The SNOBOL3 Programming Language

By D. J. FARBER, R. E. GRISWOLD and I. P. POLONSKY

(Manuscript received March 4, 1966)

SNOBOL3 s a programming language designed for the manipulation
of strings. Features of the language include symbolic naming of strings and
paltern maltching. In addition to a basic set of primitive string-valued
functions, the system includes the facility for defining functions. These
defined functions facilitate the programming of recursive procedures.

This paper presenis an intuitive description of SNOBOLS3 and at the
same time incorporates complele reference material for the programmer.
The implementation of SNOBOLS3 for the IBM 7094 computer operating
under BE-SYS8-7 1s the basis for this description, but most of the material
is common to all tmplementations.

I. INTRODUCTION

In recent years a number of high-level programming languages have
been developed to extend the usefulness of the computer in dealing
with primarily nonnumerical problems. The most widely used languages
have been IPL,! LISP,2 and COMIT.* In 1962 SNOBOL* was developed
for problems involving the manipulation of character strings. The basic
operations of SNOBOL permit the formation, examination, and rear-
rangement of strings. SNOBOL3 is a generalization and extension of
SNOBOL. New features include string-valued funections and input-
output facilities integrated into the string structure of the language.
There are two types of functions: primitive functions that are included
in the system and defined functions that are defined by the programmer
in the SNOBOL3 language.

This paper is a deseription of SNOBOLS3 as a programming language.
Emphasis is placed on the language as distinet from its implementation.
In order to provide information for the potential programmer, however,
some references to the implementation are necessary. There are several
implementations of SNOBOL3 which differ in detail, particularly with
regard to input-output. The implementation for the IBM 7094 computer
operating under the BE-SYS-7 monitor is the basis for this paper.

895

896 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

Areas where other implementations are likely to differ are noted in the
applicable sections.

Section IT describes briefly and informally the essential features of
the language. This section is designed as a survey to provide an under-
standing of the general nature and capabilities of the language. Section
IIT is an elaboration of Section II completing the description of the
language. Sections II and III together provide a reference source for
the programmer. Section IV describes the environment in which the
language operates, including information which the programmer will
find useful in running programs. A list of primitive functions and sample
programs are included in appendices.

II. INFORMAL DESCRIPTION

SNOBOL3 has just one type of basic data structure: a string of
characters. The primitive operations of the language provide for the
formation, examination and rearrangement of strings. Arithmetic is
defined for operands that are integer strings. The operations to be per-
formed are specified in statements that may also be labeled and may have
go-to’s specifying transfers. A SNOBOL3 program consists of a sequence
of statements terminated by an END statement.

2.1 Names

A symbolic name can be assigned to a string and used as a means of
referring to that string. There are several ways in which a name can
be assigned a value. The simplest is the assignment statement. For
example, the statement

VOWELS = “AEIOU”

assigns the string AEIOU as the value of the name VOWELS. The
string consisting of a pair of quotation marks enclosing a string of
characters is a literal specifying the string AEIOU. The string VOWELS
appearing to the left of the equal sign is a name. A name that has been
assigned a value can be used whenever it is necessary to refer to that
value. Thus,

NON.CONST = VOWELS

causes NON.CONST to have the same value as VOWELS. The null
string, having length zero, can be assigned explicitly as value as in the
statement

ZIP =

SNOBOL3 897

2.2 Concatenation

The basic operation of concatenation of strings is indicated by listing
the names successively. The names are separated by blanks. Thus, to
concatenate two string names STRING1 and STRINGZ2 and then
assign the result to the name STRINGS3, the following assignment state-
ment suffices:

STRING3 = STRINGI STRING2

Many strings can be concatenated in a string expression, with literals
as well as names used to specify the strings. Thus, the following rules

ARGUMENT “2X + 37
EXPRESSION “SIN(” ARGUMENT “)”

would assign the string SIN(2X + 3) to the name EXPRESSION.

Il

Il

2.3 Integer Arithmetic

Arithmetic operations can be performed on integer strings with the
operators +, —, /,* having their usual meaning in integer arithmetic
and ** indicating exponentiation. Blanks are used to separate the
strings and operators. The statements

J = ‘(5”
I = “3”
N = I + IKZJJ

M=I*“3)+1J

assign the values 5 and 14 to the names N and M. All arithmetic opera-
tions are binary but more complex expressions can be constructed using
parentheses as indicated in the last example. Arithmetic has precedence
over concatenation, and both types of operations can be performed in
one assignment statement. Hence, the statement

INDEX — l‘A.il I + ll’l’, I’ll’, ‘]'
assigns the value A.4.5 to the name INDEX,

2.4 Pattern Malching

String pattern matching consists of examining a string for a succession
of substrings of specified form. A pattern-matching statement consists
of the string to be examined followed by a pattern. In its simplest form
the pattern may be simply a string. For example, the statement

NAME.1 “I8”

898 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

would examine the value of NAME.1 to determine whether it contains
the literal substring IS. The success or failure of a pattern match can
affect the flow of the program and has other consequences that will be
described later. In the example above, NAME.1, which specifies the
string to be examined, is called the string reference of the statement.
The string reference can also be a literal as in the following pattern-
matching statement.

“+—*/7 OPERATOR

There are a variety of types of patterns in SNOBOL3 enabling the
programmer to make complex inquiries about a string. The pattern,
for example, may be expressed as a concatenation of strings as in the
statement

EXPRESSION “x” OPERATOR “1r

Patterns of greater generality may be obtained by using string varia-
bles. As the name indicates, a string variable may have a string as value.
There are several types of string variables and the strings which are
acceptable values of a string variable depend on the type of the variable.
The simplest type of string variable is the arbitrary string variable,
so named because it can have any string as its value. An arbitrary
string variable is designated by a name bounded by asterisks.

A typical example of the use of an arbitrary string variable would
be in determining whether the value of NAME.1 contains the string
THE and the string IS but not necessarily consecutively. The arbitrary
string variable would be used to match the substring between THE and
IS. The pattern-matching statement could be

NAME.1 “THE” *SEPARATOR* “I8”

If the value of NAME.1 were THERAPIST, then the pattern match
would be successful with *SEPARATOR* matching RAP.

A consequence of the successful pattern match is the naming of sub-
strings that mateh string variables. In the above example, SEPARATOR
would be given the value RAP as if the assignment statement

SEPARATOR = “RAP”

had been executed.

In addition to arbitrary string variables, there are two other types of
string variables: fixed-length and balanced.

A fixed-length string variable can match any string of a specified num-
ber of characters. The notation for a fixed-length variable is similar to

SNOBOL3 899

an arbitrary string variable, except the name is followed by a slash
and then by a string specifying the length.

-The first three characters of the string named TEXT could be named
PARTI by the rule

TEXT *PART1/“3" *
If N had the value 3, the statement could have been written
TEXT *PART1/N*
As a second example, consider the statement
Hg ¥ *PLUS/“17* *MINUS/“17* *STAR/“17*

The pattern successfully matches the string, and PLUS, MINUS,
and STAR are assigned values.

A balanced string variable can only match strings that are parenthesis
balanced in the usual algebraic sense. Strings matched by balanced
string variables do not have to contain parentheses but cannot be null.
Such variables are therefore useful for pattern matching on strings that
are mathematical expressions. The notation for a balanced string varia-
ble consists of a name enclosed within parentheses and surrounded by
a pair of asterisks. For example, if EXPRESSION has the value
SIN(A*(B -+ (), then the pattern match in the statement

EXPRESSION “SIN(” *(ARG)*)7

is successful and ARG is given the value A*¥(B 4+ C). This use of the
balanced string variable may be compared to the arbitrary string varia-
ble in the following example

EXPRESSION “SIN(” *ARG1* “)»
where the value A*(B + C would be assigned to ARGI.

2.5 Rearranging Strings

By combining the operations of scanning and assignment in the same
rule, strings may be modified by replacement, deletion, or rearrange-
ment. In particular, if a pattern is followed by an equal sign and then
by a string expression, the substring matching the pattern will be
replaced by the value of the expression if the pattern match succeeds.
As an example of replacement, consider the following sequence of rules.

CARD = “KING OF HEARTS”
CARD “HEART” = “DIAMOND”

900 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

The second statement causes HEART to be replaced by DIAMOND
producing the string KING OF DIAMONDS. The following example
illustrates how the naming of substrings by string variables may be
used in the expression that specifies the rearrangement. The statements
SUM = “Al4A2”
SUM *X* l‘_l_!! *Y* — ‘K+(,, X ‘K,’) Y (‘)J,
change the value of SUM to +(A1,A2).

2.6 Indirect Referencing

A level of indirectness can be introduced in SNOBOL3 by prefixing
a $ to a name. Thus, if DAY has the value TUESDAY, $DAY is equiva-
lent to TUESDAY. An example of the usefulness of this facility is the
ability to modify the naming done in a pattern match. Thus, in the
following statements

DAY = “TUESDAY”

TEXT " s » *$DAY* 113 'l!
the name TUESDAY will be assigned to a substring of TEXT if the
value of TEXT is such that the pattern match succeeds.

A § can also be prefixed to a string expression that is enclosed in
parentheses. For example, the following statements assign the value
of WORD to one of the names LISTA, LISTB, --- LISTZ according
to the first character in the value.

WORD *CH/*1"*
$(“LIST” CH) = WORD

Thus, if WORD has the value DALLAS, the first statement sets the
value of CH equal to D. The parenthesized expression

{(“LIST” CH)

has the value LISTD. Hence, the effect of the § is to make the second
statement equivalent to

LISTD = WORD

2.7 Labels and the Flow of Control

A label may be assigned to a statement for reference when controlling
the flow of the program. The label is merely appended to the beginning
of the statement as in

HERE LIST = “(A,B,C,D)”
A statement without a label must begin with a blank.

SNOBOL3 901

Statements in a SNOBOLS3 program are executed in sequential order.
This order of execution can be modified by means of a go-to appended
to the end of a statement. Go-to’s are separated from the rest of the
statement by a slash. There are two types of go-to: unconditional and
conditional. The unconditional go-to consists of a label enclosed within
parentheses. Thus, after executing

HERE LIST = “(A,B,C,D)” /(THERE)

control is transferred to the statement with label THERE. By means
of the conditional go-to, control can be transferred depending on whether
success or failure has been signaled during the execution of the statement.
The letters S and F are used to indicate the two conditions. For example,
in the following rule the transfer to the statement with label L2 will
occur only if the pattern match is successful.

