A Model for the Random Video Process
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For problems concerning the transmission of video signals, it 1s often
desirable to know the statistical distribution of power in the frequency
domain for the signal process. It 1is convenient to have a model, involving
only a few essential paramelers, which will satisfactorily characterize the
power spectral density of the random video signal. This paper proposes a
model for the random picture and derives expressions for second-order
statistical properties of the video signal obtained from a conventional
scanning operation on the picture. The properties of typical picture material
make valid certain approximations which lead to especially simple, closed-
form expressions for power speciral density. The continuous part of the
power spectral density is expressed as a product of three factors, charac-
terizing separately the influence of poini-to-point, line-lo-line, and frame-
to-frame correlation. For parameters representative of typical picture
material there is observed an extreme conceniration of power near multiples
of the line scan and frame scan rales. An 1llusirative example of the use of
the model in an optimum linear filtering problem 1s included.

I. INTRODUCTION

This paper provides a detailed development of a simple model for
characterizing the statistical properties of a random video signal. The
primary concern is the modeling of the power spectral density of the
electrical process generated by linear, sequential scanning of a rectangu-
lar portion of an infinite, two-dimensional random picture. The spatial
and temporal statistical properties of typical picture material allow
approximations which lead to a model having an especially simple form,
characterized by only a few parameters. The model has a form eonvenient
for the analysis of a variety of signal transmission problems. The validity
of the model for these purposes is established by comparing it with
results obtained in several independent experimental studies.!-2-2

The relationship between the second-order statistics of the random
picture and those of the resulting video signal due to line-to-line and
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frame-to-frame correlation is examined in Section II. Section IIT con-
siders the composite video signal wherein the picture signal is periodically
interrupted and a periodic pattern is inserted for purposes of syn-
chronization and blanking. A model of the random picture process is
developed in Section IV. The results are combined in Section V to
provide a summary of expressions for the power spectral density of the
composite video signal. Section VI is an illustrative example of the use
of the model for deriving optimum linear signal processing networks
for video signal transmission over a noisy channel. A glossary of symbols
is provided in Appendix A.

1I. EFFECTS OF THE SCANNING OPERATION

For the first step in the development of the random video signal,
we consider a still picture with luminance given by the “‘stationary”
random process, d(z,y); i.e., the two-dimensional autocovariance func-
tion for the process can be described by

E [d(2:,3) d(@, 92)] = ¢ (a,8), (1)
where @ = ¥y — 1, = horizontal displacement
B = y; — 1 = vertical displacement.

TFor convenience in derivation of the equations, we assume that
d(z,y) is a zero-mean process. Although physically d(x,y) would be
non-negative, it is easier to add in the mean in the final expressions.
The video signal, »(t), at the output of an optical scanner moving at
constant velocity across the picture is a stationary process with an
autocorrelation function simply related to ¢(a,3). In order to avoid the
introduction of unnecessary constants, assume that the scanner moves
in a horizontal direction at unit veloeity and also that output voltage
is proportional to luminance with unit conversion gain. Then

e(r) = Ep@(t + )] = ¢(r,0)
and E(t)] = 0. (2)

Actually, the scanner output is normally a nonlinear function of lumi-
nance, however, the model developed here has the property that its
autocovariance function is changed only by a multiplicative constant
when subjected to a zero-memory, nonlinear transformation.* Hence,
the model remains valid for any scanner characteristic and any in-

* For the random process described in Section IV, the autocovariance is propor-
tional to the variance of the first-order amplitude probability density function.
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stantaneous companding operation to which the video signal might be
subjected.

The next step is to account for the effects of line-to-line correlation
by considering the sequential scanning of a still picture in the form of
an infinite strip with a finite horizontal width, traversed by the scanner
in an interval of T seconds. Successive lines are separated in a vertical
direction by a distance corresponding to the horizontal travel of the
scanner in an interval of 7, seconds. The abrupt change in scanner
position when it reaches the edge of the strip causes the video signal
to be a nonstationary process. The autocorrelation for the process,
Y (t,r) = E[v(t)v(t + 7)] is periodic T in {. This is related to a stationary
process in the usual manner by considering ¢ a random variable uni-
formly distributed over the interval (0,7]. Then,

e(7) = Ely(t,7))

= i e(r — kT kT,)P(k,). (3)

k=—c0

The probability, P (k,7), that the points ¢ and ¢ + 7 fall in lines & apart
is given by the translates of the triangular function, gr(r).

