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Light scattering in a Fabry-Perot cavity by an acoustic beam is discussed.
An heuristic treatment based on momentum conservation is used to deler-
mine the conditions, acoustic bandwidth and enhancement of the scattering
interaction. A more detailed and rigorous calculation based on a coupled-
mode formalism is also described. Experimental results using fused quartz
Fabry-Perot cavities, single-frequency 6328A light and acoustic waves in
the frequency range 200-500 Mc/s, are presented. Enhancement relative
lo single-pass scatiering by a factor of 50 is easily achieved. Modulation
depths of twenty-five percent with a bandwidth of several megacycles have
been observed.

I. INTRODUCTION

When a collimated light beam traverses a collimated high-frequency
acoustic beam, it is possible for the acoustic beam to scatter light into a
single, well-defined angle (into a number of well-defined angles when the
acoustic frequency is sufficiently low). The amount of light scattered
depends critically on the angle of the light beam relative to the acoustic
wavefront (the Bragg angle) and is roughly proportional to the square
of the acoustic beam width for constant acoustic intensity.! While it is
possible to scatter all of the incident light, this usually requires imprac-
tically large amounts of acoustic power, especially at frequencies greater
than a few tens of megacycles/second.

Acoustic scattering of light has considerable experimental interest
since it allows a convenient method of probing transparent media to
measure such things as elastic and photoelastic constants and acoustic
loss or phonon lifetimes. These measurements can be made using ther-
mally generated (Brillouin scattering)?? or externally generated sound.*
In the latter case, the scattering also allows determination of the acoustic
beam shape and direction. In addition, the scattering interaction gives
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rise to a class of light modulation and deflection devices.®¢ For ampli-
tude modulation purposes, the bandwidth of acoustic devices corre-
sponds to the transit time of the sound across the waist of a light beam
whose diffraction angle equals the diffraction angle of the sound.® Interest
in these devices and similar ones using slow electromagnetic waves in
electro-optic materials® would be more than academic if a sizeable per-
centage of the incident light could be conveniently deflected.

Resonating the acoustic medium could enhance the strength of the
interaction but would excessively limit the bandwidth or transient
response. On the other hand, the large velocity of light allows resonating
the interaction region optically with less serious consequences to the
bandwidth. Such a technique would be an extension of what has already
been described for electro-optic modulation. In the Fabry-Perot electro-
optic modulator,” the electro-optic standing wave serves to couple
energy from one axial Fabry-Perot mode excited by the incident light
to other axial modes. In the acoustic case, the coupling is necessarily
between off-axis modes of the resonator.

Figs. 1 and 2 illustrate the arrangement required to achieve a resonant
scattering interaction. For the sake of discussion, it is assumed that the
incident light beam is very wide so that the angle of incidence is well
defined. Under ideal conditions the sound of angular frequency @ and
velocity v travels in a plane parallel to the mirrors; unavoidably the
sound travels at a very small angle ¥ relative to the mirrors as shown in
Fig. 2 and this case must be considered also. The incident light of angu-
lar frequency w and velocity ¢’ in the medium is set at an angle 8 corre-
sponding to an off-axis resonance of the cavity. This requires that

I cos 6 = ax/L (1)

in which k = w/c’, L is the mirror spacing and e is an integer. Now
consider Fig. 1; the scattered light with propagation constant K=
k(1 4+ Q/w)* is sent into an angle 8 defined precisely by

K sing = ksing+ K (2)

in which K = /v is the acoustic propagation constant; (2) follows
from the requirement of momentum conservation. The various scattered
beams arising from each pass of the light will add in-phase when the
angle 6 corresponds to a resonance of the cavity at the frequency
w + Q. Hence, the angle 6" must satisfy the requirement

k' cos 8 = a'x/L. (3)
* For the geometry shown, the scattered light is upshifted in frequency to a

value w + 9. It is assumed that optical dispersion is negligible over the frequency
range of interest so that &’ = (0 4 Q)/c’.



ACOUSTIC SCATTERING OF LIGHT 947

l

\

-
- ; SCATTERED
BEAM
INCIDENT /
BEAM /
x \
u I \ i
K

I'ig. 1 — Schematic arrangement for ncoustie seattering of light in an optically
resonant geometry. In this case the acoustic wave travels parallel to the mirror
planes.

When the acoustic beam has ro y-directed momentum, momentum
conservation in the y-direction (the Bragg condition) requires that

k' cos § = Ik cos 0 (4)

or
r
a = a.
Since the acoustic beam is not extremely wide in practice, the transverse
(y-directed) momentum or propagation constant is not precisely de-
fined. This allows some deviation from the strict requirement

k' cos 6 = k cos 6,

and it is not absolutely necessary that a’ = a. However, (4) represents
the condition for optimum scattering.