L1 TEXT Y S /S(L2)

If the pattern match fails, the next statement in the program is executed.

Transfer on a failure signal can be similarly programmed. As an ex-
ample, consider the following sequence of statements which will delete
from the string named TEXT all occurrences of the characters in LIST:

L1 LIST *CHAR/“1"* = /F(DONE)
L2 TEXT CHAR = /S(L2)F(L1)
DONE

In statement L1, the first character in LIST is named CHAR and is
deleted by replacing it with a null string. Statement L2 is executed
repeatedly until all occurrences of CHAR have been deleted from TEXT.
Then the process iterates using the next character in LIST. Finally,
when there are no characters left in LIST, the pattern match in state-
ment L1 fails. Thus, if TEXT had the value A+B*C/D+E and
LIST the value +*/—, the resulting value of TEXT would be ABCDE.

A transfer may be computed by the use of indirectness in the go-to
as illustrated in the following example: If PDL is assumed to have the
value A1,B5,C3, then the statement

PDL *RET* “,” = /S($RET)

causes deletion of Al, and transfer to the statement labeled Al.

2.8 Functions

There are two types of functions in SNOBOL3: primitive and defined.
Some functions may signal failure. This failure terminates the execution

902 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

of the statement in which the function call occurs and may be used to
control the flow of the program.

2.8.1 Primitive Functions

A basie set of primitive functions, programmed at the machine-lan-
guage level, has been included in the SNOBOL3 system.

SIZE is an example of a primitive function. The value of SIZE(X)
is the number of characters in the string named X. Thus, the statements

STR = “FOUL”
Z = SIZE(STR)

assign the value 4 to Z. As a result of the statements

X = SIZE(TEXT) — “1”
TEXT *FRONT/X* *LAST*

LAST is defined to be the name of the last character in TEXT.

One use of functions is to conditionally signal failure and hence alter
the flow of control. For example, EQUALS(X,Y) signals failure if X
and Y do not have identical values. If the values of X and Y are identi-
cal, the function returns the null string as value. Thus, the statement

N = EQUALS(A,B) N + “1”

will increment N only if the values of A and B are equal.

Another type of primitive function is one that modifies the behavior
of the SNOBOLS3 system itself. The function call MODE(“ANCHOR”)
is an example. It modifies the pattern matching processor and returns
a null value. Subsequently a pattern match can succeed only if the
matching substring is at the beginning of the string reference. Thus, if
MODE(*“ANCHOR”) has been executed before the statements

EXP = “SIN(A + B)”
EXP “(” *(ARG)* ©)”

the pattern match fails.

2.8.2 Defined Funclions

A section of SNOBOL3 program can be defined to be a function and
certain names occurring in the section ean be declared formal parameters.
This function declaration is accomplished by a call of the primitive
function DEFINE. For example,

DEFINE(“REVERSE(X)"”,“REV”)

SNOBOL3 903

declares the section of program beginning at the statement with label
REV to be a function named REVERSE with a formal parameter X.
Suppose REVERSE(X) returns as value the string named X with
the characters reversed. Then the portion of program defining RE-
VERSE could be

REV X *CHAR/“17* = /F(RETURN)
REVERSE = CHAR REVERSE /(REV)

The reserved label RETURN ecauses return to the place at which the
function was called. The name of the function, in this case REVERSE,
serves a special purpose. When the function is called, its value is saved
and then set to the null string. When transfer to RETURN occurs,
its value is the value returned by the function. Thus,

Z = REVERSE(“ABCDE”)
assigns the value EDCBA to Z.

2.9 Statement Format

A SNOBOL3 statement has a simple format consisting of several
fields of arbitrary length separated by blanks. The fields are the label,
string reference, pattern, equal sign, replacement expression, and the
go-to. A statement may contain some or all of these fields. The replace-
ment statement

HERE TEXT “ v KWORD* ¢ =47 /S(GOT)

has all of the fields.

If the label is omitted the statement must begin with a blank. If
the next field is not a go-to, it is considered to be the string reference.
Thus,

/(L7.3)
THERE /(HERE)

are statements that do not have a string reference. The statement
L5 EQUALS(OP,“END”) /S(END)

has the string reference EQUALS(OP,“END”).

The field following the string reference up to an equal sign or a go-to
is the pattern. In a statement without a go-to or equal sign, the pattern
is the field following the string reference. Thus, in each of the following
statements

904 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

STR A *B* “7" =8B /S(GREAT)
STR A *B* “)” =
L1 STR A *B* «» /S(GREAT)
STR A *B* H,H
the pattern is
A *B* l(’)’

Note that the elements within the pattern are also separated by blanks.
A statement without a pattern, but containing an equal sign, is an
assignment statement. Some examples are:

ANS = N + “5”
RES = /(READ)

The latter example assigns the null string as the value of RES.
No fields are permitted after the go-to field.

III. DETAILED DESCRIPTION

The previous section was an informal description of the basic parts
of SNOBOL3. The following section completes this description in a
more comprehensive and detailed manner.

3.1 Names and String Expressions

3.1.1 Names

Names are used to refer to string values symbolically. In addition,
names are required for certain parts of statements:
(#) string variable names
(#7) string references in assignment statements
(#7) labels in go-to fields.
Names may be explicit or implicit. Explicit names can consist only
of letters, numbers, periods and colons. Examples are:

N
STATEMENT.VARIABLE
X:1

37

Implicit names, constructed by indirect references, may consist of any
nonnull string of characters. Any indirect reference is an implicit name.

SNOBOL3 905

For example:

$F
$SIZE(N)
$(“Pﬁ’1” I{)

Consequently,
. _ IIGI}

is syntactically incorrect, but

INAME = «,,,,”
$INAME = “6”

is proper.

The particular characters comprising a name have no significance;
a name is merely an identifier. A name may be the same as a label or
the name of a function.

3.1.2 String Erpressions

The basic string-valued elements are:
(z) literals
(72) names
(777) function calls
(#v) arithmetic operations
(v) parenthetical groupings.
Any string of characters (including the null string) not containing a
quotation mark (see Section 3.1.3) may be included between the quo-
tation marks of a literal. Function ealls, parenthetical groupings, and
names may be indirectly referenced. Parentheses are required between
successive levels of indirect references.
A string expression is a string-valued element or the concatenation
of several such elements. Some typical string expressions are:

“PARAGRAPH SUB-HEADINGS FOLLOW”
“N” ((A + “1”) * INTERVAL)

$BASE + SIZE(N)

FXF(X,X))

$($(SROOT))

M 13 .)’ P

$(“N!J I)

906 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

3.1.3 Names and Values

All names have null values at the beginning of program execution
except for the string QUOTE. QUOTE has a preassigned value which
is a quotation mark.

Names, including QUOTE, may subsequently be given other values
by assignment statements or as a result of pattern matching. The re-
sulting name-value relationship between strings forms the basic data
structure in SNOBOL3. Structures can be built to arbitrary depths.
I'or example, the statements

Nl = (‘Nz!l
N3 = “N2”
N2 = “N4”
N4 — “Nﬁ!!
N5 = “N4”
N6 . “NS’)

might be used to represent relationships between data as indicated in
Tig. 1.

Indirect referencing can be used to refer to the relationships in the
structure. The range of such structures is limited by the fact that a
name can have at most one value at any time, while a string can be the
value of any number of names simultaneously.

3.2 Arithmelic

3.2.1 Inlegers

Some strings have the property of being SNOBOL3 integers. Such
strings are required in arithmetic operations and as arguments of certain
primitive functions. In order for a string to be a SNOBOL3 integer

@@ N3
(s——()

()

Fig. 1 — The name-value relationship among data.

SNOBOL3 907

(7) it must consist entirely of digits except for the first character
which may be a sign, and
(#7) its absolute value considered as a decimal integer must be less
than 10,
In numerical contexts
(7) unsigned numbers are taken to be positive,
(7) leading zeros are ignored,
(#%) minus zero is equal to plus zero, and
(7v) the null string is taken to be zero.
The following strings are SNOBOL3 integers:

5

+10
0003976
—37
—000003
+0

The following strings are not SNOBOL3 integers:

+A
3.27E—2

3.7
876935476271
0—

10,000

The primitive funetion .NUM(X) succeeds, returning a null value, if
the value of X is a SNOBOL3 integer and fails otherwise. Thus,
NUM(“A”) fails, while . NUM(“100”") returns a null value,

3.2.2 Arithmelic Expressions

Arithmetic operations must be separated from their operands by
blanks. Consequently A+B is syntactically incorrect. Any expression
whose value is a SNOBOL3 integer is an acceptable operand.

All arithmetic operations are binary. Thus,

N + “3”
is a legal operation, while

N + N3J, * ((2])

008 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

is a syntactic error. Parentheses may be used for grouping terms to create
more complicated expressions:

N + (4:3:; * uzu)

In expressions containing both concatenation and arithmetic, arithmetic
has precedence over concatenation. Thus, the value of

‘(N’) ‘l5’! + “71’
is N12 and the value of
“3” *k ((2” f(lO” / (‘2”

is 65. Parentheses may be used to group concatenations and arithmetic
to obtain the desired result. Thus, the value of

££3,l * (££2!l (llOJ! / ‘(2!!)
is 75.
The following sequence of statements illustrates possible combina-
tions:

ALPHA “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
N SIZE(ALPHA) + “1”
M = (N 4 SIZE(N)) * «“2”
K — (H_H N M) + [‘5”

As a result of executing these statements, N would have the value 27,
M the value 58, and K the value —2753.
The result of an arithmetic expression is a normalized SNOBOL3
integer. Integers are normalized as follows:
(7) positive integers are unsigned,
(%) leading zeros are removed, and
(¥47) any value equal to zero is returned as an unsigned zero.
Thus,

“+0003)’ + (iO!l
has value 3, and
({1 3 ‘l2’)

has the value 0.

3.2.3 The Evaluation of Arithmetic Expressions

Two modes for evaluating arithmetic expressions are available. The
normal mode is truncation. In the truncation mode any fractional part

SNOBOL3 909

resulting from division (or exponentiation) is discarded. Thus, the value
of

H5!! / “2”
is 2, and the value of

¢£3H k% H_l”

is 0.

An integer mode is available which causes an arithmetic operation to
fail if a fractional part would result. The integer mode may be invoked
by executing the function call MODE(“INTEGER”). The normal
mode may be restored by executing MODE(“TRUNCATION”).