P(kyr) = gr(r — k1),
where

1—'—,}—' for [7]| =T .

=0 otherwise.

QT(T)

Combining (3) and (4), the autocorrelation function for the video
signal with line-to-line correlation taken into account becomes

ea(r) = ,,_Zw*"“ — kT kTo)qe(r — kT), (5)

For typical picture material, ¢(7'/2, 8) =< 0. In this case ¢ (7) is a

sequence of essentially isolated pulse shapes, gr(7)e(7,0), centered on

integral multiples of T', the kth pulse from the origin having a magnitude
proportional to ¢ (0,kT,) as indicated in Fig. 1.
The power spectral density of this process is

®,(f) = f_ o)
(6)

Z G(f,kT, ) e—jZIka
k=—w
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where
GUKT) = [ ar(e(rkT)e ™ dr. )
If we let
H(fp) = f_: G(fo)e ™ do (8)
then
kT = [ :H( Fp)e Ty, (9)
Now substituting (9) into (6) and using the identity
ki e = .,.io 8(x — m) (10)

we get

1 = T m
@l f) —nm;mﬂ(f,ﬁ(f— 1_,)) (11)

Again considering typical picture material, ¢ (r,0) is narrow compared
to g, (r) so a good approximation is gr(r)e(7,0) = ¢(7,0). In this case,
H(f,v) is essentially just the double Fourier transform of the picture
autocovariance function

H(fp) = ffj olra)e " drds. (12)

A more significant consequence of the correlation in typical picture
material is that &,(f) can be closely approximated by the product of

#2(7)

¢(0’D}— ’z’q.T(TJ $(T,0)

¢(°1|’y\
]

0 T KT T

Fig. 1 — Autocorrelation of video signal with line-to-line correlation.
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two functions, one periodic 1/T and the other an envelope with rela-
tively small variation over 1/7 intervals. Since, for typical picture
material, H(f,0) and H(0,f) have roughly the same width and since
T/T. > 1, it follows that H(0,(Tf/T.)) is very narrow compared to
H(f,0). Furthermore, since H(f,0) has relatively small variation over
an interval of width 1/7, then (11) can be approximated by

®(f) = c,,‘;m (T’T(f_?’;))

1 T m
= H(f0) ,,.;_m H (0, T. ( - T)) )

A power spectral density of the form indicated in (13) corresponds
to the property of separability in ¢(r,0). Let

e(r,0) = A en(r) ¢, (0) (14)

where ¢, (r) and ¢,(c) are normalized autocorrelation functions for
scanning along horizontal and vertical lines, respectively. ¢n(0) =
¢, (0) = 1; @ = ¢(0,0). Neglecting edge effects, from (12) we have

H(fy) = d2®(f) &, (»),

and the power spectral density (11) becomes

Ba(f) __cp,,(f) E %, ( (f— ’;)) (15)

(13)

A sketch of this function is shown in Fig. 2
The final step in characterizing the effects of the scanning operation

®, (f)

Fig. 2 — Power spectral density of video signal with line-to-line correlation.
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is to account for frame-to-frame correlation in repeated scanning of a
finite portion of the infinite strip. Of course, if the picture is still, the
resulting process is periodic. We consider a randomly moving picture
with slow variation compared to the frame repetition rate, 1/NT, where
vertical scanning is accomplished by N uniformly spaced lines. The
nonstationarity arising from the abrupt change of scanner position
when it reaches the bottom edge of the picture is handled in the same
manner as before in terms of a shaping function, gyr(r), whose effect
can be neglected for typical picture material. Expressing the normalized
correlation of the luminance of a picture point at times separated by %
frame intervals by ¢, (kNT); .(0) = 1, then

pa(r) = k_z @i(ENT)gs(r — kNT). (16)

Because of the slow variation due to motion, frame-to-frame correlation

is high and ¢;(r) is essentially the product of ¢,(7) and a periodic repeti-
tion of ¢ () as indicated in Fig. 3.

