) + 28 (x) + 2778 (=)} # 0. (12)

The weight of the polynomial within the bracket is at most 4r + 2.
Since the code is { = 2r + 1 error correcting, any code word must have
a weight of at least 4r + 3. Hence, the inequality is always satisfied
provided that either &’ or 2" is not canceled by the terms of the 8;(x)
polynomials. Otherwise, it would be possible for all other terms of 8;(x)
to be zero, resulting in a zero polynomial and thereby contradicting (12).

It is clear that in order to do this it is necessary and sufficient to have
either 2° or 2°" or both not in those positions where the &s may take
the value of 17s; that is to say, either

n+r—1<i<l—r (13)
or
ntr—1<t—r<l—r (14)

must be satisfied. Both conditions require I — n = 2r 4+ 1 which is the
minimum number of bits required to be eliminated.

Thus, we have shown that if: () a cyclic code corrects { = 2r + 1
errors; (77) the number of eliminated bits is at least 2r + 1; and (47) it
is possible to find a polynomial P (x) constrained by (8); then,upon an
r-bit loss or gain, the syndrome generated will be different from that of
any of the correctable cosets and every bit loss syndrome will be different
from any of the syndromes caused by bit gain, and vice versa. To com-
plete the analysis, one must show the existence of polynomials P (x)
constrained by (8).

Recall that the requirement on P (z) is that

[(1+2)P@)} = 12" + 67 (x) + "0 (@)} . (15)
Since the #’s are arbitrary polynomials, [as they will be combined with

s, see (8)] we may treat them as variables in determining the simplest
possible P (z). In particular, if one elects to satisfy condition (13), i.e.

nt+r—1<z<l—r7r
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and to minimize the number of bits to be eliminated, the smallest 7
should be selected. Therefore, let ¢ = n + r. For reasons which will be-
come apparent later,* we set 6,"(x) = 0 and 6" (z) = 1. Then

(A + 2P @)} = (=" + 27
which implies
1P} = {2". (16)

Thus, we have constructed a P (x) which satisfies (15). This completes
the derivation of P (x) for the detection and correction of an r-bit gain
or loss. To see if this pattern is also good for any §-bit sync slippage
(0 < B £ r), we note that the error pattern for a g-bit loss is

(1 4+ P@) + 8’ @) + 278 (x)
=a" + 2" +8f(x) + 2" (x) (17)
= 2" + 8 () + 2" (v).
The number of nonzero terms of the polynomial is at most
W+1<2r+1=<t forall g <o,

hence, identification of an error in position n + 8 + 1 is always possible.
Sincen < n + 8+ 1 <, and position n 4+ 8 4+ 1 was not transmitted,
the fact that the decoder will show the n + 8 4 1 position to be in error
can be used to indicate that an out-of-syne situation exists. By a similar
argument, it can be shown that the detection of any g-bit gain is also
possible for 8 < r.

In order to recover synchronization, the set of syndromes correspond-
ing to bit loss must be different from those corresponding to bit gain;
that is,

(2" 4+ 8% (x) + "8 ()}
n —Be B —fie B (18)
#Z (2" 4+ 2% (&) + 2" ()
for all
O0<agpB=r
or

(2" 4 2" 4 5% (x) + "8 () + 278 (x) + 2" P8l (@)) # 0. (19)

* To maximize expected noise tolerance, it is desirable to keep the degree of
8"(x) small.
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The number of nonzero terms within the brackets (19) is at most
204+ 284+ 2<4r+3<204+1=Zdn

where d,, is the minimum distance of the code. Equation (19) cannot
represent a code word unless both 2" " and 2" are canceled by some terms
of the 8’s in such a way that all an-zero polynomial results. It is seen from
(19) that n 4+ a < I — 8 is a sufficient condition for z"+=not to be can-
celed by any of the &s. Since I — n = 2r + 1 > a + 6, this is always
satisfied. Thus, we have shown that a shortened cyclic code which cor-
rects ¢ random errors will have sync-recovery capability of r bits, if
l—n=2+1,t = 2r + 1, and if the syndrome of x* is added to each
word after encoding and before decoding.

The implementation of this sclieme is obviously easy. The generation
of {z"} can be accomplished by adding one bit corresponding to position
2" at encoder and decoder. (Since this position is not actually transmitted
over the channel, only the syndrome of 2" is added to the encoded word.)
Usually only a slight loss in efficiency results from the shortening of the
code.

The decision rule can be formed as follows:

(i) If the decoder indicates that the bit corresponding to " is in error,
but not any a*, n < k < [ — 1, then one assumes the system has gained
a few bits in bit count. By extending the syne count one bit at a time,
the system will regain sync in at most » word times.

(i) 1f the decoder indicates that the bit corresponding to " ?is in
error, 1 £ 8 = r, then one assumes the system has lost 8 bits. The word
sync can be recovered either by using step-by-step correction as in (7),
or by a one step correction.

Note that the P (z) derived here is but one of many possibilities; for
example, by letting { P (z)} = {2'"} one would come up with a similar
decision rule which favors bit-gain correction rather than the bit-loss
correction as we have done.

Example: Consider the (23,12) Golay code shortened to a (20,9) code.
Since it is a triple error-correcting code and since I — n = 3, it should
have sync-recovery capability of 1 bit. Let us demonstrate this fact by
step-by-step computation. The generator polynomial for the code is:

g@) =1+ +2' +2°+ 2"+ 2" + 2"

101011100011.
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The syndrome of " = 2™ is 00101101111 = {P(z)} and of 2" = 2 is
10111000110. Assume the information 000000001 is to be transmitted.
After encoding, the code word is

1,01011011110000000001,01
Add P(z) 00101101111000000000
1,01110110001000000001,01.