Following the multiply-reflected beam, it can be seen that the Bragg
condition is satisfied along each leg of the round trip, hence energy is
efficiently scattered into the mode at angle 8" on each pass through the
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Fig. 2 — Schematic arrangement for acoustic scattering of light in an opti-
cally resonant geometry. In this case the acoustic wave travels at a small angle
¥ relative to the mirror planes.

acoustic beam. Since the effective number of passes is given approxi-
mately by R'(1 — R)7', in which R is the mirror reflectivity,” the
scattered optical energy is nmominally increased over the single-pass
value by the factor R(1 — R)™; for R = 0.9, R(1 — R)™® = 90. The
presence of loss or a finite aperture in the Fabry-Perot cavity will, of
course, reduce the enhancement or gain in scattered energy.

When the acoustic beam moves at an angle ¥ as shown in Fig. 2,
the situation is somewhat more complicated. The acoustic frequency
must be chosen so that the angle of the scattered radiation defined by

k' sin 8 = ksin @ + K cos ¥ (5)
falls into a Fabry-Perot mode and the Bragg condition requires that
+KsinW kecosf — k' cos 6
= (@ — a')w/L.

The requirement for ¥ # 0 can be well satisfied for either the plus or

(6)
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the minus sign and hence for only one leg of the round trip as shown in
Fig. 2. Thus, the enhancement of the path length is reduced by 3 and
the scattered power by 1 over that represented by the case ¥ = 0, (Fig.
1).

When the acoustic frequency € is chosen aeccording to (5) the energy
scattered from the mode excited by the incident beam will fall precisely
into the optimum angle ¢ for the scattered mode. When the acoustic
frequeney deviates from the proper value the scattering angle will vary
and the scattered intensity will decrease. With the advantage of hind-
sight, one expects that the amount of the decrease will be determined
by the angular halfwidth of the Fabry-Perot mode. For a lossless Fabry-
Perot cavity the angular dependence of the transmitted intensity T
is given by the Haidinger fringe formula® and can be written

1
1 4+ [4R/(1 — R)? sin® k'L [cos 6'(2) — cos 6'()]

in which 8’ (@) and 6 (2,) are defined by (5) for different values of K
(defined as @/» and Q,/v; Q, being the optimum acoustic frequency).
Using (5), T(2) can be written finally as

1

Q) = (7)

T(@) ~ 1+ [4R/(1 — R)? sin® (2 — Q,) (L cos¥/v) tan 6'(Q) (8)
which predicts an acoustic bandwidth
AQ/2r ~ v(l — R)R }/2nL cos ¥ | tan ¢’ () | . 9

More detailed calculations indicate that in the limit of no loss (9) is
precisely correct. An additional factor 1 + | tan 6'/tan 6 | will appear
when the angular spread of the light in the mode excited by the incident
light beam of finite width is taken into account.

It may be shown by forming the product of the fraction of the incident
light scattered or scattering efficiency and the bandwidth that the
resonant Fabry-Perot device has a figure of merit identical to that of
the nonresonant or single-pass modulation device.” The Fabry-Perot
device has practical interest only when efficient narrow-band (<2
megacycle/second) devices are required since nonresonant modulators
are difficult to optimize for narrow bandwidths.

The preceding discussion indicates in a qualitative way the prop-
erties of a scattering interaction in a Fabry-Perot cavity. In the following
section, a more rigorous theory of the scattering interaction will be given
which validates the simple model described above. This is followed by
a description of experiments giving results in substantial agreement
with the calculated results.
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II. THEORY

The model chosen for discussion is that of an open Fabry-Perot
cavity with unlimited z-dimension as shown in Fig. 3. The light beam is
incident at an angle 6, , at a frequency w, corresponding to a cavity
resonance defined by

ko cos 8, = ax/L (10)
in which k, = wa/c. The cavity electric field has the form
E(z,yt) = Flexp + aallexp i(wd + ko sin 6.x)] sin (ary/L) (11)

corresponding to a decaying wave traveling to £ = — . The field is
resonant in the y-dimension. The exponential loss, with loss parameter
a, , arises from the mirror reflection loss as well as internal losses in the
resonator. It is shown in Appendix A that «, is given by

e = 3ka/Qr.a | sin 0, | (12)

in which @ , is the loaded Q of the cavity (defined later). The I field
is assumed to be polarized in the z-direction (denoted by &).

