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Estimating the mean of a stationary random process from the average
of equally weighted samples taken periodically in a closed interval (0, T)
is considered. The variance of this estimator as a function of the number
of samples in the interval is given in the form of a modified sampling theo-
rem.

I. INTRODUCTION

This paper* considers the problem, commonly encountered in detec-
tion theory, of estimating the mean of a stationary random process from
samples taken periodically in a closed interval (0, 7). The samples are,
in general, correlated and the estimator used is the average of equally
weighted samples taken in the interval. Existing results are extended to
give a clearer interpretation of the dependence of the variance on the
number of samples. The dependence is obtained in terms of the power
spectral density of the process in the form of a modified sampling
theorem.

II. THEORY

2.1 General
To estimate the mean value, A, of s(¢) where
s(t) = A+ n(l), (1)

the first sample is taken at ¢ = 0, and a total of N + 1 samples is taken
in time 7T'. n(t) is a sample function from a wide-sense stationary random
process with mean zero and known autocorrelation function R (7).

* This work was supported by the U. S. Navy, Bureau of Ships under contract
No. Nobsr-89401.
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The estimator of A is
= [1/(N + 1)] Z::O s(mT/N). (2)

Tor a fixed T, N is to be chosen to minimize the variance of A.
The variance of A is given by

A@ =+ 2 (1= 2 k. @)

Equation (3) may be found in slightly different form in the literature.'?
It is now convenient to define a weighting function, ¢, (7), by

_ 7]
4, (7) —1[1 7o Il = (4)

| o , otherwise.
With this definition, (3) may be written as

mT

= (_N%.-j [: qunviymr () R(r) m;ﬁ 5 (-,— - T) dr, (5)

o*(4)
where §(r) is the Dirac delta function. It is more revealing to express
the variance in terms of spectral densities; thus, we make the following

definitions:

F) = gy L tissoms(DR() exp (—jur) dr -
= Q(w) ®S(“’)!

where

Qw) = N l)f qunsnymr(r) exp (—jor) dr -
_ T {sm [w(N 4+ 1)/2N]'T}2

[@(N + 1)/2N|T
and S (w) is the spectral density of n(t).
Also define
G(w) = ZﬁT) j:m q[(N+1)."N]T(T)R(T) (8)

oxp (—jor) 3 a( —"_;VT) dr.

m=—o0
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By using Poisson’s sum formula we can show that

Glw) = Z F( —mg%]\j). (9)
Now, comparing (5), (8), and (9), we observe that
A = 6w = Y 5 p(n2), (10)

Because @ (w) is approximately zero for
lo| = @r/T)IN/(N + 1)],

if S(w) is zero for | w | = 27B, their convolution, F (w), will be approxi-
mately zero for |w| < 2x[B + N/T(N + 1)]. From this result and
(10) we observe that choosing

2N N
2Bt o) ()
makes
o (Ad) = G) ~ (N/T)F(0). (12)

Although the restriction of (11) appears to minimize the variance of
A, it should be observed that F(0) is also a function of N, namely

sin [m WQ—;I) T]
dw

(N-l-l)
N T

If 27/T is of the same order of magnitude as 2B, the bandwidth of
S (w), then (N/T)F(0) and therefore the ¢°(4) may be minimized by
choosing the smallest value of N satisfying (11). In such cases, making
N larger may actually increase the variance, as illustrated in the ex-
amples. (N/T)F(0) would be independent of N if the first sample is
taken at ¢ = T/N rather than { = 0. Solving (11) for N yields an
approximate rule that

N%BT1+V1;(4/BT), (14)

(13)

where N is an integer, will minimize the variance of A. It should be
recalled that the total number of samples taken in T"is N + 1.

The form of (9) is frequently encountered in sampling theory, where
one sometimes thinks in terms of the original spectra, F(w), shifted
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by integral multiples of the sampling frequency, 2aN/T. The Nyquist
frequency is determined such that overlapping of the sideband spectra
is small. This is too restrictive when one is interested in the variance,
since then only the value of G (w) at @ = 0 is of interest. Thus, sampling
can be done at a rate sufficient to prevent overlapping of sidebands at
w = 0. Equation (14) may be considered as a modified sampling theorem,
stating that, to minimize the variance, the sampling frequency, f,,
must satisfy

N 1 4+ 1+ (4/BT)
. .

fo=7=B (15)

Tor large T, fs is equal to one half of the Nyquist frequency required to
reconstruct the time function.
2.2 Variance for Large T

When T is sufficiently large, the @ (w) function approaches a delta-
function, namely

Q(w) ~ 2a8(w)/(N + 1), (16)
and
a(A) ~ [N/T(N + 1)] m;w S(m2aN/T). (17)
If, as before, S (w) is bandlimited and
1 N
then
@A) ~ 8(0)/T. (19)