3.2.4 Error Conditions in Arithmetic Operations

Error conditions in arithmetic operations occur if:
(7) a fractional part would occur in integer mode,
(#%) an operand is not a SNOBOLS3 integer,
(#47) the result of an arithmetic operation is not a SNOBOL3 integer
(because it is too large), or

(#v) division by zero is attempted.
In all cases, the arithmetic operation fails, terminating the execution of
the rule in which it occurs. The failure may be utilized to change the flow
of control by means of a conditional go-to.

3.2.5 Numerical Functions
There are six functions for comparing the magnitude of integers:

EQXY) (X=Y)
NEX)Y) X #Y)
LTXY) (X<Y)
LEXY) (X=Y)
GTX)Y) (X>Y)
GEX)Y) X=z2Y).

These functions succeed, returning a null value, if the condition indi-
cated is satisfied and fail otherwise. The functions also fail if either
argument is not a SNOBOL3 integer. A common use of the functions is
to control loops. For example, the following program assigns the squares
of the first 100 positive integers to the names SQ1 through SQ100,
respectively.

910 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

N - (‘1”
COMPUTE $(“SQ”"N) = N*N
N = .LT(N,“100”) N + “1” /S(COMPUTE)

The function .REMDR(X,Y) has as its value the remainder of X
divided by Y. For example, the value of

. REMDR(H5’!’ “2’))

is 1. The sign of the remainder is the same as the sign of the divisor and
the value is normalized.

.REMDR fails if either argument is not a SNOBOL3 integer or if
the value of Y is zero.

3.3 Pattern Maiching

Pattern matching is a basic operation in SNOBOL3. The examina-
tion, rearrangement, and combination of data depend on pattern
matching; and the success or failure of matehing is often used for alter-
ing the flow of control.

3.3.1 Pattern Elements

A pattern consists of a succession of pattern elements separated by
blanks. There are two basic categories of pattern elements: string con-
stants and string variables.

Any string expression is a constant, except that arithmetic expressions
must be enclosed in parentheses. The following expressions are examples
of string constants:

K

“35R)!

SIZE(Z)

.LE(N,M - SIZE(L))
(R,I + (N * 1:2,1))

String variables may or may not have associated names. The follow-
ing elements are examples of string variables:

kK

*/“3” *
VARIABLE1
*$SIZE(N) *
EXP)

SNOBOL3 911

The length of a fixed-length variable may be any string constant
whose value is a nonnegative SNOBOL3 integer when evaluated. The
following fixed-length variables illustrate possible forms the length
may take:

FL/N
¥V /(SIZE(N) + “17)*
*V/(M + (N *Z)*

The lengths of the following variables are syntactically incorrect:

HEAD/N 4 “17 (Arithmetic expressions must be enclosed
in parentheses.)
SPAN/“A” (The value of the length must be an integer.)

3.3.2 The Maiching Process

Pattern matching consists of three phases:
(z) evaluation of expressions in the pattern,
(72) the actual matching, and
(#77) the assignment of values to names associated with string varia-
bles.

3.3.2.1 Hvaluation. Before any matching, all expressions in the pattern
are evaluated. Expressions may occur in string constants, the names of
string variables, and in the length of fixed-length variables. Evaluation
proceeds from left to right. Any failure in evaluation (such as the failure
of a function call or arithmetic operation) terminates the execution of
the rule without any matching or naming.

The value of all expressions is fixed by evaluation before matching.
No evaluation is performed during matching. The only exception to this
rule is back referencing described in a following section. Thus, in the
pattern

N *SPAN/N*

the length of the fixed-length variable is the value of N before matching
and is not influenced by any subsequent match for the arbitrary string
variable with the name N.

3.3.2.2 Maiching. Pattern elements must match consecutive substrings
in the value of the string reference. In most cases the match can easily
be determined from the following rule:

Pattern matching proceeds from left to right, each pattern element

matching the shortest possible substring according to the type of the

element.

912 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

In some complicated cases, more precise definitions are necessary. The
following definitions provide the details for resolving difficult cases.

() The pattern match proceeds element by element from left to
right starting at the leftmost (first) element. The elements must
mateh consecutive substrings in the value of the string reference.

(47) An attempt is first made to match the first element starting at
the first character in the value of the string reference. If this is
not possible, an attempt is made starting at the second character,
and so on.

(7%7) When an element is successfully matched, a forward match is
attempted for the next element.

(i) If an element cannot be matched, rematch is attempted for the
preceding element. Rematching is an attempt to extend the sub-
string matching a pattern element and occurs because the pat-
tern match cannot be successfully concluded with the previous
match.

(v) Pattern matching terminates successfully when the rightmost
(last) pattern element has been matched. Pattern matching
terminates in failure if no match can be found for the first ele-
ment.

The methods of forward matching and rematching depend on the type
of the pattern element. In each case, the element must match a substring
in the string reference starting at the character following the substring
matching the preceding element. The details follow.

(a) String Constants

In forward matching, a string constant matches a substring identical
to its value. If this is not possible, forward matching fails. A null con-
stant always matches.

No rematch is possible, and rematching always fails.

See the special case of back referencing.

(b) Arbitrary String Variables

In forward matching, an arbitrary variable matches a null string.

In rematching, one character is added to the substring previously
matched by the variable. If the string reference is not long enough for
such a match, rematching fails.

As a special case, if the last element in the pattern is an arbitrary string
variable, it matches the remainder of the string.

SNOBOL3 913

(¢) Balanced String Variables

In forward matching, the string matched by a balanced variable
depends on the first character of the substring where the variable is to
mateh. If this first character is not a parenthesis, then the variable
matches that character. If the first character is a right parenthesis, the
match fails. If the first character is a left parenthesis, the string being
examined is considered character by character until a matching right
parenthesis is found. If there is no matching parenthesis, failure is indi-
cated. Notice that a balanced string variable always matches at least one
character.

In rematching, the previously matched substring is extended by the
next shortest balanced string according to the rules for forward matching.
If this is not possible, rematching fails.

(d) Fixved-Length String Variables

In forward matching, a fixed-length variable matches a substring of
length specified by the variable. If the string being examined is not
long enough, forward matching fails.

Rematching always fails.

(e) Back Referencing

Back referencing is a special case in pattern matching in which tenta-
tively matched substrings can be referred to dynamically during the
matching process. If a constant in the pattern has the same name as a
name associated with a variable to the left of it in the pattern, the value
of the constant is taken to be the substring currently matched by the
variable, Thus, in the pattern

N [13 ,)? N
the constant N must match a substring identical to the substring match-
ing *N*, Since matching is done left to right, a tentative match always
exists for a back-referenced variable.
Back referencing only occurs when the name associated with a varia-

ble is to the left of a constant with the same name. Consequently the
pattern

N u,n *\] *

does not contain back referencing.
If there are several occurrences of the same name in a pattern, a

914 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

named constant back references the variable with its name which is
nearest to it on the left. In the pattern

N “,” N N *N* “,” N

the first and second named constants refer to the first variable and the
third named constant refers to the second variable.

Any type of variable may be back referenced and any number of
named constants may back reference variables in an arbitrarily compli-
cated way.

The determination of back referencing within a pattern is made after
the evaluation of expressions in the pattern but before matching. In
the statements

A = HC”
B *C* u,n $A

the pattern is back referenced. However, in the statements

VARI = “SPAN”
X *VARI* $VARI

there is no back referencing.
Back referencing only applies to names which are pattern elements
and not to any other name in the pattern, Specifically in the pattern

N *INT/SIZE(N)*

the length of INT is determined by evaluation before matching and
does not change during the matching process.

3.3.2.3 Naming. If the pattern match fails, no naming is done and
the execution of the rule is terminated. If the pattern match succeeds,
naming is performed from left to right for each name associated with a
string variable. The substring matching the variable becomes the new
value of the associated name. If a name is associated with more than one
variable, the value is assigned corresponding to the rightmost variable
with that associated name.

In the case that a name is computed as the result of an expression, the
name is determined by the evaluation made before pattern matching,
Thus, in the statements

A — nCu
Z *A* “,H *$A*

the name associated with the second string variable is C regardless of
the value of Z.

SNOBOL3 915

3.3.3 Pattern Matching M odes

In the normal mode of pattern matching, the first element of the pat-
tern may match starting anywhere in the value of the string reference.
Thus, the simple match

“0123456789” “6”

succeeds. This mode is referred to as unanchored. The alternative mode,
in which the first pattern element must match a substring beginning
with the first character of the string reference, is called anchored. This
mode may be invoked by executing the function call

MODE(“ANCHOR”)

Subsequently, all pattern matching will be in the anchored mode unless
otherwise modified. The normal mode may be restored by

MODE(“UNANCHOR")

The mode of matching may be changed for the duration of a single
statement by means of the two functions ANCHOR and UNANCH.
These functions, which have no arguments, must be called before match-
ing (Refer to the Section 3.4.3). Both functions return null values. Thus,
in

Z ANCHOR() “.” *IDENT* «.”

the pattern match is anchored regardless of the matching mode current
in the program. Subsequent statements are not affected. The null
value returned by ANCHOR does not affect the match since a null
string may match anywhere.

ANCHOR and UNANCH supersede the MODE function even if
the MODE function is executed subsequently in the evaluation of the
pattern elements. Hence in the statement

STRING UNANCH() MODE(“ANCHOR”) “r
the pattern match is unanchored, although the anchored mode will

subsequently prevail.

3.3.4 Examples of Paitern Malching

The following examples illustrate some of the situations which occur
in pattern matching. String reference values are given as literals for
clarity. Naming is indicated for those pattern matches which succeed.
The normal unanchored matching mode is assumed.

916 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

Example 1:
“K)AK(A + B + C)ST” “K” *A)* “|sT”
The mateh succeeds with

A=“A+B+0)”

Example 2:
“K)AK(A+ B + C)ST” ANCHOR() “K” *A)* 8T
The match fails,

Example 3:
“S)(S + A*B(S” HSH *(A)* NSH
The match fails.

Example 4:
“ABCDEFGHIJKLMNO” *HV /5% *A* “K” *B*

The match succeeds with

HV = “ABCDE”
A = “FGHIJ”
B = “LMNO”

Notice that since the last pattern element is an arbitrary string variable
it matches the remainder of the string reference.