The above sequence is the transmitted message.
(7) Assume one bit loss has occurred. Thus, the received message is

1,01110110001000000001,01. message flow

T T -
Receiver Frame
To this word the receiver adds P (x) and three 0's

10111011000100000000
00101101111000000000

A(x) = 10010110111100000000(000)

at the high-order end, as shown in the parentheses, to make a eyelic code.
The syndrome of the message, A (), is the remainder of A (x)/g (x).

(A (x)/g(x)} = 00111000110
= 10111000110 4 100000000

= {2 + 2"} .
The decoder will indicate that bits corresponding to 2™ and 2° are in
error, but x*' was not transmitted and +* = 2™ = "**. By the deci-

sion rule just derived, one decides that a one bit loss has occurred.
(77) Suppose a one bit gain has occurred. Thus, the received message

is
1,01110110001000000001,01;
T T
add P (x) and three missing zeros. We have
11101100010000000010
P(x) = 00101101111000000000
11000001101000000010 (000).

The syndrome is

01110110001 = 00101101111 + 01011011110 = 2* + 2",
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By the decoding rule we see that =" = 2% is in error but not 2* for all
k such that 20 = n < k = 1 — 1 = 22, hence the decoder decides that
a bit gain has occurred. Notice that in this case, only two errors are in-
dicated by the decoder due to a misframing of one bit. Because the code
is triple error-correcting, sync recovery of a one bit of misframe is pos-
sible even if there is an error due to additive noise. This feature of noise
tolerance will be discussed in the following paragraph.

2.1.1 Noise Tolerance

Assume a slippage of 8 = r bits has oceurred. According to (17) the
error pattern is

.'F“+ﬂ + 51'8(3:) + Jfﬂaﬂﬂ(ﬂ-:)'

The weight of this error polynomial is at most 28 + 1, but the code
corrects ! errors, so that at least ¢ — 28 — 1 additional errors ean be in
the received block without disturbing the sync-correcting process. This
is so because every error-bit position can be identified correctly pro-
vided the total number of errors does not exceed ¢; hence the guaranteed
noise tolerance is (t — 28 — 1,8).

Since channel noise cannot affect any of the bit positions n < 7 £ 1
directly, the vital bits for detection and correction of syne are not likely
to be corrupted by noise. In fact, it can be shown that at least 2r + 2
additional errors are required at specific locations to change the bit in
position 7 forn < ¢ £ L.

If we assume that the probability of occurrence of any nonzero term
of the §'s is 1/2, we can compute the expected noise tolerance E(8) as
follows:

If 8 bits of slippage oceurs, there is at least one error caused by the
error pattern purposely generated by P (x), but not more than 28 + 1
errors, in accordance with (17). The probability of occurrence of a total
of 7 errors due to sync slippage of 8 bits is

P; = (z - 1) / 2% (20)

the number of additional errors which can be tolerated with 7 errors is
t — 1, so the expectation is

28+1
B =272 -0 (). (21)

That is to say, on the average, for a 8-bit sync slippage, one can tolerate
E(8) additional errors. For example, consider a (255,215) BCH code



SYNCHRONIZATION RECOVERY TECHNIQUES 573

which corrects five random errors. Since { = 2r + 1, rpax = 2,1 — 7 =
2r + 1= 5,1 = 255, n = 250; therefore, the (250,210) shortened cyelic
code can have syne-recovery capability up to 2 bits per word.

The guaranteed noise tolerances are (t — 28 — 1,8) = (2,1) and
(0,2), and the expected noise tolerances are

E(1) =222(5—'£)({El)=3

E(2)
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2.2 Double Error-Correcting Codes

The scheme just proposed cannot be used for double error-correcting
codes because, in the worst case, for only one bit of syne slippage, it is
possible to have three errors generated as a result of sync loss. (However,
the probability of recovering syne loss is still high.) In this section the
scheme is modified so that it is guaranteed to correct syne loss for double
error-correcting codes; however, extra redundancy is required.

Let m zeros be placed on each end of a coded message of an n-bit
shortened cyclic code. The transmitted word is then a stream of binary
messages interlaced with 2m-zero bits between messages (i.e., the added
zeros are actually transmitted ). A typical word is of the form shown be-
low

B I ™ gttt gm L g
all zero "R (x) all zero

where the first and the last m bits are identically zero and the center
portion is the shortened code word, R (x).
Let @™ P () be added to such a code; the transmitted message is

a"[R(x) + P(@)]. (22)

It is clear that the word framing at the receiver must contain 2m + n
bits. It follows that all terms of 2" ™"[R(z) 4+ P(x)] will be within a
single receiver frame for all | » | = m. Thus, for an r-bit loss the received
message, in the absence of noise, is

2R () 4+ P(x))].

After subtracting 2™P(x) at receiver, the syndrome of the resultant
message is
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2R () + P(x)] + 2"P ()}

(23)
= {2" (1 + 2")P ()}, 7] £ m.

Let P(z) = {z'™"}, then the syndrome due to an r-bit loss is
fa"(1 + 2P @)} = (&' 4+ =77 (24)

If 2m + n < I — 1, the bit corresponding to =" (which is the Ith bit)
is not transmitted. Hence, the detection of ' in error can be used to
indicate a bit loss. In order to correct the bit loss, note that the error
at ' 7" corresponds to the bit at position { 4+ » modulo I. Therefore, if
r > 0, the error bit position corresponds to one of the first m bits which
is known to be zero so that the inconsistency between the calculated
error bit and the actual bit value at position r can serve as an indieation
of an 7-bit loss.

Similarly, for r < 0 the bit corresponding to the syndrome {x } is
l+rz2m+n+r+1=2m+n+ 1for0>r = —m but the
bitsm +n + 1,m +n + 2, ---, 2m 4+ n are known to be zero, so
that the r-bit gain can be detected in the same way. Notice that if
I+ r = 2m + n, for some r < 0, the error indication directly shows an
| r |-bit gain has occurred since the bit I 4+ 7 is not transmitted.