L=-0

Fig. 3 — Scattering interaction geometry for coupled-mode caleulation.
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The eigenfunctions for the cavity, normalized in the half space —» =
z = 0, can be written

Eo(we) = k(4as/L)} sin (ary/L) exp (au + ko sin 6a)z.  (13)

The coupled-mode equations for the Fabry-Perot resonator are given
in Ref. 7, and can be written

8ea/0 + wa'ta + (wa/Qu.a)dea/0t
+ 8'(a | 8e/e | a')*ew] /0t
= —%(we/Qu)de(wit)/at
Few /Ot + war'twr 4 (war/Qu.ar)dear /0L
+ Ola| de/e | a')e/0t"
= 0.

Here e,(t) and e, (t) are the amplitudes of the incident-beam and
seattered-beam modes. The total field is given by

E = ¢.E. + eEu .

Note that only two modes are coupled here; any energy scattered from
mode a’ into an angle different from 8, cannot correspond to a Fabry-
Perot mode. (In general, the angles of the Fabry-Perot rings increase
as the square root of an integer while the acoustic scattering angles
increase as an integer and momentum conservation can occur for only
one angle.) The quantity Q. is the coupling Q defined by’

Q. = ira(1 + R')*/(1 — R) cos® 4,
~ maR'/(1 — R) cos’ 6,1
and Q. is the loaded Q defined by’
Qua ' = Q'+ Qs (16)

in which Qg is the dielectric Q of the optical medium. The coupling of
the Fabry-Perot modes is defined by the infegral

(15)

0

L
Calse/e|d) = [ do [ dyEeleleyn)/eBa  (17)
— 0

+ The definition of @, given here differs from that of Ref. 7 in the appearance
of the term cos? 8, which has the value unity for the modes considered there. The
reason for this term ean be understood simply by noting that ra/cos? 8, = kal./cos 0,
and L/cos 8, is the increased length over which energy is stored for the same
reflection loss. Thus, the Q must be enhaneed by this factor. Tt is also assumed
that 1 + R} = 2Rk} which neglects terms of order (1 — R)* <« 1.



952 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1966

in which & is the unperturbed dielectric constant of the medium and
de is the perturbation produced by the sound. This can be written

ée(z,y,t) = de cos (2 — Kz cos ¥ — Ky sin ¥) (18)

and can be written as a scalar quantity because of the choice of polariza-
tion axis. The acoustic beam travels at an angle ¥ relative to the mirrors,
has a width L’ and does not necessarily fill the space between mirrors.
This introduces a filling factor L'/L into the expression for the coupling
factor. The limits on the integration with respect to y in (17) will be
taken as

IL-L)sys3iL+ L)
Performing the integration, using (13) and (18) yields
(a|de/e|d') = $xaw (@) exp 1% (19)
with the coupling parameter x,,.- defined by
Xao (@) = }(e/e) (L'/L) (" exp —i}(@/v)L sin ¥)

X [Si“ Vv jsin Y‘][ 2l ] / [1 + iX]. (20)

Y+ Y. Qg + g’
The parameter Y, is given by
Y, = Y(a — a')r = (Q/v)L sin ¥|L'/L. (21)

It can be shown that sin ¥/Y is precisely the frequency dependence
found for single-pass scattering when the angle of the incident light is
held fixed. Hence, the requirement of small ¥ is nothing but the condi-
tion that the angle of incidence be close to the Bragg angle." Note that
when @ # @’ and (2/v)L sin ¥ &~ (@ — &' )7 so that Y, is small and
sin Y,/Y,~1,then Y.~ (a — a')r and sin Y_/¥_ & 0. This corre-
sponds to the situation deseribed earlier (Fig. 2) in which only one
leg of the round trip scatters efficiently. However, when ¢ = a’ then
Y, = —Y_ = KL sin ¥ which can be very small only when ¥ — 0.
In this case, sin V,/Y, + sin Y_/Y_ = 2 corresponding to the condi-
tion of Fig. 1 wherein both legs of the round trip scatter efficiently.
Continuing the discussion of (20) the parameter X is given by

X = (ko|sin 6, | + ko |sin far | — K cos )/ (e + aa’) (22)
and is zero for some acoustic frequency Q...+ defined implicitly by
ko |sin 6, + ka(l + Quor/wa) |sIn 6,0 | — (Ruer/v) cos ¥ = 0 (23)

subject to the constraint
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k. cos 8, = ar/L
Fu (1 4 Quor/wa) cos b = a'w/L.
It follows that

Q.= [kqv/cos ¢l[| sin 6, | + |sin 6o’ |]
7 [1 — (v/¢') sin 0, /cos ¥]

in which 6, and 8, are the appropriate ring angles of the Fabry-Perot
cavity.} The denominator in (24) is properly set equal to unity since
(v/c') sin B, ~ Qoor/we K 1. Thus, Q. represents the set of acoustic
frequencies for which the scattered light will fall into a Fabry-Perot
mode. There is one value of Q, . only for each pair of values ¢ and a'.
The parameter X may now be rewritten