Example 5:
“364:” *A ¥ *SUM /437 * en

The match succeeds with

A — n
SUM = “364”

Example 6:
“ARMY” *AF *B* *C*
The match succeeds with

A — “wn
B - (e
C = “ARMY”

SNOBOL3 917

Notice that the first two arbitrary string variables mateh null strings
since this satisfies the requirement for matching the shortest possible
substrings.
Example 7:
“ABC” *(BALL)* *(BAL2)*
The match succeeds with
BAL1 = “A”
BAL2 = “B”
Ezxample 8:
“AB” *(BALL)* *(BAL2)* *(BAL3)*
The match fails since each balanced string variable must match at least
one character.
Ezample 9:
”ABCD” *S/uzn* *T/HBH#

The mateh fails since the string being matched is not long enough.

Example 10:
“ABCDEFGHFGH” *A 3V A
The match succeeds with
A = “rGHo”

This is a simple example of back referencing.

Example 11:
“ABCDEFGHFGH” ANCHOR() *A /37 * A
The match fails.

Ezxample 12:

#32579.97” *A* *B* . B A
The match succeeds with
A = IIT’)
B — Hg”

918 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

These values can be verified by carefully applying the matching rules.
(The expected match might be a null value for both A and B.)
Example 13:

The following example illustrates the complexity which may occur
with back referencing.

“BACCABACABABACACAB” *A* *(B)* *(O)*
P C D B D C A *E*¥ A E

The match succeeds with

A —_— “»n
B — ‘IBACI’
C = “CAB”
D - ‘(A)}
E — {1
Example 14:
HA’A’B’BH *X:I: u,n X u,n *X* .-;’” X
The match succeeds with
X . l‘B’;

3.4 Program Structure and the Flow of Control

A program consists of a succession of statements terminated by an
END statement containing the reserved label END. The END state-
ment may also contain a name which is the label of the first statement
to be executed. If the END statement contains no name, execution
begins with the first statement of the program.

Statements are subsequently executed one after another unless con-
trol is transferred by means of a go-to.

3.4.1 Labels

Labels are distinguished by beginning in Column 1. A statement with
no label must have a blank in Column 1. The first character of a label
must be a letter or a digit. Subsequent characters may be anything but
blanks. Labels are program constants; the particular characters in a
label have no significance even if they resemble some other structure
such as a name or a funetion call. Thus F(X) is a legitimate label but
has no further meaning,

SNOBOL3 919

3.4.2 The Go-To Field

Go-to’s are used to alter the ordinary sequential execution of state-
ments. In general, a statement may be successfully completed, or failure
may be indicated for a number of causes. The success or failure may be
sensed and used by corresponding conditional go-to’s to alter the order
in which statements are executed.

A statement with an unconditional go-to may not have conditional
go-to’s. Furthermore, a statement may not have more than one uncondi-
tional, success or failure go-to. In statements with both success and
failure go-to’s, the go-to’s may occur in either order,

The labels given in the go-to’s must be names and transfer is made to
the name (not its value). The label in a go-to may be computed by the
use of implicit names resulting from indirect references. For example,
in the statement

X —_ ((3)’ /($(1¢R,) X))

transfer is made to the statement with label R3. Function calls occurring
in go-to’s must not fail.

3.4.3 The Order of Exveculion Within a Statement

The order of execution of operations within a statement may be
important to the programmer for two reasons:

(7) Tailure of an operation within a statement terminates execution
of the statement at that point so that subsequent operations are
not performed.

(#7) Calls of defined functions may change the values of names which
appear subsequently in the same statement.

Consequently, a detailed knowledge of when various parts of a state-
ment are evaluated may be required to determine how a program will
funetion. The overall order of execution within a statement is as follows:

(7) The string reference (if any) is evaluated.
(7)) The elements of the pattern (if any) are evaluated from left
to right (see Section 3.3.2).

(777) The pattern match (if any) is performed.

() Any naming as the result of a successful pattern match is
performed.

() If a string expression is specified as a replacement, that string
expression is evaluated.

(1) Reformation (if specified) of the value of the string reference
is made.

920 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

(viz) The go-to (if any) corresponding to the success or failure of
the statement is evaluated.

(vi77) Transfer is made to the next statement accordingly.

If failure is signaled in any of the steps (z) through (v7) above, execu-
tion of the statement terminates at that point and the appropriate go-to
is evaluated. In particular note that only the appropriate go-to is evalu-
ated. The order of evaluation within a string expression is as follows:

() Elements in a concatenation are evaluated left to right.
(#) In afunction or parenthetical grouping, the innermost expression
in the nesting is evaluated first.

(#71) Arithmetic is performed before concatenation.

(7v) All arguments of a function are evaluated, left to right, before
the function is called.

3.4.4 Termination of Execution

Program execution is usually terminated by a transfer to the label
END or by flowing into the END statement.

Depending on the monitor system under which SNOBOL3 operates,
the termination of a SNOBOL3 program may or may not terminate the
job which initiated the SNOBOL3 program. Thus, two modes may be
distinguished :

(i) endjob, in which job execution is terminated upon completion of
the SNOBOL3 program, and

(7) system, in which job execution may continue after completion of

the SNOBOL3 program.
The normal mode in SNOBOLS3 is endjob. The alternative mode may
be invoked by the function call MODE(“SYSTEM”). The normal
mode may be restored by the function call MODE(“ENDJOB”)

Execution of a SNOBOL3 program may be interrupted by the func-
tion SYSTEM(FILE). A call of SYSTEM(FILE) suspends program
execution, returning control to the monitor. The input source for the
monitor is set to the value of FILE. If the value of FILE is null, the
input source is set to the standard input source. The availability of
SYSTEM depends on the monitor under which SNOBOL3 operates.

3.5 Inpul-Output and File Manipulation

3.5.1 Implementation Differences

Input-output is particularly subject to differences in machines and
monitor systems. Consequently the input-output behavior of the

SNOBOL3 921

SNOBOLS3 system may vary considerably in different implementations.
Reference to files, record sizes and the handling of end-of-file differ
most. The following sections should be read with this in mind.

3.5.2 String-Oriented Input and OQuiput

Input and output is accomplished through string names associated
with logical files.

For example, SYSPOT (‘‘system peripheral output tape”) is associ-
ated with the standard output file. Every time SYSPOT is given a
value, a copy of the value is printed on the system output file. Thus,
the statement

SYSPOT = “TABLE OF VALUES”

will cause the printing of TABLE OF VALUES on the output listing.

SYSPPT (“system peripheral punch tape”) is associated with the
standard punch file. Values given SYSPPT are punched rather than
printed.

Similarly, SYSPIT (“system peripheral input tape”) is associated
with the standard input file. Every time the value of SYSPIT is re-
quired, a card image is read from the input file to become the value of
SYSPIT. For example, the statement

SYSPIT *FIELD1* e *FIELD2* e

might be used to read and name data items on input cards with the
format indicated by the pattern.

3.5.3 The Association of String Names with Files

The names SYSPOT, SYSPPT, and SYSPIT are automatically
associated with standard files at the beginning of program execution.
Any name (including these three) may be associated with any file during
program execution by means of association functions. All the following
functions return null values.

(?) PRINT(NAME,FILE) associates the value of NAME with
the value of FILE in the print sense. Thus,

PRINT(“X”, “OUT”)

associates the name X with logical file OUT. After execution of
this function call, copies of all values assigned to X will be placed
on the file OUT.

(#7) PUNCH(NAME,FILE) associates the value of NAME with

022 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

the value of FILE in the punch sense. The distinction between
punch and print association is described in the next section.
(177) READ(NAME,FILE) associates the value of NAME with
the value of FILE in the read sense.
The execution of an association function detaches the name from
any file with which it may be associated. Thus,

PUNCH(“SYSPOT”, “SCR”)

is permissible.

Any nonnull name may be associated with any file. If the value of
FILE is null, the name will be associated with the appropriate standard
file. A name may be associated with only one file, but any number of
names may be associated with a file.

3.5.4 Oulput

Output occurs whenever an output-associated name is given a value.
Thus,

FIELD *SYSPOT* “r *SYSPOT/“57*

results in two outputs if the pattern match is successful.

Print and punch association differ in carriage control. When output
is performed on values whose names are associated in the print sense,
six blanks are prefixed to provide carriage control. No carriage control
is provided for output resulting from punch association. Consequently,
punch should be used for intermediate files which are to be subsequently
read.

Printing on the standard print file is 126 characters per line (not count-
ing carriage control). Additional lines are generated as necessary for
longer strings. Punching on the standard punch file is 72 characters per
card with additional eards generated as necessary. Values punched or
printed on other files are augmented with blanks to an even multiple
of six characters. Resulting strings containing 84 characters or less are
printed as single records of the length of the augmented string. Longer
records are printed 84 characters per record. Any residual string over a
multiple of 84 characters is printed as a record of the residual length.

Printing a null value always produces a record because of the six
blanks prefixed for carriage control. Punching a null value does not pro-
duce a record.

Since output of strings may break one string into many records, care
must be taken that the strings may be properly reconstructed if neces-

SNOBOL3 923

sary. This remark also applies to padding with blanks and handling of
null strings as described above.

Names associated with output files retain their values like any other
names. The output process does not destroy values.

3.5.5 Input

All strings read from the standard input file are 84 characters long.
Blanks are used to fill out shorter records. Records read from other files
are not extended.

It is particularly important to notice that any use of the value of a
read-associated name results in the reading of a record and the loss of
the previous value of the name. This is true regardless of context. For
example,

SYSPIT v/ “r

results in the reading of a record. The record is destroyed by any sub-
sequent use of SYSPIT. Consequently, it is good programming practice
to assign the result of reading to some other string. For example,

SYSPOT = SYSPIT

prints the next record, and the resulting string remains as the value of
SYSPOT for further use.

An important aspect of a read-associated name is the indication of
failure if the read operation fails (as the result of an end-of-file or binary
record). Such a failure terminates execution of the statement in which it
oceurs and may be used by a conditional go-to. The ability of the
SNOBOL3 system to regain control after an end-of-file depends on the
monitor under which SNOBOL3 operates.