Recall that one requires

2m +n =1 — 1, (25)

I1+r—1

ie.,
Il—m=2m+1 (26)

so that at least 2m <+ 1 bits of the information symbols must be elimi-
nated.

Since exactly two errors (namely " and ) will be generated
for every sync loss up to m bits, a code capable of correcting at least
two errors must be used. It is obvious that for a {-error-correcting code,
an addition of { — 2 errors anywhere in the data section (i.e., in the
x™R (z) part) can be tolerated. However, errors in the zero section can
affect the synec-correcting process, although the sync-detection capability
will not suffer. Thus, the guaranteed noise tolerance for syne-recovery is
zero while it is # — 2 for sync detection.

‘We summarize the sync-correcting rule as follows:

(7) If 2'" is in error then one assumes that a sync-slip has occurred.

(1) If, in addition, one and only one of the calculated error bits is in
the bit position corresponding to 277" | r| £ m, while the actual bit
of that position is either not transmitted or has the value of zero then

1 1+r—1
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one assumes an r-bit loss has occurred (if » < 0, | » |-bit loss = r-bit
gain).

It is easy to see from the above argument that any P(z) = {z' '},
1 =17=1-— 2m — n, can be used for this scheme.

Example: Consider a (15,7) BCH code shortened to (12,4) code with
one zero adjoined at each end of the ecode to obtain (14,4) code. Here
[ = 15,m = 1, n = 12. The code is generated by

g(.r)=1+:r4—|-:cﬁ+r7+ms.

Assume the message 1100 is to be sent. After encoding we have the
(12,4) code word

R(z) = 010001011100
P(z) = {2""7" = {2} = 001011100000
R(z) + P(x) = 011010111100.

Il

Add a zero at each end, the transmitted message is
0,00110101111000,0.

Notice that the neighboring bits of the message must be zero since each
message must begin and end with zero, by construction.

(i) At the receiver assume a one-bit loss has occurred. Then we have
the message, as the receiver sees it:

0,00110101111000,0.
i T
The receiver adds P (z) and the resulting message becomes
00011010111100
add zP (x) = 00010111000000
00001101111100(0).

The syndrome is 10010111 = 00010111 + 10000000 = (2" + {29
which indicates ™ and 2° are in error but 2™ is never transmitted and
2" is known to have been transmitted as zero. Therefore, according to
the decoding rule just derived, we see that word sync has slipped. Since
2 = 27 = 2% r = 1, which shows a gain of one bit has occurred.

(#7) Assume one-bit gain has occurred, the received message becomes

as shown
01101011110000
add P(x) = 00010111000000
01111100110000(0).
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The syndrome is 00111001 = 00010111 + 00101110 = {2"} + {2} .
14 - . . . .y 13
z' in error indicates a syne-slip condition and =z~ = 0

I4r—1 13 16—1—1
o =x =z ,

sor = —1 which shows that a gain of one bit in word sync has occurred.

2.3 Codes Without an Even-Parity Check

Recall that, from (23), the syndrome is {2™(1 + 2")P(x)} for an
r-bit loss. It is desirable to have such a syndrome coincide with the
syndrome of a single bit, say 2* ¥, and if the bit corresponding to x' is
either not transmitted, or if the value of the coefficient of z' is known to
the receiver by prearrangement, then it is possible to have sync recovery
capability for a single error-correcting code. We shall show in the follow-
ing that such a possibility does exist.

Assertion: For a cyclic error-correcting code without an even-parity
checkt it is always possible to modify the code in such a way as to have
syne-recovery capability of one bit. The scheme is based on the following
theorem.

Theorem 2: If g(x) is a generator polynomial for a cyclic code of natural
length | and if

GCD (g(x),l +a) =1
then
(14 ) |27
Proof: Q4a)fg@)=9(0)#0
Lg(l)y=1 or 14+¢4(1)=0

or 1 + g(x) is divisible by 1 + x.
Likewise = 4 g(z) because g(x)h(x) = ' 4+ 1 and if @ | g(z) then
z | z' + 1 which is impossible.
Therefore,
x| 1+ gx)] (27)

It follows that 1 + g(z) = «(1 4+ 2)F3(z). In the ring of polynomials
modulo z' + 1

=1

*je., the remainder of zi/g(z). )
+ Or, equivalently, the generator polynomial of the code is not divisible by
1+ =
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or
2=
by (27),.
=21+ gk) = (14 2)Fs(x) [mod g(x)],
i.e.,
{27 = (1 + a)Fs(x).

Q.E.D.

Theorem 2 shows the existence of P(z) = {2''/1 + z} for such codes.

Thus, for any cyclic code which corrects one or more errors and whose
generator polynomial, g (), is not divisible by 1 + xz, one may shorten
the code by 2 bits, append one zero at each end of the encoded message
and add the pattern 2P (x) = « {z""/1 + z}. The configuration is shown
in Fig. 2. Note that the added zeros are actually transmitted.

When the system is in synchronization, the framing of the receiver is
as shown in Fig. 2. The receiver first adds 2P (x) and then decodes the
whole word.

From (23), one-bit loss gives the syndrome

lz(1 + 2)P(x)} = (=72} = {2}

and one-bit gain gives the syndrome {z '(1 + z)2P(z)} = {2 '}.
Note that both 2° and ="' are inserted zero bits; hence, the decoder
can use the decision rule as shown in Table I.

Ezample: Consider the single error-correcting Hamming code gener-
ated by ' 4+ 2 + 1. For this code I = 15. From Table IT:

Fig. 2— The relation between message and word framing.
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TasLe I
Error Locator Indicates Real Bit Value Decision
z% in error =10 one-bit loss
z% in error 0 =1 bit z? in error
1 in error il =0 one-bit gain
z! in error gl =1 bit z*! in error

The code is modified from (15,11) to (15,9). Let the information bits
be 001000101. After encoding it becomes 000100010001010.