The power spectral density, obtained from (16) and the use of relation

(10) is

3(f} = ‘I’z(f) =Z_w ﬁﬂ:(kNT)e_jhkN”

®o(f) E cb.( NT) v

. it

Al

Fig. 3 — Autocorrelation of video signal with frame-to-frame correlation.
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Combining (17) and (15), the final expression for &;(f) is given as the
product of three functions; an envelope Gi(f) representing horizontal
picture correlation, a function G, (f), periodic 1/T, representing vertical
picture correlation, and a function G,(f), periodic 1/NT, representing
frame-to-frame correlation.

ool [ 2.0 (7.0 - 7))

[we Zmb-wm)]
GGG ).

As indicated in Fig. 4, the factors @, (f) and G,(f) impose a “fine strue-
ture” on ®;(f). In considering various smoothed versions of power
spectral density, it is helpful to note that the average values of G,(f)
and G,(f) are both unity.

Some practical scanning operations involve line interlacing. For the
conventional 2:1 interlace scan, the resulting modification of (18) is
simple. Since consecutive lines are now twice as far apart, the factor
@, (f) is modified by replacing T, with 27, . This modification results
in the individual peaks in G,(f) centered at multiples of 1/7 being
broadened to twice their original width. Since the picture is secanned
vertically every NT/2 seconds, the G, (f) factor is modified by replacing
N by N/2. This effects a suppression of the terms centered at odd

II

By(f)
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Fig. 4 — Power spectral density of video signal with frame-to-frame correlation.
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multiples of 1/NT. This latter modification is approximate since consecu-
tive vertical scans are not exactly in register, however the ratio of power
at odd multiples of 1/NT to power at even multiples of 1/NT is given
by the ratio of 1 — ¢,(T.) to 1 + ¢,(T,) which for typical picture
material may be less than 0.01. Derivation of the modifications for more
complicated interlacing arrangements is straightforward.

III. COMPOSITE VIDEO SIGNAL

It is common practice to interrupt the video signal after each line
scan and frame scan for the purpose of inserting control signals such as
synchronizing and blanking pulses. The resulting signal is referred to as
the composite video signal and the following development shows the
form of the power spectral density. In order to simplify the argument,
consider the following composite signal, z(f), which is a random process
interrupted every T seconds for a duration of a7 seconds with an
arbitrary periodic pattern, w({), inserted in the blank interval:

2() = p(0) v(t) + w(®) (19)

where p({) is periodic T, equal to zero in the blank interval and equal
to one in the video interval; w(t) is periodic 7' and equal to zero in the
video interval; and (f) is a zero-mean random process with autocorrela-
tion, ¢(r). The process p(f) v(t) is, of course, nonstationary but after
averaging its autocorrelation function, y(,r), over the period T' we have

¢(r) = E[p(tr)]
@(r) Pr [t and ¢ 4+ 7 in video region]

Il

(20)
= (1 — a)e(r) k;_:w qu-ayr(t — kT)

where

qu-ar(r) = 1 — (I—I_TLW in [r]=(1—a)T

=0 otherwise.

From (20), the autocorrelation function of the periodically blanked
process is obtained by multiplying the autocorrelation of the original
process by a periodic function having a shape as indicated in Fig. 5.
Note that no periodic components are generated by blanking. For
moderately small « and typical video signal autocorrelation functions,
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Fig. 5 — Periodic shaping for autocorrelation function of periodically blanked
video process.

the effect of multiplying by the periodic shaping function is essentially
the same as multiplying by the constant, 1 — «. The power in the com-
posite signal is the sum of the power in the blanked process and the
power in the added periodic signal since p(f)v(t)w(t) = 0. Hence, the
power spectral density for the composite signal is

w() = (- e+ Slwls(r- 1) @)

where the w; are the Fourier coefficients for w(t). Modification of (21)
for the actual control signal which consists of both horizontal and
vertical synchronizing and blanking pulses is straightforward. In this
case, w(t) is replaced by a signal periodic NT (or NT/2 for 2:1 interlace).
The constant 1 — e« is still just the relative amount of time devoted to
the video signal.

1V, MODEL FOR RANDOM PICTURE

To complete the model for the random video signal it remains to
characterize the luminance process, d(z,y), in such a manner that a
useful expression for its autocovariance, ¢(a,8), can be derived. The
discussion in Section II indicated the validity of the separable form
(14) for ¢(a,8). Assuming separability, we need only model the one-
dimensional process resulting from a unit velocity, linear scanning of
the picture. Assume that a realization of this process is a piecewise-
constant function, v(¢), which takes on the value v, over the interval,
t, =t < l,41 as shown in Fig. 6. The occurrence of the sequence {t,}
of points along the ¢-axis is a stationary random process and the sequence
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v(t)
Vn

Vn+i

--—-| I th thes - t

T'ig. 6 — Random video signal.