3.5.6 Other Functions

Several functions exist for performing standard input-output opera-
tions and file manipulation. All these functions return null values.
() DETACH(NAME) removes the value of NAME from any
input-out association. For example,

DETACH(“SYSPOT”)

terminates normal print output. If the value of NAME is not
associated with a file, no action is taken.
DETACH may be used to save the value of a name associated in the
read sense. I'or example, the statements

924 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

SYSPIT *A* «» *B*x «» *0% /Q(PROG)
DETACH(“SYSPIT”) /(ERROR)

might be used to go to an error routine in case an input record does not
have the expected format. By detaching SYSPIT, the record in error
may be examined without destroying it.
(77) REWIND(NAME) rewinds the file associated with the value
of NAME. Note that the argument is the name and not the file.
An end-of-file is written on a file in output status before it is
rewound.
(47z) BSREC(NAME) backspaces one record on the file associated
with the value of NAME.
(7v) EJECT(NAME) writes an eject carriage control character on
the file associated with the value of NAME.
(v) OPEN(KEY,FILE) opens the specified file in the key area
which is the value of KEY. The applicability of this function
depends on the monitor under which SNOBOL3 operates.

3.6 Primitive Functions

3.6.1 Function Calls

Function calls may occur anywhere in a statement where a string
value is appropriate. An argument of a function may be any string
expression, however complicated. Any argument may be explicitly null
and trailing arguments that are omitted are given null values. Thus,
the three function calls

EQUALS(X,“)
EQUALS(X,)
EQUALS(X)

are equivalent. A primitive function may be called with up to six argu-
ments, regardless of the number specified by the function. Such addi-
tional arguments are evaluated but are ignored by the function.

All function calls return strings as value if they succeed. In the case
of functions that have no natural value, a null string is returned.

It is important to notice that the function name and the left paren-
thesis may not be separated by blanks. Thus,

SIZE(N)
is a function call, while

SIZE (N)

SNOBOL3 925

is the concatenation of a name and a parenthetical grouping. Similarly,
functions such as ANCHOR() which have no argument must be written
with the parentheses. Otherwise they will be taken for string names
rather than function calls,

3.6.2 Functions Relating to Functions

() OPSYN(NEW,0LD) OPSYN permits the programmer to asso-
ciate a new name with a function. Thus, for example,

OPSYN(“LENGTH” “SIZE”)

makes the name LENGTH a function with the same definition as
SIZE. Either LENGTH or SIZE may now be used to call the function.
New names may be associated with either primitive or defined functions.
OPSYN returns a null value.

(7)) CALL(FNC) CALL permits the programmer to invoke a func-
tion implicitly by interpreting a string as a function call. The value of
FNC must correspond syntactically to a function call.

For example, the function call

CALL(“SIZE(M)”)
is equivalent to the function call
SIZE(M).

The arguments in FNC are interpreted as explicit names. Thus, all
arguments in a function invoked by CALL must be assigned names.
For example, to invoke

.GT(SIZE(N),“5")
by the use of CALL, statements of the form

ARG1 = SIZE(N)
ARG2 = “5”
CALL(“.GT(ARGI,ARG2)")

are required.

Any primitive or defined function may be invoked by CALL. Value
is returned and success or failure indicated in the same manner as if the
function call appeared explicitly.

3.6.3 M1iscellaneous Primitive Funclions

There are six primitive functions in addition to the functions deseribed
elsewhere in Section III. They are:

926 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

(7) EQUALS(X,Y) EQUALS returns a null value if the value of X
is identical to the value of Y and fails otherwise. The values must
be identical and not just numerically equal (compare Section
3.2.5).

(#7) UNEQL(X,Y) UNEQL returns a null value if the value of X
is not identical to the value of Y and fails otherwise.

(777) TRIM(S) TRIM returns as value the value of S8 with trailing
blanks removed, thus, for example, TRIM(SYSPIT) is a con-
venient method of removing superfluous blanks from input cards.

(zv) TIME() TIME is a function of no arguments which returns as
value the millisecond time from the beginning of program
compilation. The value is returned as a 6-character number.

(v) DATE() DATE is a function of no arguments which returns as
value the current date. The value is returned as a 6-character
number. For example, April 1, 1966 would appear as

040166

(vi) SIZE(S) SIZE returns as value the number of characters in the
value of 8. For example, the value of SIZE (“0123456789”) is 10.

3.6.4 Addition of Primitive Functions to the SNOBOL3 System

The SNOBOLS3 system is designed so that separately-compiled primi-
tive functions may be added easily. This facility has been used exten-
sively to add a wide range of capabilities.>®7 A discussion of the format
and communication conventions required for primitive functions is
beyond the scope of this paper. Ref. 8, which is available from the au-
thors, describes these matters in detail.

3.7 Defined Functions

3.7.1 The Definition of a Function

A defined function is characterized by four items:
(7) a name, by which it is called and which is used for returning
value,
(#%) alist of formal arguments, used for passing values to the function,
(7#7) a label, indicating its entry point, and
(i) a list of local names used by the function.
A function must be defined during program execution before it is used.
This definition is accomplished by a call of the DEFINE function which

SNOBOL3 927

establishes the four items above. The form of the call is
DEFINE(FORM,LABEL,NAMES)

FORM is a prototype of the function call, giving the function name
and the list of formal arguments. The value of LABEL is the entry
point, and the value of NAMES is the list of local names separated by
commas. For example,

DEFINE(“FACT(N)”,“F”)

defines a function FACT with one formal argument N. Execution of
TACT is to begin at the label I'. No local names are declared. Similarly,

DEFINE(“MATRIXADD(A,B)”,“MA” “I,J, K”)

defines a function MATRIXADD with the two formal arguments A
and B, the entry point MA and local names I, J, and K.

The total number of formal arguments and local names must not
exceed ten. This limit is an assembly parameter.

3.7.2 The Execution of Defined Functions

The call of a defined function is identical to the call of a primitive
function (see Section 3.6.1). Hence, trailing arguments which are
omitted are given null values. A defined function, however, may not be
called with more arguments than given in its definition.

When a defined function is called, values of the following names are
saved:

(7) the name of the function.
(#7) all formal arguments.
(z27) all local names.
New values are assigned to these names as follows:
(7) the name of the function is given a null value.
(47) the formal arguments are assigned values by evaluating the
corresponding arguments in the function call.

(777) all local names are assigned null values.

Saving of old values and assignment of new values is made from left
to right as the names appear in the DEFINE eall.

After these new values have been assigned, control is transferred to
the entry point of the function and program execution continues in a
normal fashion until transfer is made to one of the two reserved labels
RETURN or FRETURN.

RETURN terminates execution of the function. By convention, the

928 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

value of the function call is the value of the function name when the
return was made. For example, if FACT as defined above is designed to
compute the factorial of a number, the corresponding program might be

F FACT = .EQ(N,“0”) “1” /S(RETURN)
FACT = FACT(N — “1”) *N /(RETURN)

Then the statements

SYSPOT = FACT(“3")
SYSPOT FACT(“2”) 4+ FACT(*4”)

would print 6 and 26, respectively.

FRETURN terminates execution of the function and signals failure.
Execution of the statement in which the call occurs terminates at that
point in the same manner as in the failure of a primitive function.

When return is made from a function (by either RETURN or
FRETURN) the saved values of all names are restored in the opposite
order from which they were saved.

A function may have a formal argument which is the same as its
name. This is useful when the value of a function is to be a simple
modification of one of its arguments. A function whose value is its first
argument with all occurrences of its second argument deleted might be
defined as

DEFINE(“DELETE(DELETE,CHAR)”,“DEL”)
with the program
DEL DELETE CHAR = /S(DEL)F(RETURN)

Here DELETE can be operated on as desired and the value has the
correct name (that is, the name of the function) when the deletion is
completed.

3.7.3 Local Names

Local names may be declared when names used in a function have
values which should not be destroyed by a function call. Consider the
following function which intersperses commas between the characters
in its argument

COMMA ARG *CHAR/“1"* = /F(RETURN)
COMMA = COMMA CHAR *“,” /(COMMA)

The definition would be
DEFINE (“COMMA(ARG)”,COMMA” “CHAR")

SNOBOL3 929

so that the use of CHAR during the function call would not change
the value of CHAR outside the function.

Local names are particularly important when recursively called
functions use names for intermediate computation. Appendix II con-
tains a program in which such use of local names is necessary.

1IV. OPERATING ENVIRONMENT

The SNOBOL3 system consists of a compiler and an interpreter. The
compiler translates SNOBOL3 source programs into an internal language
suitable for the interpreter.

4.1 Compilation

4.1.1 Source Program Listing

During compilation, the source program is read and compiled card
by card. Only columns 1 through 72 are read by the compiler. Consecu-
tive statement numbers are added to the listing for reference.

4.1.2 Comments

A card with an asterisk in column 1 is treated as a comment. Com-
ments are printed but otherwise ignored by the compiler. Comments
may be used freely throughout the program and may be placed any-
where before the END card.

4.1.3 Continue Cards

A statement may be broken over card boundaries by use of the con-
tinue card convention. A period in column 1 is interpreted by the
compiler as an indication that the card is a continuation of the preceding
statement. Statements may be broken over card boundaries anywhere a
blank is permissible in the syntax. Literals cannot be broken over card
boundaries. A very long literal must be represented as a concatenation
of shorter literals. For example,

SYSPOT = “THE MAXIMUM LENGTH OF”
“THE COMPUTATIONAL THREAD HAS BEEN ”
“COMPUTED TO BE”

There is no limit to the number of continue cards which may be used
for a statement.

930 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

4.1.4 Compiler Control Cards

The programmer can perform some operations during the compila-
tion process by means of compiler control cards. Compiler control cards
are identified by a minus sign in column 1. The control action is taken
when the card is encountered. Following the minus sign, the first non-
blank subfield is taken to be the control word for the card. Other sub-
fields, if any, are separated internally by commas. The control cards and
actions are:

(i) —TITLE
Eject to a new page in the listing of the source program.
Title subsequent pages with the information on the remainder
of the control card.
(7) — BEJECT
Eject to a new page in the listing of the source program.
(7i1) — SPACE
Print a blank line in the source program listing.
(7v) — UNLIST
Stop listing the source program. (The source program is
normally listed.)

(v) — LIST
Resume listing,
(vi) —PCC

Print control cards. (Control cards are normally not printed.)
PCC is a binary switch. Successive uses turn printing of
control cards on and off.
(vii) — OPEN KEY,FILE
Open the file in the specified key area.
(vizi) — REWIND FILE
Rewind the specified file.
(i) —SOURCE FILE
Change the input source for the SNOBOL compiler to the
specified file.
(x) —SYSTEM
Return control to the monitor under which SNOBOL3
operates.
(z7) — NULLOP OP
Make the control card operation OP inoperative for the
rest of the program.