Adding P (x) = 2", we have
xP(x) = 000000000001000
000100010001010
000100010000010.

Case 1: One-bit loss:
The received message becomes

00001000100000100
xP (x) = 00000000000100000
00001000100100100.

The syndrome is 1000; it indicates the first bit in error since the first
bit is 0. From Table I we read “one-bit loss has occurred.”

Case 2: One-bit gain:
The received message becomes
0010001000001000
aP (x) = 0000000000010000
0010001000011000.

The syndrome is 1001; it indicates 2 in error but 2™ = 0. So again by
Table I we have detected one-bit gain.

TasrLE II—GF(29)

z° 1000 z8 1010
o 0100 x? 0101
z? 0010 10 1110
3 0001 zit 0111
zt 1100 12 1111
x? 0110 13 1011
zt 0011 T 1001

x? 1101 ! = gz = 1000
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2.3.1 Noise tmmunily

It is obvious that this scheme uses only one bit to detect and correct
syne loss so that for codes which correct ¢ errors we ean afford ¢t — 1
more additive errors in the code word provided that the bits 2° and 2"~
are not in error.

III. FULL-LENGTH CYCLIC CODES

For cyclic codes, the technique used to distinguish synchronization
loss from additive errors for shortened codes no longer applies. One must
select P(zx) in such a way that over the range of synchronization slip-
page r, the error patterns so generated do not fall into any of the correct-
able cosets. This means

() + Px)1 +2") ¢ (28)
and
"8 () + Pla)(1 4+ 2") ¢e, (29)

for all 8" (x), 0 < s < r, where € is the set of all polynomials that belong
to the union of all correctable cosets. By the following lemma it will be
shown that conditions (28) and (29) are equivalent.

Lemma 1: Q(x) ¢ ©
if and only if
2'Qx) e foralli

Proof: (i) Suppose Q(x) e €. Denote the coset leader to which @ (x)
belongs by Q.(x); then Q(x) + Q.(x) = wq(x) is a code word, but
x'wg(x) is also a code word and the weight of Qc(z) is the same as the
weight of &'Q.(x); the weight of Q. (r) is no more than ¢, the maximum
number of errors the code corrects. Therefore, x'Q. (:_c) must also be a

coset leader. It follows that .1'."Q¢ () + 2'we(x) = 1'Q(1) must belong
to the coset whose leader is 2'Q.(z). That is to say 2'Q(x) € C.

(i) 2'Q) e€ = 2" (2'Q(x)) = Qx) e by (i). QE.D.
Since (29) can be rewritten as:
"R () + P() (1 4 27)] ¢e, (30)

by the above lemma and the law of contraposition, (28) and (29) are
equivalent. The condition (28) can be restated as:

W) zt+1 (31)
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where @, (x) is the coset leader of the polynomial
8 (x) + P(@)(1 + 2°)

and W{z] is defined as the weight of the polynomial .

Equation (31) is a necessary and sufficient condition for a code to
have syne-detection capability r. Tt is sufficient because if (31) is true,
then no error pattern generated by P (x) due to slippage of s bits,

0<s =,

can be in a correctable coset; thus syne loss can be detected. It is neces-
sary because otherwise there must exist at least one particular §°, say
8", such that (31) is not satisfied, then say

WiQ.. (x)] < t, for some «
where
Q. (z) = 8" (x) + P(x) (1 + 2°), for some s, 0<s=nr.
Then
8. (x) + P(x)(1 + 2")

must be in one of the correctable cosets.

To have sync-correction capability r, the code must have sync-detec-
tion capability at least r and the syndromes of the error patterns for bit
loss must be different than those for bit gain; that is

("(x) + P@)(1 + 2"} # "B (@) + P@)A + 2%,

(32)
0<pg=r
or
(6" () + P(x)(1 + 2"™)} # 0 (33)
or
(6" ()} # {P)(1 + ") (34)

If p + ¢ = n — k then the degree of °"(z) can be as large as
p+g—1zn—Lk-—1

The right side of (34) has a degree at most n — k — 1. Thus, by proper
choice of the coefficients of §7*?(z), one can always equate the two sides
of (34). Hence, p + ¢ < n — k — 1 is a necessary condition to satisfy
(34). But max p = max ¢ = r so that 2r £ n — & — 1 is a necessary
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condition for the code to have sync-correction capability r. Hence the
theorem:

Theorem 3: The sync-correction capability of a (n,k) coset code dertved from
a cyclic code cannot exceed (n — k — 1)/2.

Ip+g=n—k—1 16"} = 6"x) so that if the degree of
{P(x)(1 4+ 2"} is at least p + g, then (34) will be satisfied; Z.e.,
DIP@)(1 + 2"} zp +4q (35)

is sufficient for (34) where D[(/(z)] denotes the degree of polynomial
G(x).

Therefore, the necessary and sufficient conditions for a code to have
syne-correction capability » are:

W) + P@)Q 4+ a9 =t+ 1 forall0 <s=r (36)
and

DIP@)1 + 2" zp+q foral0<p, g=r (37)
where Q,(x) is the coset leader of the polynomial §"(x) + P(x)(1 4 2°).