{v,} of random variables is also stationary. Then the autocorrelation
function for v(f) is

o(r) = d? Z_; rmP (m,r) (22)
where @1rn = E [vatniml

@=Ep); E]=0

and P (m,r) is the probability that the points ¢ and ¢ 4 = are in intervals
m apart, i.e., that m points of the {{,} sequence lie between them.

The simplest model is constructed by assuming that the {v,} are
statistically independent and that the {t.} are generated by a Poisson
process with rate parameter, X. This model is the random step function
discussed by Laning and Battin.’ For this case, (22) reduces to

¢(r) = d P(0,7) (23)
with
Pm) = A7l e
hence,
olr) = aze . (24)

An obvious step in the generalization of this model is to consider
correlation in the {v,} sequence. Suppose {v,} is a stationary, wide-sense
Markoff sequence.o Then it has the property that

Twm = T1" (25)

where r, is the correlation between adjacent elements of the sequence.
In this case,
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o0

) = \JT|) p e N
o(r) Z_; : ¢ (26)

= d?exp [—(1 —r)N| 7],
hence, this model is equivalent to the previous one (24) with X replaced
by (1 — r)A. This result suggests an interesting alternate formulation
of the model. Suppose that the {{,} sequence is uniformly spaced with
separation T, (stationarity is accomplished by randomizing the phase
of the sequence). For this case,
P(m,;) = gr,(r — mT.) + qr,(r + mT,) (27)

where

7

I
—

QT,(T)

in (7| =T,

0 otherwise.

Let {»,} be a stationary, wide-sense Markoff sequence with correlation
p between adjacent elements, then

5]

olr) =a 22 p" qr(r — IT.)
=
_Inp

>~ @exp (=X|7]) where A = 7

(28)

This is a polygonal approximation to the exponential function which,
since correlation between points 7', apart is typically very large, is a
very close approximation.

Using the preceding models, which are all equivalent, the random
picture is characterized by an autocovariance

e(ro) = dexp (=\|7| =N |a]) (29)

which depends only on the variance, @2, of luminance and two param-
eters A, and A, which specify the average number of statistically inde-
pendent luminance levels in a unit distance along the horizontal and
vertical, respectively. Alternatively, the correlation is characterized
by the parameters p, = exp [—MT.] and p, = exp [—A,T.] which are
the correlation coefficients of luminance in adjacent picture elements
when the picture area is quantized into small squares of dimension T, .

The suitability of the exponential correlation function for modeling
the random picture can be established by examining the results of
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correlation measurements reported by Kretzmer' and O’Neal’ and
power spectral density measurements by Deriugin.’

V. SUMMARY

Combining the results of the preceding sections, simple closed-form
expressions can be written for the power spectral density of the com-
posite video signal. At this point the mean value d of the luminance is
included so the variance of the luminance becomes ¢* — d”. The syn-
chronizing and blanking signals are assumed to occupy a fraction «
of the total time and to form a pattern periodic NT. Let w; be the Fourier
coefficients of the periodic signal added to d in the blank intervals.
Then the power spectral density for the composite signal is

S(f) = (1 — )G ([)G.(NIG(F)
oo y i! "
+ :Z [ w0, | 6(ff ]W) + d 8(f).

=—00

(30)

Using the exponential correlation funections of Section IV and (18),
we have

)
(2mf)? + M2

The factor indicating shaping due to line-to-line correlation becomes

G = 3 N (32)
em [m'/:n (f— T)} o

The elosed form for this expression is obtained by noting that G, (f)
is the convolution product,

T 2\, 1 m .
Gv(_f) - 'TTH (211'Tf/TZ)2 + sz * T ; 5(f - T) . (33)

Gi(f) = (@@ — &) (31)

Using the identity (10) and performing the indicated convolution,
@, (f) is expressed as a geometric series which ean be summed to give

sinh T\,

cosh T\, — cos 2«7’ (34)

G.(f) =

A similar expression for the G,(f) factor can be obtained by assuming
that luminance of a point at successive frames forms a wide-sense
Markoff sequence with frame-to-frame correlation p, = exp [—NNTJ.
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Then

sinh NT\,

cosh NTh, — cos 2aNTf" (35)

G:(f) =

Frame-to-frame correlation, p,, has been measured experimentally’
and found to lie between 0.86 and 0.80 for typical material. Using these
values in (35) the width (between —3-db points) of the peaks in G, (f)
is only about 0.048 to 0.071 of the separation, 1/NT, between the peaks.