Invalid control cards, i.e., control cards not in the list above or with a
format error, are printed but otherwise ignored. Control cards may be

SNOBOL3 931

used anywhere in the program before the END card, including between
continue cards.

4.1.5 Diagnostie Messages from the Compiler

At the end of compilation one of three comments appears:

(@)
(17)

(147)

SUCCESSFUL COMPILATION, indicating the source pro-
gram contains no syntactic errors,

ERROR IN COMPILATION, indicating syntactic errors
in the source program, or

FATAL ERROR ENCOUNTERED DURING COMPILA-
TION, indicating the occurrence of an error of sufficient
severity to terminate the compilation process.

Syntactic errors are printed following the source deck listing with
statement numbers referring to each type of syntactic error. Compila-
tion of a statement ceases when a syntactic error is encountered. Conse-
quently subsequent errors in the same statement will not be detected.
The syntactic error messages are

(1)

(72)

(722)

(iv)

(v)

(7)

ILLEGAL CONSTRUCTION, usually indicating an illegal
character in a name, arithmetic operators not surrounded by
blanks, or arithmetic operations in the pattern not enclosed
in parentheses.

ERROR IN GROUPING, usually indicating unbalanced
parenthesization, e.g., (A B))

TOO MANY ELEMENTS IN FUNCTION OR GROUP-
ING, indicating overflow of an internal buffer due to an
excessively complicated parenthetical grouping or function
call. The maximum number of elements in such structures is
an assembly parameter of the SNOBOL3 system and is about
50.

VARIABLE WITH GROUPING OR FUNCTION NOT
CLOSED, indicating that a parenthetical grouping or function
call in a string variable is not followed by a terminating
asterisk, e.g., *T/SIZE(N)

ERROR IN LENGTH SPECIFIER, indicating a syntactic
error in the length of a fixed-length string variable, e.g.,
F/“A”

“NAMELESS” STRING REFERENCE IN ASSIGNMENT
STATEMENT, indicating an attempt to assign a value to a
literal, function call, or parenthetical grouping, e.g., ‘3" = “2”

932 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

(vi7) ARITHMETIC OPERATION WITHOUT SECOND OPER-
AND, eg., A = B + /(L1)

(viri) ARITHMETIC OPERATION WITHOUT FIRST OPER-
AND,eg, A=+ B

(iz) TWO ARITHMETIC OPERATIONS IN A ROW, eg,
A=B**(C

(x) NONBINARY ARITHMETIC OPERATION, eg., A =
B*C+ D

(z7) PRIOR STATEMENT NOT PROPERLY TERMINATED,
indicating a missing continue card or incomplete construc-
tion. This error is not detected until the following card is
read and determined not to be a continue card. Consequently
a statement such as A = B + not followed by a continue
card will cause this error message. Compare with (v¢7) above.

(zz) ERROR IN GO-TO FIELD, e.g., /S(L1)(L2)

(vizi) “NAMELESS” STRING VARIABLE, eg,
*SIZE(SYSPOT) *

(ziv) ILLEGAL LABEL, indicating a label which does not start
with a number or letter.

(zv) MULTIDEFINED LABEL, indicating the same label has
occurred more than once.

(zvi) CONTINUE CARD NOT PRECEDED BY STATEMENT,
indicating the first card in the source deck is a continue card.
(Comment cards and compiler control cards may be freely
interspersed between continue cards.)

If a fatal error occurs during ecompilation, the nature of the fatal error
is printed followed by a listing of any syntactic errors. The fatal error
messages are

(7) PROGRAM BUFFER OVERFLOW, indicating the source
program is too large for an internal buffer. The size of this
buffer is an assembly parameter.

() ERROR READING INPUT TAPE, indicating a binary
record was encountered during compilation. This condition
is almost always due to the omission of an END statement.

(7z7) END TRANSFER ADDRESS IN ERROR, indicating the
label specified on the END card does not start with a number
or letter.

(7z) END TRANSFER SPECIFIES UNDEFINED LABEL,
indicating the label specified on the END card does not oceur
as a label in the program.

SNOBOL3 933

(v) MORE THAN 50 NONFATAL ERRORS, indicating the
occurrence of more than 50 syntactic errors in the source
program. This limit on syntactic errors is an assembly param-
eter. Such an excess of syntactic errors usually indicates the
source deck is not a SNOBOL3 program.

(vi) SYSTEM ERROR, indicating a programming error in the
SNOBOLS3 compiler, or a machine error.

4.2 Program Execution

If a fatal error does not occur during compilation, execution is entered.
Execution continues until the program transfers to or flows into the END
statement or until an error oceurs.

4.2.1 Error Diagnostics
The possible errors are:

(1) ATTEMPT TO EXECUTE STATEMENT WITH COMPI-
LATION ERROR. Execution is terminated if an attempt is
made to execute a statement with a compilation error. In
the case of multidefined labels, the first occurrence is con-
sidered the valid label, and all transfers to this label go to the
first occurrence. Subsequent statements with the same label
are considered to be erroneous and flowing into such a state-
ment terminates execution.

(#%) ATTEMPT TO TRANSFER TO AN UNDEFINED LABEL.

(7i7) STRING OVERFLOWED 5461 CHARACTERS. This
maximum length of strings is an implementation constraint.

(i) INTERNAL BUFFER OVERFLOW, indicating an internal
buffer has been exceeded, usually the result of excessive depth
of recursive function calls or an excessively long pattern. The
buffer sizes are assembly parameters.

(v) ATTEMPT TO USE NEGATIVE LENGTH IN A VARIA-
BLE, indicating the length of a fixed-length variable is nega-
tive.

(vi) FUNCTION FAILED IN GO-TO FIELD, indicating a
function call failed while evaluating a go-to field.

(vit) ATTEMPT TO ASSOCIATE A NULL NAME WITH I/0
FILE.

(vi#i) ILLEGAL FILE OR FILE OPERATION, such as perform-
ing an input or output operation on a name not associated
with a file or attempting to rewind the standard input file.

934 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

(iz) ATTEMPT TO READ PAST EOF ON SYSTEM INPUT
TAPE. The first attempt to read an end-of-file on the standard
input file results in failure of the statement in which the at-
tempt occurred. A second attempt is fatal.

(z) IMPROPER ATTEMPT TO OPSYN A FUNCTION, indi-
cating an attempt to OPSYN a name to an undefined function.

(i) ATTEMPT TO CALL AN UNDEFINED FUNCTION.

(ziz) IMPROPER DEFINITION OF A FUNCTION, indicating
an error in a call of DEFINE.

(x777) UNDEFINED OR NULL LABEL USED IN DEFINE
STATEMENT, indicating the label specified in a call of
DEFINE is null or does not occur in the program.

(xiv) TOO MANY ARGUMENTS IN A FUNCTION DEFINI-
TION, indicating that the number of arguments and local
variables in a defined function exceeds ten.

(zv) IMPROPER CALL OF A DEFINED FUNCTION, indi-
cating too many arguments in the call of a defined function,
or an improper argument for the CALL function.

(zv) FUNCTION ENTERED OTHER THAN BY CALL, indi-
cating an attempt to return from a defined function which
has not been called.

(zvi7) INDIRECT REFERENCE THROUGH THE NULL
STRING, indicating an attempt to use the null string as a
name.

(zveig) OUT OF SPACE, indicating available storage has been
exhausted.

(ziz) SYSTEM ERROR, indicating a programming error in the
SNOBOLS3 interpreter, or a machine error.

4.2.2 Post-Mortem Information

On termination of program execution, information is printed for the
programmer’s use.

If execution was terminated as the result of an error, the number of
the statement in which the error occurred and the current level of func-
tion call are printed in addition to the error message.

In either normal or error termination, statistics concerning execution
are provided. The number of statements executed and the number of
times the scanner was entered for pattern matching are tabulated.
Storage allocation statistics are provided, and total millisecond times
in the compiler and interpreter are given.

SNOBOL3 935

4.3 Debugging Aids

Several functions are available specifically for debugging.

4.3,1 Function Tracing

Tunction calls may be traced by use of TRACE(FLIST) where the
value of FLIST is a list of function names for which a trace is desired.
For example, the call

TRACE(“SIZE,F,EQUALS")

results in the subsequent tracing of the three functions given. Both
primitive and defined functions can be traced.

When a defined function being traced is called, a message is printed
on the listing indicating the level from which the call was made, the
name of the function and the value of all its arguments at the time of
the call. When the function returns, a message is printed indicating the
level to which the return is made, the name of the function, and the
value returned. If a failure return is made, this is also indicated but no
value is given.

When a primitive function being traced is called, a message is printed
on the listing indicating the level at which the call was made, the name
of the function, and the value of its arguments. If the function call
returned successfully, the value is given. Otherwise failure is indicated.

The tracing of functions may be stopped by calling

STOPTR(FLIST)

where the value of FLIST is a list of functions for which tracing is to
be stopped.

4.3.2 String Tracing

A name may be traced during execution by calling the function
STRACE(NAME,FILE) which associates the value of NAME with
the value of FILE in the trace sense. For example,

STRACE(“Y”,“0OUT”)

would cause Y to be associated with logical file OUT. Subsequently
every time a value is assigned to Y, a trace message will be printed on
the associated file indicating the name being traced, its new value and
the statement number where the value was assigned. STRACE is es-
sentially an input-output association function and behaves like the other

936 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

association funections. Consequently STRACE detaches NAME from
any other input or output association. Similarly, if the second argument
is null, association is made with the standard output file. String trac-
ing may be terminated by detaching NAME.

4.3.3 Diagnostics Resulting from Tracing

Two nonfatal errors may occur as a result of tracing. Advisory diag-
nostic messages are printed for these cases.

(4) (name) HAS NOT BEEN DEFINED AND WILL NOT BE
TRACED, indicating a request to trace an undefined function
of the indicated name.

(77) ** THE FOLLOWING TRACE OUTPUT HAS BEEN TRUN-
CATED, indicating that the printing of a string or function
trace would exceed internal storage limitations, an assembly
parameter set to about 600 characters. In this case the trace
printout is truncated.

4.3.4 String Dumps

An alphabetical listing of all strings with nonnull values may be
obtained on termination of execution. The MODE function is used to
request this string dump.