Notice that taking more than BT samples will not decrease the variance
appreciably. Taking less than BT samples will increase the variance at
a rate which depends on S{(w). The dependence of the variance on N
can be easily obtained for this limiting situation from (17). In general,
if d8(w)/dw < 0 for w = 0, then the variance of A will also be a mono-
tonically decreasing funetion of N for N/(N + 1) = 1. On the other
hand, if the spectral density of the noise is not monotonically decreasing
for w = 0, then the variance of A will have local minima for values of
N < BT. These statements concerning monotonicity would be true for

all T and N if (N/T)F(0) were independent of N.
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2.3 Limit of Continuous Sampling
. . . . 1 .
The limit of continuous sampling has been derived elsewhere and is

easily obtained from (3). The result is

(A)e = Tf (I — —-) R(7) dr = —[ gr(r)R(+) dr (20)
sin wT/2
= = [ st )( ot )dm. (21)
As T becomes large,

S(O)

(A)c%_[ RICY 8(w)dw (22)

Thus, for large T, taking N = BT samples gives the same variance as
sampling continuously.

2.4 Equivalent Independent Samples

When T is large, one can determine the number of independent
samples required to achieve the same variance as continuous sampling.
The variance for N; independent samples is

A4y, = %[ Slw)do - (23)
Ny —Ar‘— .
Equating this variance to the variance of (22) requires
1 ]
N.o— 2T L., Slalds (24)
' S(0)
Defining the effective bandwidth as
1 o«
op. — o _Ln S(w)dw (25)
e S(0) ’
(24) can be written as
N; = 2B.T. (26)

However, the variance achieved by continuous sampling may be ob-
tained by taking N = BT samples in time 7. Thus,

N; = (2B./B) (27)
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equates N for minimum variance to the number of independent samples
required to achieve the same variance.

III. EXAMPLES

The variance of the sample mean as a function of number of samples
(N + 1) and length of record (7)) has been computed for several spectral
densities.

The variance of the sample mean shown on the following figures was
computed using (3).

3.1 Rectangular Spectrum

1L —2r <w<2r
Si(w) = (28)

0, clsewhere.

Fig. 1 shows ¢°(A) plotted against number of samples. Each curve
of the set represents a different length of record T. The table on the
figure shows the relationship of the curves to the length of record.

The most striking feature of the curves on Fig. 1 is the abrupt steps
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Fig. 1 — Variance of the sample mean as a function of the number of samples
and length of record for a process with rectangular spectral density.
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in *(A) as N is increased. This behavior is predicted by (17). Equation
(14) predicts the approximate value of N for minimum variance. These
values of N are shown for each of the curves by a small circle.

An interesting point to note here is that in some regions a better
estimate of the mean is obtained when the same number of samples is
taken for a smaller 7. Also for small 7', ¢°(4) reaches a minimum and
then increases as more samples are taken. This implies that for small
values of T' a smaller variance is obtained by taking a smaller number of

samples (but ineluding the end points) than would be obtained by
continuous sampling,.

3.2 Sawtooth Spectrum

@ —2r S w = 27
2 b

Sz(w) = T (29)
0, elsewhere.

This is an interesting case for two reasons. First, its spectrum is
not monotonically decreasing. This gives rise to local minima and
maxima in ¢°(4) as a function of N caused by the spectrum shape.
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Fig. 2— Variance of sample mean as a function of number of samples and
length of record for a process with a sawtooth spectral density.
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Second, its spectrum at @ = 0 is 0, thus enhancing the error due to
approximating @ (w). The results are shown in Fig. 2.

3.3 Markoff Spectrum

8

w? + 16°

This is an example of a nonbandlimited spectrum. The values of
o*(A) are shown in Fig. 3. A point worth noting here is that if the band-
width of the process was defined as the width at the one-half power
points and the time function sampled according to (14), the value of
o*(4) obtained would be larger by about a factor of 2 than the minimum
value obtained by letting N approach infinity.

This example is also the same one treated by Fine and Johnson? for
small values of T. Curve A on Fig. 3 agrees with their results.

8s(w) = (30)

1V. SUMMARY

Theory has been presented which predicts the behavior of the variance
of the sample mean of periodic samples taken from a stationary random
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Fig. 3 — Variance of the sample mean as a function of the number of samples
and length of record for a process with Markoff spectral density.
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process. The variance is given in terms of the power spectrum of the
sampled process. Three interesting results have been shown:
() When BT >> 1, the variance of the sample mean is essentially
minimized when BT samples are taken,

(#7) The variance of the sample mean is not necessarily monotonically
decreasing as a function of the number of samples taken in a
fixed record length.

(#72) For short record lengths, it is possible to obtain a smaller vari-
ance with a small, finite number of samples than with continuous
sampling.
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