In applications where the structure of G4(f) is too fine to resolve,
the smoothed version, (1 — )G (f)G.(f), of the continuous part of
the power spectral density is of interest. This quantity is shown in Fig.
7 for two different types of video signal; one the standard 525-line, 30-
frame per second broadcast television signal (BCTV) and the other the
275-line, 30-frame per second, initial design of the Bell System station-
to-station Picturephone® service (PP). For comparison, it is assumed
that both pictures have the same correlation, p = 0.9, between picture
elements of dimension 7, in both horizontal and vertical directions.
Also both signals are obtained from 2:1 interlaced scanning. The differ-
ence in the two curves in Fig. 7 is due to different values of the quantity,
T./T. T,/T is a fundamental parameter of the raster design depending

o]
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Iig. 7 — Continuous part of power spectral density for two typieal video signals
with frame rate structure smoothed out. (p = p» = p. = 0.9.)
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on the number of lines per frame, the aspect ratio of the visible portion
of the picture, and the relative size of the blank portions of the hori-
zontal and vertical scans. For BCTV, T./T = 0.00128; and for PP,
T,/T = 0.0041.

The value of the parameter p used in Fig. 7 represents a highly detailed
random pieture. A typical head-and-shoulders view of a person may
have p = 0.99 and p = 0.98 represents a moderately detailed picture.!
Even for p = 0.9 the power is exiremely concentrated around multiples
of the line scan rate, 1/7. The width of the peaks between —3-db points
and also the ratio between successive maxima and minima in the power
density are shown in Table I for various values of p and AT, .

VI. APPLICATION

One obvious application of the model is in problems concerning mini-
mum mean-squared error filtering of the video signal in noise. Solution
of these problems invariably requires a knowledge of power spectral
densities of the signal and noise. The concept of utilizing the inherent
redundancy in the video signal to ease transmission requirements is
familiar. Alternative to seeking coding arrangements which reduce band-
width requirements, we can consider linear processing operations which
utilize the highly nonuniform nature of the power spectral density to
effect a reduction of signal power needed for a given performance.

As an example of this approach, consider the design of optimum pre-
emphasis and de-emphasis filters for transmission over a noisy channel
as shown in Fig. 8. Assume that the channel has a constraint on maxi-
mum signal power and that it is desired to minimize mean-squared error
in the received signal, 4({).

Details of the derivation of the optimum filtering characteristics

TaBLE I — WipTH AND HEIGHT OF POowER DENSITY CONCENTRATIONS
Arour MULTIPLES OF THE LINE SCcANNING RATE FoR 2:1
INTERLACED SCANNING

q — Sin/T
’ M= —lnp | peidd Getween 30 |10 togu ot o7
0.99 0.010 0.00636 40.0 db.
0.98 0.020 0.0127 34.0
0.97 0.030 0.0191 30.4
0.95 0.051 0.0326 25.8
0.90 0.105 0.0668 19.6
0.85 0.163 0.1035 15.8
0.80 0.223 0.1420 13.2
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CHANNEL

/_—Iﬁ
G(f) G\— F(f)
SIGNAL, X (t) P yt)=
POWER SPECTRAL FGeX+F+2
DENSITY, S(f)
NOISE, 2 (t)

POWER SPECTRAL DENSITY, N (f)

0o
Pszf S()|G(F)|? df = siGNAL POWER ON CHANNEL

-00

Fig. 8 — Spectrum shaping for transmission over noisy channel.

are presented in Appendix B. For high signal-to-noise ratio on the
channel, the two filters are essentially inverse and we get*

Pl = 6(5) = [;‘%{))] (36)

where the constant x is adjusted to meet the signal power constraint.

1

W 1-% f(SN)* df. (37)

The advantage gained by using the filter networks can be expressed as
a signal-to-noise ratio improvement factor v which is simply the ratio
of signal-to-noise ratios at the output of the receiver with and without
filtering.