MODE(“DUMPERR”) causes a string dump if execution is termi-
nated by an error during execution. MODE(“DUMP”) causes a string
dump following either normal or error termination. These calls of the
MODE function must of course be made before execution is terminated.

V. ACKNOWLEDGMENT

The authors wish to express their appreciation to the many people
who have contributed their ideas to the design of SNOBOL3. D. L.
Clark, G. F. Faulhaber, G. K. Manacher, M. D. Mecllroy, J. F. Poage,
A. Simon, L. C. Varian, and D. Walters have been particularly helpful.

The assistance of G. K. Manacher and L. C. Varian in the implementa-
tion of the system is most gratefully acknowledged.

APPENDIX A

Catalog of Primitive Functions

Primitive functions may be divided into categories according to the
nature of their operation and area of applicability. Individual functions

SNOBOL3 937

are described in the appropriate sections. For reference purposes a
complete list of primitive functions follow.

A. Numerical Functions (Section 3.2)
EQ(X,Y)
NEX,)Y)
.LE(X)Y)
LT(X)Y)
.GE(X,Y)
.GT(X,Y)
ANUM(X)
. .REMDR(X,Y)
B. Dlagnosmc Functions (Section 4.3)
1. TRACE(FLIST)
2. STOPTR(FLIST)
3. STRACE(NAME,FILE)
C. Input-Output and File Manipulation Functions (Section 3.5)

§ 90 N @ o 20 10

1. READ(NAME,FILE)

2. PRINT(NAME,FILE)

3. PUNCH(NAME,FILE)

4, BJECT(NAME)

5. REWIND(NAME)

6. BSREC(NAME)

7. DETACH(NAME)

8. OPEN(KEY,FILE)

D. System Mode Funetions

1. MODE(X)

a. “ANCHOR” Sections 2.8.1
and 3.3.3

b. “UNANCHOR” Section 3.3.3
c. “INTEGER” Section 3.2.3
d. “TRUNCATION"” Section 3.2.3
e. “SYSTEM” Section 3.4.4
f. “ENDJOB” Section 3.4.4
g. “DUMP” Section 4.3.4
h. “DUMPERR” Section 4.3.4

2. ANCHOR() Section 3.3.3

3. UNANCH() Section 3.3.3

E. Functions Relating to Funetions
1. DEFINE(FORM,LABEL,NAMES) Sections 2.8.2

and 3.7

038 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

2. OPSYN(NEW,0LD)
3. CALL(FNC)

F. Miscellaneous Functions
1, EQUALS(X,Y)

2. UNEQL(X,Y)
3. TRIM(S)

4, TIME()

5. DATE()

6. SIZE(S)

7. SYSTEM(FILE)

APPENDIX B

Section 3.6.2
Section 3.6.2

Sections 2.8.1
and 3.6.3
Section 3.6.3
Section 3.6.3
Section 3.6.3
Section 3.6.3
Sections 2.8.1
and 3.6.3
Section 3.4.4

This appendix contains three sample programs. These programs are
designed to illustrate various uses and features of SNOBOLS3.

The first two programs involve symbolic evaluations which are in-
herently recursive. The third is an example of text manipulation.

All three examples use pattern matching in various forms. Statement
20 in the first example illustrates the use of back referencing to deter-
mine whether two lists have an element in common. The second program

illustrates function tracing.

"R R R E R T T E R R R R

READ

INVALID
WANG

ANGT
AAND

AIMP

AEQU

CNaT

CAND

CaR
ciup
CEQU

END

SNOBOL3

EXAMPLE 1. THE WANG ALGBRITHM

YHIS PRAGRAM 1S THE ALGBRITHM BY HAQ WANG (CF. "TOWARD
MECHANTCAL MATHEMATICS®, IBM JAURNAL E@F RESEARCH AND
DEVELBPMENT 4{1) JAN.1960 PP.2-22.) FOR A PREHF-DECISION
PRACEDURE FOR THE PRAPBSITIONAL CALCULUS. [T PRINTS BUT A
PREAF AR D1SPRABF ACCORDING AS A GIVEN FARMULA IS A THEBREM
BR N@T. THE ALGARITHM USES SEQUENTS WHICH CANSIST @F Twd
LISTS OF FBRMULAS SEPARATED BY AN ARR@W {--%*). [INITIALLY, F@R
A GIVEN FERMULA F THE SEQUENT

--¢ F

IS FORMED. WANG HAS DEFINED RULES FBR SIMPLIFYING A F@RMULA
IN A SEQUENT BY REMBVING THE MAIN CENNELTIVE AND THEN
GENERATING A NEW SEQUENT OR SEQUENTS. THERE IS A TERMINAL
TEST FOR A SEQUENT CONSISTING @F BNLY ATBMIC FERMULAS:

A SEQUENT CENSISTING @F @NLY AT@MIC FORMULAS [S VALID 1F
THE TW@ LISTS BF FBRMULAS HAVE A FBRMULA TN CEMMEN.

BY REPEATED APPLICATI@N @F THE RULES BNE IS LED T8 A SET @F

SEQUENTS CE@NSISTING @F AT@MIC FBRMULAS. IF EACH @NE @F THESE
SEQUENTS 1S5 VALID THEN SO IS THE @RIGINAL FORMULA.

DEF INE ("WANG[ANTE,C@NSEQ)™ , "WANG®,“PHI,PSI™)
READ IN THE EXPRESSIEN

EXP = TRIMISYSPIT) JFIEND)

SYSPAT =

SYSPBY = W“FBRMULA: ™ EXP

SYSParv =

WANG(" " EXP) JF{INVALID)
SYSPBT = ®™yALlID"® ZIREAD)

SYSPBT = “N@T VALID" / (READ}

SYspert = ANTE " --% ™ CBNSEQ

ANTE "W ONBT("™ ®(PHL)® =)" = JSLANBT)

ANTE " AND("™ ®(PHL[)* =," *(P5[)* =" = /SUAAND}
ANTE " [MP(® S(PHI}® =, *(PS]1)*% =)" = /STATMP)
ANTE " BRI ®(PHI)* "," *([PS[)% ")% = JS(ABR)
ANTE " EQUI™ *(PHI)® ™, " *(PS[}® ")" = /SUAEQU)
CBNSEQ " ONBT(" *(PHI)® =)" = /SICNBT)
CONSEQ " OAND(™ *(PHI)® =, % *[PSL}* ")= = /S{CAND)
CANSEQ n IMP(™ *{PHI)* ",™ ®(PS[)% ")*" = /SICIMP)
CANSEQ " PRI™ *(PHI)}* ",” ®(PS1)% ")" = ssicen)
CANSEQ ® EQUI™ *{PHI)® ",™ *(PSI1)* ™)™ = /SICEQU)

[ANTE ® " CANSEQ ™ ™) " ™ &(P)% = ® #4 mam 44 n = p u n

/SIRETURN)F{FRETURN)
WANG[ANTE,CBNSEQ = " PHI) /SIRETURN}FIFRETURN)

WANG(ANTE = » PHI =™ = PS[, CANSEQ) /S{RETURN)IF(FRETURN}

WANGIANTE ™ = PHI,CENSEQ)

WANGIANTE

WANGIANTE

= = pPSI,CENSEQ]

m = pS[,CANSEQ)

WANGIANTE,CANSEQ ™ " PHI)

/FIFRETURN)
/S{RETURN)F [FRETURN)

JFI{FRETURNI)
/S{RETURN)FLFRETURN)

WANGIANTE = ™ PHI ™ = PSI,C@NSEQ) /FIFRETURN]
WANG({ANTE,CANSEQ ™ ™ PHI = = PsI) /S{RETURNIF (FRETURN)
WANGIANTE = = PHI,C@NSEQ! /SURETURN)F [FRETURN]
WANGIANTE,CANSEQ ™= " PHI) /FIFRETURN)
WANGIANTE,CBNSEQ = = PSI) JSIRETURN)F(FRETURN)

WANG(ANTE,CBNSEQ ™ ™ PHI = = PSI)

/S{RETURN)}F(FRETURN)

WANGIANTE =™ ®» PHI,CANSEQ " ™ PSI) /SIRETURNIF FRETURN)
WANGIANTE ™ " PHI,CONSEQ = = PSI) /FFRETURN)
WANGIANTE = » PSI,CONSEQ = = PHI) /S{RETURN)IF (FRETURN)

SUCCESSFUL C@MPILATI@N

939

N=OOT~NCWVFWUN

22

23
24

25
26

27
28

29

30
31

32
EE]
34

36

940 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

FORMULA: IMPIN@TIGR(P,Q)),NATIF)]

==% [MP(N@T(BRIP,sQ))+NBTI(P})
NBT(BR(P,Q)) ==% NATI(P)

--% N@T{P) BRIP,Q)

P --% @R(P,Q)

FARMULA: IMP{ANDIN@TIP),NAT(Q))EQUIP,Q))

~=% [MP{ANDIN@T(P),NBTIQ)),EQUIP,Q))
ANDINBT(P),NAT(Q)) --* EQUIP,Q)
NBTIP) NBTI(Q) —* EQUIP,Q)

NBT(Q) --% EQUI(P,Q) P

--* EQUIP,Q) P Q

P--¢ PQAQ
Q--+ POP
VALID

FORMULA: IMP(IMPI@R(P,Q)@RIP,R))@RIP,IMPIQsR))])

-=% IMP(IMP(BR(P+Q)sPRIP4R})I+@RIPyIMPIQsR]]}
[MPIBRIP,Q),ARIPsR}) —=% BRIP,IMPIQ.R))
ARIP,R) ==% @RIP,IMPIQ4R))
~=% @RIP,IMPIQ4R))
—-=% P [MP(Q.R)
PR

BRIP.TMPIQ.R)}
--% P IMP(Q.R)
Q--¢« PR
==& BR{P,IMPLQ,R))} BRIP,Q)
—--% @R{P,Q) P IMP(Q«R)
Q --% @R(P,Q) P R
Q--% PRPOQ

EEER-E-R]
|
I
-

VALID

NORMAL EXIT FROM SNEBEL AT LEVEL (1]

SNOBOL RUN STATISTICS , N@. BF RULES EXECUTED = 254 NB @F SCANNER ENTRIES = 187

ST@RAGE ALL@CATIPN STATISTICS -- 171 STRINGS STERED 397 WERDS FOR STORED STRINGS

600 REFERENCE ASSIGNMENT WARDS 0 REFERENCE, 0 GARBAGE, AND
0 HYPER-GARBAGE CHLLECTIBN(S)

ELAPSED TIMES-CEMPILER 620 , INTERPRETER 735 IN MS

LR

READ

END

SNOBOL3

EXAMPLE 2. DIFFERENTIATIG@N BF ALGEBRAIC EXPRESSI@NS

THIS PRBGRAM DIFFERENTIATES A FULLY PARENTHESIZED
ALGEBRAIC EXPRESSIEN WITH RESPECT T2 X. THE EXP@NENTIATIBN
APERATBR IS5 INDICATED BY A DBLLAR SIGN.