3.1 Scheme A — General Approach

A decoder which corrects up to ¢ errors while utilizing a code with
minimum distance d,, can also detect up tod = d, — (¢ + 1) errors.
Thus, if every error pattern generated by slippage s < r has weight
between ¢ 4 1 and d, it will certainly be detected. It follows that these
error patterns cannot be in €. Based on this sufficient condition one can
design P(x) accordingly. Suppose

dz W @) + P10+ zt+1 (38)

for all random polynomials §° () for 0 < s = r. Let

n—l1

P(x) = ; P’ (39)
and
Ty(z) = _Z: (Pi 4 Pua™, 0<s<r  (40)
Then
d—sz=W({T(x))=t+ 1, 0<s=r, (41)

is necessary and sufficient for (38) to hold. In particular, it is necessary
that W[T,(x)] = ¢t + 1. It follows that the best choice for P(x), in
the sense of maximizing r, is for



582 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1966

W[T,(x)]=t+ 1, forall0 < s = 7. (42)

Those P (z) that satisfy (42) will be called optimal. In general, for cer-
tain special codes it is possible to find other schemes which work even
ifd —r = {41 is not satisfied. This possibility will be discussed later.

It can be shown by direct substitution® in (41) that the following
P (x) are optimal,

[¢/2]
P(IC) — Z: xa'(r-!—l)—a'p + 3.7“_1 (43)
if
r4[t21r + 1) —an <n—1
where

oo = 1+ 2[t/2] — ¢ (44)
and [t/2] represents the integer part of ¢/2.

TasLe ITI
Number of Levy’s Result Optimal Result
Code dp Errors Corrected (Max. Number of (Max. Number of
! Sync Loss Detected) | Sync Loss Detected)
(23,12) 7 1 2 3
(127,85) 13 1 8 9
2 5 7
3 2 5
(255,191) 17 1 12 13
2 9 11
3 6 9
4 3 7
(255,163) 25 1 20 21
2 17 19
3 14 17
4 11 15
5 8 13

Levy® has found a set of I? (v) for the purpose of detecting synchroniza-
tion loss. Table III compares Levy’s resultst with some of the optimal
results just derived. It is interesting to note that appreciable improve-
ments are obtained by optimal P(x).

It remains to show that the polynomials P(zx) of (43) possess syne-
recovery capability. The following theorem characterizes the extent of
slippage the code can correct provided thatd — r = ¢ 4 1.

* See Appendix.

t See Ref. 9, page 11, Table 1. Note 8 = ¢ + 1 is necessary to detect sync loss.
Table ITT is constructed by letting 8 = ¢ + 1.
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Theorem 4: To every t error-correcting cyelic code there exists a cosel code
with sync-recovery capability of at least

n—k—1t+4 (/2]

r < bits
2+ [t/2]
provided that:
(%) the coset code is generated by
[t/2]
P(.'l') — Z xa(r+l)*vn + xnfl
o=0op

() d—rzt+1
(i) r + [t/2]r +1) —a0o <n — 1

where
o0 = 1+ 2[t/2] — &

Proof: Since P (x) has sync-detection capability r whend — r = ¢ + 1,
all one has to check is that the syndrome of error patterns due to bit
loss are different from those due to bit gain.

From (37) one requires

[t/2]
D(P(2)(1 4+ 2™} =D {( Do it 4 :.;"‘1) (1 + .1:”"'"')}

o=ay

= D1 4 2™ 4 .. lUTertete (45)

+2"™=p+q 1=p+g=n
Let the generator polynomial be denoted

n—k

gla) = ;} gix';

then
n—k

a7l glx) = gt + Z‘; gix' .
In general, one may assume go = g.— = 1, and because 2" = 1, we have

n—k
11'—1 g(x) — .’U"_l + Z g!_xifl — znfl + Q(ﬂf)

i=1
or

2" = 2"y (@) + Q).
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Hence
(") = Q),
but as @ (x) has a degree exactly n — & — 1; it follows that
Diz"W =n —k — 1.

Therefore, (45) has a degree n — k — 1 if the next highest order term,
gU/AT D +Ptaeo 5o always of a degree less thann — k — 1, forall 1 < p,
qg = r;ie,

2 +1)+p+qg—o<n—~Lk—1 1=p qg=r. (46)
But, max (p + ¢) = 2r, ie,

t/21r +1) +2r —go<n—k — 1
or

'n—k—l-i-au—[t/Z]
2+ [t/2]

Recall that o9 = 1 + 2[t/2] — ¢, and therefore

n—k—t+ [t/2]
2+ [t/2]

r <

<

is sufficient to satisfy (45).

Example: Find P (x) for (15,6) BCH code where d, = .
(7) If the code is used for single error correction, ¢ = 1 and

d—r=dn— (t+1)—rz=zt+1.
Therefore, r < 2, but

n—k—t+[¢/2] _
e 7. I

so that by Theorem 4, P(z) = 1 + 2" is a valid pattern for sync cor-
rection up to 2 bits.

(#7) If the code is used for double error correction t = 2 and d = 3.
Thus,d — r =3 — r 2 t + 1 = 3. Therefore, r = 0, so that it is im-
possible to use this method but there are still other possibilities which
will be discussed in the next section.

3.2 Scheme B — Special Case

The scheme just derived is applicable to all binary eyclic codes pro-
vided that d,. > 2¢ + 2, where ¢ is the number of errors the decoder ac-
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tually corrects, and that the scheme is not applicable to those systems
in which the decoder is designed to correct ¢ = [(dn — 1)/2] errors.

In this section, a different technique is developed. Instead of requiring
that dm > 2t + 2, this technique requires that a set of conditions on the
code structure be satisfied. These conditions are almost always satisfied
by Bose-Chaudhuri-Hocquenghem codes that correct more than two
errors. For such codes it will be shown that it is always possible to ob-
tain a coset code that has sync-recovery capability of at least one bit,
even if the decoder is designed to correct errors up to the guaranteed
error-correcting capability of the code, i.e., 1 = [{dmn — 1)/2].

Definition 9: The weight of a coset is defined as the weight of its coset
leader.

Definition 10: Code C is said to be a descendant of code Cf if
aeCi=ae¢lCs, Ci #= (s
and is denoted by the notation
Cic (.