_ JSdf INdf
Y = m (38)

When the optimum filter pair (36) is used, (38) becomes

_ JSdf INdf

Yout = (TSN YIfE” (39)

The expression for yept provides another interesting measure of the
nonuniformity of S(f). In a function space representation, the quantity,
cos” ' (1/~y.,,,t)5, is conventionally interpreted as the angle between the
functions S*( f) and N? (f). If we consider flat noise over a band W
and zero outside, then vop, becomes a comparison of S'(f) with a con-

* The expressions for S(f) use only the continuous part of the expression. The dis-
erete componenets should not be transmitted in this problem.
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stant over the band of interest. In this case,
2W [Sdf

Values of yp¢ in (40) are plotted in Fig. 9 for the case, W = 60/T
and T,/T = 0.0041; these parameters corresponding to the Picture-
phone video signal.

The form of the optimum filter, in this case F'(f) = S*(f ), suggests
a rather difficult realization problem. Accordingly, it is interesting to
evaluate the performance of a suboptimum filter pair having the simple
form shown in Fig. 10. The parameter, a, in the network realizing the
periodic part of the transfer function is adjusted to match the maxima
and minima in S*(f). The values of v using this filter pair are also shown
on Fig. 9 and are seen to be remarkably close to the optimum values.
1t is of interest to note that part of the pre-emphasis filter effects a
smoothing of the transmitted power spectral density by transmitting
only the partial difference, x(t) — ax(t — T'), between successive lines.
This technique has been discussed by Harrison’ and O’Neal® with regard

(40)

T
JN L
\\\\JTERS
X\
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' >
SUBOPTIMUM =" \\\ SEQU’ENTIAL
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5.0 —
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SIGNAL-TO-NOISE RATIO IMPROVEMENT IN DECIBELS

o
[} 0.025 0.050 0.075 0400 0425 0450 0475 0.200
ATe

Tig. 9 — Performance of spectrum shaping filters. (W = 60/7, T./T = 0.0041.)
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—_ (s)
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a2z = [(zqrf)z +;>\2]é[1+a2 -28c0s 2 WTF]

(a)
| +3) »
NETWORK |
L 1 +
-3DB/OCT. SLOPE
ABOVE f =5+ a DEI}AY

-4
|F ()2 =[(aw)? +A3] : [1+a2-2acos2aTf]

(b)

Fig. 10 — Suboptimum filter pair; (a) pre-emphasis network, (b} de-emphasis
network.

to the use of “previous line” linear prediction to reduce the correlation
present in the transmitted signal.

In actual practice, a substantial portion of the indicated advantage
may not be realizable. This is because the received noise, in passing
through F (f), is concentrated at multiples of 1/T causing a line-to-line
correlation which is subjectively more annoying than the same amount
of flat noise power. This subjective effect has not yet been fully evalu-
ated. If it can be deseribed by a frequency domain weighting function,
then the methods presented in Appendix B can be easily adapted to
give a more accurate evaluation of optimum filtering.

APPENDIX A

Glossary of Symbols

d(z,y) luminance at the point (z,y) on the picture.
e (a,B) autocorrelation of picture luminance.
o1(7) autocorrelation of video signal obtained from linear

horizontal scanning of infinite picture.
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2 (1)

w3 (1)

'Ph(f)y ‘PH(T)

ee(7)

Gfl(f): Gt‘ (f)! Gﬂ(f)
S(f)

w(l)

w
o

T
T,
N
}\h 3 Av

Ph 3y Py

APPENDIX B

autocorrelation of video signal obtained by se-
quential horizontal scanning of infinite vertical
strip.

autocorrelation of video signal obtained by re-
peated scanning of rectangular portion of moving
picture,

normalized versions of ¢(r,0) and ¢(0,7), respec-
tively.

normalized autocorrelation of luminance at a
point as a function of time.

factors of the power spectral density characterizing
point-to-point, line-to-line, and frame-to-frame
correlation, respectively.

power spectral density of composite video signal.

periodic part of composite video signal less the
average luminance, d.

Ith Fourier coefficient of w ().

relative amount of time occupied by non-video
portion of the signal.

line scan interval in seconds.

time interval equivalent to distance bhetween
adjacent lines at scanner velocity.

number of lines per frame.