DEF INE (®"D(D)™,™D0","U,V,N"]
DEFINE("STMPLIFY(EXP)™,"50","U")
TRACE("D,SIMPLIFY™)

READ TN THE EXPRESSIS8N.

EXP = TRIMISYSPIT) /FLEND)

M@DE ("ANCHER™)

SYSP@T =

SYSPAT = W®IHE DERIVATIVE @F ™ EXP ™ [S » SIMPLIFY(D(EXP))
LEND)

THE FUNCTIBN "D"

D n(W (Ul mem E(Y)E)R o= W(W DY) "4" DIV "I
/SIRETURN)
D miW #[U)e m-m s(V)® W)W = W(m D{y} ®-" D(V) ")
/SIRETURN)
D w0 og(U)E wEW x(V)&)" = B((" U "em DIV ")e("
vV "av D(U) "I /SIRETURN)
o] mm ‘lUl‘r'f' w(y)® W)W = m((m Yy mem DlU) W)-(W
U " DIV) "))/ OV "S2) " /S{RETURN)
1] nim o w{Ul® "3 £(N)E "}" =
Wi[® N mE(™ U Wgm N - "L™ W))#" D(U) ")®
/SIRETURN)
D = EQUALSID,"X™) ™" /SIRETURN)
] = mQn /{RETURN]

THE FUNCTI@N "SIMPLIFY®

MEODE ["UNANCH")

EXP m(m ®(Uu)® "s0)" "o" /51511
EXP m(OsM_*(U)x ") o™ 75051}
EXP win e(U)E "S1I" u /75(82)
EXP m(m ok[U)E "EL}Y u /5153)
EXP LIS LA SUVEL R b u /5154)
EXP n(O+" w(UYE " u /5155)
EXP min [UIE me) u /5156)
EXP nim w(UIE -0 u 7815T)
SIMPLIFY = EXP /(RETURN)

SUCCESSFUL C@MPILATIGN

941

- [P NE

~N~owm

oo @@

10
10

12
12

13
14

w

*

»

-

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

CALL @

m

DIPCLIA®{X$2))+(B*X))+CI"™)

CALL @i

T

DIM(IA*[X$2))+(B*X))"}

CALL @F DI™(A®{X$2}}")

CALL @F Di™ixs21™)

CALL @F ni=x")

RETURN @F D = "1™

RETURN B8F D = ™{(2#(X$1))*1)"

942 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

LEVEL CALL @F D{™aA™)

]

LEVFL RETURN @F D = ®Qo"

"

LEVEL RETURN @F D = "[(A®([(2*(X$L1)*1])}+((X82)%0))™

~N

LEVEL CALL OF DI"([B*X}"™)

~

-

LEVEL CALL @F D("x")

LEVEL RETURN 8F D = "™

w

LEVEL CALL @F D{"™B")

w

LEVEL RETURN @F D = "Q"

w

o

LEVEL RETURN BF D = "{[B*1)+(X*0})"

LEVEL RETURN @F D = "(((A®((2%(XSL)}*1})+1(X52)%0)}+([B*L)+[X*Q)))"

LEVEL CALL OF D("C")

LEVEL RETURN @F D = "O©

LEVEL RETURN BF D = "([([(A*{(2*(XSLII*1)1+{(X$2)%0) 1+ {B*1)+(X*0)}}+O)"™

o

LEVEL CALL @F SIMPLIFY("((((A®{{2%(XS1)I*1L))¢((XS21%0) 1+{(B*L)+{X*01))+0)")

o

0 LEVEL RETURN @F SIMPLIFY = "[[A*[2®X])+B}"

THE DERIVATIVE BF ([[A*(X$2))+{B*X]11+C) IS ((A*(2%#X))+B]

NORMAL EXIT FROM SN@BAL AT LEVEL 0

SNBB@L RUN STATISTICS , N@. OF RULES EXECUTED = Tl N@ BF SCANNER ENTRIES = 54

ST@RAGE ALLACATI@N STATISTICS -- 125 STRINGS ST@RED 216 W@RDS F@R STHRED STRINGS
450 REFERENCE ASSIGNMENT W@RDS . O REFERENCE. [} GARBAGE, AND

0 HYPER-GARBAGE C@LLECTIEN(S)

ELAPSED TIMES-CBMPILER 474 , INTERPRETER 380 IN HS

SNOBOL3 0943

= EXAMPLE 3. EDITOR
-
* THIS PROGRAM READS I[N TEXT AND PRINTS N CHARACTERS
. PER LINE. EXTRA BLANKS ARE INSERTED BETWEEN WERDS
. T8 FILL BUT LINES.
MBDE(ANCHBR™) 1
DEFINE(™INSERT{K,LINE)™,"IN","BLANK,WORD") 2
* READ IN N
TRIMISYSPIT) N 3
READ TEXT = TEXT TRIM{SYSPIT) = = /SIREAD) 4
syspPart - 5
SYSPBT = WPRINT THE FOLL@WING STRING " N 6
. " CHARACTERS PER LINE:"™ 6
SYSPRT = 7
. PRINT THE INPUT TEXT
TEXTL = TEXT 8
PRINT TEXTL #SYSPAT/"90"* = JS(PRINT) 9
SYSPRT = TEXTL 10
SYSP@T = 11
Sysper = 12
TEST GTISIZE(TEXT),N} /F(LASTLINE) 13
K = "o 14
SCAN TEXT #LINE/IN - K)* n m = /F(BUMPK) 15
SYsPaT = INSERT(K,LINE} FUTEST) 16
BUMPK K = LLT(KyN) K & =1@ /S(SCANIF(ERR) 17
* FUNCTI@N T@ INTERSPERSE K BLANKS IN A LINE
N INSERT = LEQIK,™0") LINE /S{RETURN) 18
LINE s won /S(BLINK) 19
INSERT = LINE 7 {RETURN) 20
BLINK BLANK = BLANK = = 21
Lesp LINE *WBRD* BLANK = /F{MBRE) 22
INSERT = INSERT WBRD BLANK " = 23
K = GTIR G L) K - m1w /stLear) 24
INSERT = [NSERT LINE 7 tRETURN) 25
MERE LINE = INSERT LINE 26
INSERT = 7 (BLINK) 27
LASTLINE SYSPRT = TEXT 7 LEND} 28
ERR syspar = 29
SYSPAT = “e# EDITBR CANNOT PRINT LINE BECAUSE N 1S TOB SMALL." 30
END 31

SUCCESSFUL CBMPILATI@N

PRINT THE FBLL@WING STRING 75 CHARACTERS PER LITNE:

TW@ FUNCTI@NS HAVE BEEN ADDED T2 INCREASE THE FLEXIBILITY @F DEALING WITH THE SYSTEM INPUT
SBURCE. GETSRC RETURNS AS VALUE THE CURRENT SYSTEM S@BURCE. SETSRC SETS THE CURRENT SYSTEM
SGURCE T@ THE VALUE @F FILE. A NULL VALUE IS RETURNED. THREE 1/@ FUNCTI@NS HAVE BEEN ADDE

D WHICH TAKE FILES AS ARGUMENTS. THESE FUNCTI@NS CBMPLEMENT THE CORRESPENDING SNBB@L3 FUNC

TIANS WHICH REQUIRE NAMES ASSOCIATED WITH FILES AS ARGUMENTS.

TW@ FUNCTI@NS HAVE BEEN ADDED T@ INCREASE THE FLEXIBILITY @F DEALING WITH
THE SYSTEM INPUT S@URCE. GETSRC RETURNS AS VALUE THE CURRENT SYSTEM S@URCE.
SETSRC SETS THE CURRENT SYSTEM S@URCE T@ THE VALUE 8F FILE. A NULL VALUE 1S
'RETURNED. THREE 1/@ FUNCTI@NS HAVE BEEN ADDED WHICH TAKE FILES AS
ARGUMENTS. THESE FUNCTI@NS C@MPLEMENT THE CBRRESPENDING SNBBEL3 FUNCTI@NS
WHICH REQUIRE NAMES ASS@CIATED WITH FILES AS ARGUMENTS.

NERMAL EXIT FROM SNEBGL AT LEVEL o
SNBBAL RUN STATISTICS , N@. BF RULES EXECUTED = 130 N@ @F SCANNER ENTRIES = 42
STORAGE ALLOCATIEN STATISTICS -- 194 STRINGS STBRED 1296 WERDS FBR STBRED STRINGS
600 REFERENCE ASSIGNMENT W@RDS , 0 REFERENCE, 0 GARBAGE, AND
O HYPER-GARBAGE COLLECTI@NIS)

ELAPSED TIMES-C@MPILER 410 4 INTERPRETER 547 IN MS

944 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

REFERENCES

1.

W~ & G &= W N

Newell, A., Ed,, Information Processing Language-V Manual, Prentice-Hall,
1961.

. McCarthy, J., Recursive Functions of Symbolic Expresalons and Their Com-

putation by Machine, Part I. Comm., ACM 38 April, 1960, p

. An Introduction to COMIT Programmmg, The Research Lab ‘of Electronics

and the Computation Center, M I.T", 1961.

. Farber, D. J., Griswold, R. E., and Polonsky, I. P., SNOBOL, a String Manip-

ulation La,ngua.ge J. ACM 11, No. 1, 1964.

. Manacher, G. K., A Package of Subroutines for the SNOBOL Language. (Un-

published)

. Griswold, R. E. and Polonsky, I. P, Tree Functions for SNOBOL3. (Un-

published)

. Griswold, R. E., Linked-List Functlons for SNOBOLS3. (Unpublished)
. Farber, D. J., Grlswold R. E., Manacher, G. K., Polonsky, I. P,, and Varian,

L. C Pragrammmg Machme Language Functions for SNOBOL3. (Un-
pubhshed)