Theorem 5: C1 C Ca if and only if g2 (x) | g1 (%)
where
g1 (x) and g.(x) are the generators of codes Cy and Cy , respectively.

Proof: (i) Since ga(x) itself is a code word of Cy, if g (x) does not divide
g1 (x) then g, (x) ¢ Ca = Cy & €, ; a contradiction.
(%) If ga(x) | gr(x), then let

r(z) = gu(x)/g:(x)
w(z) e C1 = wx) = gi(x)f (@)
= ga(z)r (x)f (x)
Sw(z)ely.
Hence, C; C C:, by definition.

Theorem 6: Suppose code Cy corrects b, errors and code Cs corrects tp errors.
If O, © Cyand t, > to, then the cosel Q of Cy that the code word K(x) e
(Cy — C)) belongs, must have a weight of at least 2t + 1.

Proof: By definition (Cy — C1) is nonempty, so there exists K (z) e Cy
but K (z) ¢ €y . All the elements, of the coset @ of C; to which K (z) be-
longs, must be of the form

K(x) + w(z), w(x) e Cy
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but, C; < C;, s0
w(x) e Ca.
It follows that
K@) + w(x) e Cy;

thus, the weight of K (x) + w(x) must be at least 2{, + 1, as Ch is a
ts-error-correcting code. It follows that @ must have weight at least

2t + 1.

Theorem 7: Lel Q be a cosel of a code C, K (x) an element ¢ 2, and suppose
the weight of @ is R. Then the cosel @ to which K (x) + x' belongs must
have weight not less than B — 1.

Proof:
&= { (K@) +2") + we(@): we(2) € C}
= [(K(@) 4+ we(@)) + a’:we (x) e C)
= {2(@) +2:0(@) 9.

Since @ has weight R, each element of ; differs from an element in
@ by exactly one term. It follows that the weight of @, is at least R — 1.

The following several lemmas, in associated with Theorems 6 and 7,
are essential to Theorem 8 which is the basis for Scheme B.

Lemma 2: (K (z)} # (2" 'K (z)} [mod ¢g:(z)]
if
K(z) eCy — (4 C,CC,
and
g(x)/g(z) = r(z) 4 (1 4 2)
where g1 (x) and, g2 (x) are generator polynomials of Cy, Ca, respectively.
Proof: By hypothesis,
1+ )/ r@). (a7)
Assume

(K (@)} = {2""K(x)}  [mod g:(x)]

[ 4+ 2)K(@) =0 [mod g, ()] (48)
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or
(1 + K@) = f(@)g ).

Now,

(1 +2) |f@) = K@) = fil0)p @)

= K (x) € C; ; a contradiction.

It follows that (1 + =) { f(x). (49)
Since K(x) ey,
Le.

K(x) = fa(x)g:(2),
by the assumption of (48)
(1 4+ 2)K(x)

1+ o)felx)ga(x) = flx)g(x)
F)gs(@)r(x)

I

or
1+ w)falx) = flo)r(e). (50)

~In view of (47) and (49), and by the unique factorization theorem,
(50) cannot be satisfied. The lemma follows by contradiction.

Lemma 3:  |K(x) + 1) # (2" 'K(v) + " [mod g,(x)]
if
K(.’U) € Cg — Cl !’Iﬂd Cl C C'g .

Proof: Assume the contrary.
Then

K@) + 14 2"'Kx) + 2" = f@)(x) 1)

5
= f(x)ga(@)r ()
but
K(x) e Co= gu(z) | K ().
The right-hand side is divisible by g.(x) but not the left-hand side unless
g() | (1 4 2.

The code generated by g» (x) has natural length n so that g (z) | (1 + 2")
but not any 1 4+ z*, k& < n. Therefore, (51) cannot hold and the lemma
follows.
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Lemma 4: (K(z)} # {z" 'K () + 2" [mod g,(x)]
if
K(ﬂ:)602—cl, C1C02.

Proof: Assume the contrary.
Then

K (z) + K@) + 2" = f(@)g@)r ().
The left-hand side is not divisible by gz (z), since g.(z) | K (z), so the
lemma follows.
Lemma 5: (K(z) + 1) # (2" K@)} [mod g:(2)]
if
K(.’E)éCz—Cl, 01C02.

Praof: Similar to Lemma 4.

Theorem 8: Suppose code C, and Cp, with generator gi(x) and g.(x),
correct ty and bz errors, respectively, and 2t: > &, . If C,  Cs,

g(x)/gn(z) = r(z) £ (1 + =)
and if K (z) € Cy — C1, then the pattern

P(z) = {IK_(:JZE},

if K (z) has even weight, or

P(x) = {K———(lmzl_—: 1} ,

if K (x) has odd weight, defines a coset code of Cy with sync-recovery capa-
bility of at least one bit.

Proof: First note that such P (z) always exists. Now with the P (z) used
to define the coset code, the error pattern for one-bit loss in syne is

{P@)(1+2) + ' @)
= K@) + 8 () if K () is even
(K@) +1+8@) = (K@) +8@) if K@) isodd.

That is, the syndromes are either {K (z)} or {K (z) 4+ 1}. By Theorem
6, {K (z)} does not belong to a correctable coset of C; since 26 > .
The coset corresponding to {K () + 1} has weight equal to or greater
than 2t, , by Theorem 7, so that it is not correctable.
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Similarly, the error pattern for one-bit gain is

[P(x)(1 + 2" + 2"78" (x))
= {"'[P@)A 4+ ) + 8 ()]

= (2" 'K (x) + 2" 7'8" (x)} if K (z) is even
= {2" (K (x) + 1) + 2" (x)}
= {2" 'K (z) + 2"7'8' (x)) if K (x) is odd.