Poisson rate parameter describing luminance
process in horizontal and vertical directions,
respectively.

correlation between luminance values in adjacent
square picture elements, of dimension 7., in
horizontal and vertical directions, respectively.

Optimum Filtering of Random Video Signals

The criterion for optimum performance is expressed in terms of mean-
squared deviation between the received signal, y(¢), and the transmitted
signal, z(f), shown in Fig. 8. The received signal is decomposed into
distorted signal component, w({) = FG-x(t), and noise component,

v(t) = F-z(1).
Let

I=E[@x-1y)
=E[(z — w4+ E[) — 2E [(x — u)].

(41)
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The last term in (41) vanishes by assuming statistical independence of
signal and noise and zero-mean for the noise. The two remaining func-
tionals are expressed in the frequency domain as

1= [80) 11— FOGW Faf + [ NGO IFG) [ af. (42)

We want to find the filter transfer functions F (f) and G (f) such that I
is minimized subject to the constraint on signal power on the channel.

[sw 1601 =P (43)

Problems of this type appear to have been first discussed by Costas.®
It can be shown that if the signal-to-noise ratio on the channel is moder-
ately high, then F(f) and G(f) are essentially inverse. Accordingly,
we add the constraint, G (f) = F(f), which makes the first term in
(42) vanish, and find the stationary points of I + pP, with respect to F.

I+uP = [N+ [ 857 ar (44)

where we assume F to be a real function (since its phase does not affect
signal power or noise power) with the understanding that the pre-
emphasis filter can have an arbitrary phase shift since the de-emphasis
filter has the complementary phase shift. In order that the first variation
of the functional in (44) vanish, it is necessary that

= (‘;—;S) (45)

where

: 1

W= f (SN)* df

in order to meet the constraint on signal power. Substituting (45) into
(44) the minimum mean-squared interference becomes

1 1 :
i = TU (SN) df] . (46)

Because of the constraint, G~' = F, it makes sense to speak of signal-to-
noise ratio at the output of the receiver. The improvement in signal-to-
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noise ratio by choosing I according to (45) relative to ' = 1 is expressed
as

fSﬂfNﬁ

[ s df:lz-

If we assume that N (f) is constant over the band | f| < W and zero
elsewhere, then (47) becomes

(47)

Yopt —

oW f S df
Yopt = == (48)

[osa]

Now let S(f), as indicated in Section V with A, = X\, = A, be given by

© 2\ [ sinh AT,
S(f) = l:(z,rff + }&’] cosh AT, — cos 27rTf:|

and since
[ st dr = o(0) = K,
we have

ST sinh AT, by
Yopr = 21 f_w (22/)F + | | cosh AT, — cos 2277 | ¥ - (49)

Integrals of this type, having an integrand A(f) B(f) where B(f) is
periodic 1/T and A (f) is a slowly changing envelope function, can be
closely approximated by

wT

[anpna= 3 a(Z) [ Bpa o

W
=1 [ apir| B ar
w 1T
Accordingly, we evaluate

v 2\ N ) LI P 7 g w
.[url:(er)2+?\2:| f=——h== for &

v

1
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and using a suitable change of variable on the second integral

j‘ sinh A7, *d _ 2 o AT f de
17 | cosh AT, — cos 2xTf = 1rT 1 — k' sin’ o]

where

AT,
5 -

K=

This last integral is recognized as the complete elliptic integral of the
first kind, & (sin™' k), which can be obtained from tables. Now com-
bining these results,

[ —W st df]2 8)\ AT, [ln W]E x* (sin”' k) (51)

A
and (49) becomes
=W
4\
AT, [ 4xW

’YOpt()‘) = (52)

~ :|3€"(sm—1 k)

This function is plotted in Fig. 9 over the range of typical values of A,

For the suboptimum filters shown in Fig. 10, we want to evaluate v
in (38) for the flat noise case. The integrals are evaluated using the
approximation indicated in (50).

2
Y\ = — [m ﬁvziﬁ[fl/t)r — m_m], (53)
1 —a A
In (53) the parameter a is selected to satisfy
(1 — a/1 4+ a)® = tanh AT./2. (54)

This choice of @ makes the ratio of maxima to minima in the periodic
part of the transfer function equal to that of the optimum filter. Values
of y(\) from (53) with T, replaced by 27, for 2:1 interlace scanning are
also shown on Fig. 9.
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