That is, the syndromes are either
2" 'K (z) + ="} or {z"7'K(x))

By Theorem 6 and Lemma 1, (K'(z)} = {z" 'K (z)} is not in any of
the correctable cosets of €y , and by Theorem 7 and Lemma 1,

2" 'K () + 2™} = (2" (K (2) + 1)}

is not correctable either. It follows that P (z) satisfies the first condition
that all the error patterns of one-bit slippage generated by P(x) can
not be in any of the correctable cosets of €1 so that Cy has syne-detection
capability of at least one bit.

By Lemmas 2, 3, 4, and 5 the cosets corresponding to bit-loss patterns
can not be the same as the bit-gain patterns. Thus the second condition
is satisfied. It follows that code ('y has sync-recovery capability of at
least one bit.

The search for K (z) is very simple since g2(x) € Ca, ga(x) ¢ Cy s0
that we may use g2 (x) for K (x) in every instance.

Thus the procedure to find a coset code for use with Scheme B is as
follows.

(i) Find a code, Cs, of the given code Cy such that g.(x)/g:i(z) =
r(z) 4 (1 4+ «) and that 2t: > 1, .

(77) Use
2:(2) | _ pe,
{1 T .v} = P(x)

to generate the desired coset code if the weight of g.(z) is even and use

gela) + 1|
{—ﬁr} = P(z)

if ga(2) has odd weight.

From Theorem 8, it is easy to see that this procedure applies to all
Bose-Chaudhuri-Hocquenghem codes whenever 2 > f, and many
other algebraic codes.
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The following example shows how to apply Theorem 8 to Bose-
Chaudhuri-Hoequenghem codes.

The polynomial and the associated sync-loss error syndromes P (x)
for a (15,5) BCH ftriple-error-correcting code generated by

n@ =" +2+D"+2+22+2+ 1)+ 241)

can be found as follows:

If « is a root of 2* 4+ x + 1 then &’ is a root of 2° 4+ = + 1 (see tables
of Marsh" or Peterson'®) so that

ri@) ="+ x+1) 4 1+ 2)

go(x) = il((;)) =@ +rs+DE+2"+2"+a+ 1)

generates a double error-correcting BCH code.

Observe that

ty =3, =2
therefore,
2 > b,
hence, all the requirements for Scheme B are satisfied. Set
K(x) = ga(x),
and since g»(x) has odd weight use

K(z) +1 _{xs-l—f-l—:us-l-r‘l
1+ | 1+ =z [

7 b
= 4+ a —I—a:‘.

P(x) = {

The syndromes are:
(7) bit loss

K@)+ 1} =24+ 2"+ 2°+2*

or

K@) =2"4+2"+ 2"+ 2"+ 1.
(7) bit gain
K@) =2+ 2+ 4+ a4 1

or

l.l:u_lK(.l:) + il:“_l} — .U'I + xﬁ + $5 + mS.
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It can be verified that all the syndromes listed do not belong to cor-
rectable cosets of the given code, and the syndromes are obviously all
different, so the modified (15,5) code has sync-correction capability of
one bit.

Notice that for this code

dm =17, th = 3;
therefore,
d=dn— (t+1)=7—-—4=3
and
h+1=4.

The condition, d — r = t 4 1, is not satisfied so that Scheme A is not
applieable.

3.3 I'mplementation
By the Euclidean division algorithm, one writes
(1 + 2a9)P(x) = g@)F(x) + Ru(x)

where D[R,(z)] < D[g(x)] = n — k.
From (28), the s-bit-loss syndromes are

(o'(x) + (1 + 29P(@)} = {&(@)} + {1 + 2)P@) = &) + Rs(2)

(Since D[5*(x)] < Dlg(x)]) forall0 < s = r.

It follows that all possible s-bit-loss syndromes have the same high
order n — k& — s terms [namely, the high order n — k — s terms of
Rs(x)] and the remaining low order s-terms assume all possible 2¢ com-
binations. Thus, the 2¢ possible syndromes for an s-bit-loss can be de-
tected by a single and gate that recognizes the high order n — & — s
terms of R,(x).

According to (28) and (30), s-bit-gain syndromes are the same as
the s-bit-loss syndromes multiplied by z*—. It follows that a bit-loss
recognition device, as mentioned above, can also be used to test bit-
gain syndromes. This can be done by transforming bit-gain syndromes
to bit-loss syndromes through multiplication by 2%, 0 < s = r, then
testing the resultant syndromes with the bit-loss recognition device.
Such a device takes r and gates and is applicable to both Scheme A and
B.
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IV. CYCLIC CODES FOR DETECTION ONLY

Some parts of the subject discussed in this section have been investi-
gated in the literature.” Here, a different point of view is presented.

If a eyclic code is used for error detection only, then any error pattern
due to syne loss or gain can be detected so long as the erroneous words
generated by sync loss are not in the code space. If  is the maximum
amount of slippage possible (such that the misframed words are not
code words), the code is usually said to possess comma-free freedom r.
Codes having the property that |7 | = [(n + 1)/2], are called “comma
free”.

Consider a coset code (' generated by P (x) and designed to detect
syne loss or gain. To assure that such error patterns are detectable, one
requires, by (28) and lemma 1,

{14+ P)Px) + ()} =0 (52)

since @ = 0 because every coset is not correctable for error-deteciing
codes.

As any syndrome has a degree which is at most n — & — 1, and o (x)
is an arbitrary polynomial of degree § — 1, it is always possible, for
any P (z) to have

((1+2P@) +&@) =0 if g>n—k—1

It follows that the comma-free freedom can never exceed n — k — 1.
Hence, we have the following theorem.

Theorem 9: The comma-free freedom of any cyclic code cannot exceed
n — ]\' — 1.
One sees that by letting P(x) = 1; (52) now reads

A+ 221 4+8@) =1 +2"2+8@) =2"+8@). (63)

The term 2* cannot be canceled by & (z) provided 8 = n — k — L.
It follows that the upper bound on comma-free freedom described by
Theorem 9 can be met. Hence, we have the following result.

Theorem 10: The comma-free freedom of any cyclic code can be made as
largeasn — k — 1.

According to Theorem 10, the comma-free freedom r cannot be
greater than n — & — 1. Thus, if k¥ = (n — 1)/2, it is impossible to
detect all the sync loss for n — k = r = k; on the other hand, if ¥ <
(n — 1)/2 then the interval between n — k, k does not exist. Hence,
every slippage can be detected. 1t follows that
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Corollary 1: An (n,k) cyclic code can be made comma-free if and only if
k< (n—1)/2

The ahove results have been proved in a different manner by J. J.
Stiffler.®

Clearly, for strictly error-detecting codes, if a received message is not
a code word, no distinction can be made to decide whether the error is
caused by additive noise or is due to sync loss. However, statistical de-
cisions still can be made accurately by observing the number and fre-
quency of word errors, and, if it is concluded that a sync loss has
occurred, syne can be recovered by sliding the word frame until the
number of errors observed abruptly reduces to a predetermined level.
The penalty for such a process is, of course, the time delay and the
loss of data.

V. CONCLUSIONS

Techniques for automatic word synchronization recovery are pre-
sented. The techniques are useful if the slippage of word framing is not
large, which is presumably the usual case.

An upper bound on the synchronization recovery capability for any
cyclic code is found. Tt is shown that, for recovery to be possible, the

~amount of slippage in bits, r, cannot exceed (n — &k — 1)/2. It is also
shown that the synchronization-loss detection capability of any cyclic
code is upper-bounded by n — & — 1 bits and furthermore, the bound
can be met.

For shortened cyelic codes, the technique has five valuable features:

(7) No additional redundaney is required if the code corrects more
than two errors, and only two additional check bits are required if the
code corrects one or two errors. The generation of such check bits is sim-
ple.

(42) The normal error-correcting ability of the code is not reduced
when synchronization is maintained.

(#7) The correction of synchronization loss can be accomplished even
in the presence of additive noise,

(f7v) The time delay required before proper framing is restored is
small, usually one-word time.

(v) The implementation is very simple.

The technique has been successfully applied to an existing error con-
trol unit'* which utilizes a triple-error-correcting (200,175) code. The net
cost of the additional hardware is about 20 transistors. The circuit cor-
rects at least one-bit synchronization loss and, with diminishing proba-
hilities, corrects larger sync losses as well.
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For cyclic codes which are not shortened, necessary and sufficient con-
ditions for the existence of a suitable coset code without additional re-
dundancy for the recovery of synchronization loss are derived; and a
class of optimal codes is given.

Two schemes are presented for finding such coset codes. The first
scheme, called Scheme A, applies to any cyclic code whose minimum
distance is greater than 2¢ 4+ 2, where ¢ is the number of random errors
the decoder actually corrects.

Such a scheme is usually applicable to data systems with a reverse
channel in which case high error-detecting ability is utilized to obtain
very-high-accuracy transmission. This requires that the error-correct-
ing ability of the code be reduced in favor of the detecting ability. That
is to say, in such a case, the minimum distance of the code is often greater
than 2¢ 4 2.

TFor systems using forward-acting error correction only, the error-
correcting ability of the code is usually exploited fully so that the re-
quirements of Scheme A may not be met. A special technique, called
Scheme B, are developed for such situation. Instead of requiring d,, >
2t + 2, Scheme B requires a set of conditions which are almost always
satisfied by Bose-Chaudhuri-Hocquenghem codes that correct more than
two errors. Both schemes have the advantages mentioned earlier for
shortened cyclic codes except there is no noise tolerance.

Word synchronization loss is a catastrophic failure in error-control
systems. The techniques herein described offer a solution to this prob-
lem for all binary cyeclic codes with negligible cost in hardware, in time
delay, and without loss in transmitting efficiency in many cases.
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APPENDIX

The Verification that P(z) is Optimal

n—1 R (72
P(x) = 2, Pa' = D, 7o 4 4t (54)
1=0 o=0g
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where
r4+ (/2 +1) —a<n-—1 (55)
and
o =1+ 2[t/2] — i
Now
n—i—1
T.(z) = ;ﬂ (Pi + Pip)z™  0<s=r (56)
Consider
[t/2]
(1+")P(x) = (Z AR a:"“) (142"
o=ag
_ [”E” (2770 gelr—ente) (57)
Fﬂu
+ xn—l + :E.u—-l .
Note that:

() elr +1) —ao#a(r +1) —og+ sforall0 <s =
(74) The exponent of the highest order term under the summation
sign, [t/2](r + 1) — a0+ s < [{/2](r + 1) — oo + 7 <n — 1 by (55).
Therefore, no terms of (57) will be canceled for all 0 < s = r.
Note T,(x) is the same as the polynomial (57) with the lower order
terms 2°, 2', -+, "' removed so that the number of nonzero terms
(hence the weight) of 7,(x) is equal to the total number of terms of

(57) minus the number of nonzero terms with exponent s — 1 or less.
Case 1: {is odd.

an=1+2[t/2]—t=1+2§—;—1—t=0.

There are two nonzero terms in (57) which have exponents no greater
than s — 1, namely 2" "™ = 4" and 2", Therefore, the weight of
T,(x)

t—1
=2([z/2]+2)—2=2(T+2)—2

= {4 1.
Case 2: t1s even.

go=142/2) —t=1+2(/2) —t=1.
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There is only one nonzero term, namely, 2*"' that has an exponent no
greater than s — 1. Therefore, the weight of T, (x)

—o(/2] + 1) —1=2@2+41) —1=t+1
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