X = 2(Qaer — [1 + (v/c") sin 6, /cos ¥]ra,a (25)
~ 2(Qea — D) Taa’

(24)

in which

Taa = 3(cos ¥)/v(as + aa) (26)
corresponds to a transit time of the sound across an equivalent distance
3(ata + @)™, which is related to the decay distance of the light intensity
in the cavity modes. The second term in the square bracket of (25)
is neglected as discussed above. Using (10), (12), and (15), 74« can
be written finally as

. _ (cos¥)( L tan [ 6a | Qa Q. tan |6, | :I—l
= () (2 L + S e - @

The scattered amplitude can now be found by solving (14). Writing
the mode amplitudes as

eq = &, eXP twdt
€ = bo exp i(w, + Q)¢
and substituting into (14) yields

"'%'iXa.a’QL.a'én
1 — 7'2(9 - Qa.n’)QL.a'/wa
. ~1(Qu.a/Qu)e _
1+ % | Xa,a’ |2 QL.aQL.a'/(l - ".2(9 - ﬂn.u')QL.a'/“’u)

T | 84’ | wa == 0a.a’ corresponding to a ring angle for an optical frequency wa =
Qa.o' can be related to the ring angle for frequency w. by the formula

éﬂi =

(28)

| 8in 8a' | wa £0a,a’ = | 8in 8’ | wall £ (Qa,a’/wa) cot? s’ | wal.
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Since 2Q./w, is very small compared to 7. (the ratio is of order
(v/¢")/sin 8,), the variation of & and &, with frequency arises almost
entirely from the variation of x.. with frequency. Thus, the term
2(Q — Qoo )Qr.r/wa Will always be small compared to 1 in the frequency
range of interest. The relative transmitted intensities in the incident
and scattered modes are given by

To/Tas = [1 + | xew [ QuoQuwl™
Tor/Tw = % | Xaw " Qua’/IL + % | Xaror " Qu.aQr')’ (29)
in which 7', is the transmission factor of the ath mode for x,... = 0,
Too = (Qr.a/Qa)”. (30)

The relative scattered intensity in the absence of mirrors (single-pass)
is given by

1 (3e/e)* (kL)' /cos’ 0a, (31)
while with the mirrors it is given by (for small xu,a)
% l Xa,a’ IZ QL,u'ETaa . (32)

Under optimum conditions,
| Xeww | = (Be/€) (L'/L) 200 au/ (eta + tar)

so that the optimum gain or enhancement in scattered power over that
obtained in single-pass scattering can be written using (12),

_ g Twola [(Q,,,ﬂ sin | 8, | )*
Gopt = R(1 — R’ \Qu.or sin | 6, |

1 (QL,a' sin | O, ):l':l_2
QL.u sin | 63 1 ’
Note that for the case @ = a’, neglecting transmission 10ss, gope =
R/(1 — R)® as expected. Under less than optimum conditions

_ 1 I:sin i(a — a ) + (9/v)L sin v|L'/L
9(2) = gort 4| " i[(a — d)7 + (Q/v)L sin Y]L'/L

sin 1[(a — a')r — (Q/v)L sin ¥W]L'/LT
T 3{(a = a)r = (@/o)L sin ¥IL7/L ] (34)

1
1 + [2(9 - ﬂu.a')Ta.ﬂ'P

with 7. given by (27). A typical curve of g(2) is given in Fig. 4. For

(33)

X
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Fig. 4 — A plot of g(©), the enhancenmnt factor, as a function of frequency,
for the condition ¥ = 0 and L =

this figure it has been assumed that ¥ = 0 and L = L', so that

0(0) — g Bol0— Dn/ilem )l ()
The maximum enhancement oceurs for @ = a'. The quantity 7a.
defined in (27) can be rewritten in terms of T\, as
(cosnlf)( L tan | 6, | ) o
Taw = v N0 = BRS) © (36)

I + (Ta/Tao)t | tan 8./tan 6.0 |
The acoustic bandwidth is given by

AQ/2r = Crraw) . (37)
The similarity to (9) is apparent.

1II. EXPERIMENT

In Section II expressions were derived for the optimum frequencies
for acoustic scattering, enhancement factors, and the frequency width
of the scattering interaction. Experiments were performed to test the
validity of these results using the apparatus depicted in Fig. 5. Light
from a single-frequency 6328A He-Ne laser (200 x watts) was collimated
by a telescope and apertured by a slit. The scattering medium or delay
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Fig. 5§ — Experimental apparatus for studying acoustic seattering in a Fabry-
Perot resonator.

line was fused quartz of refractive index n = 1.457, width L = 1.042
em, and length [ = 2.5 cm.

The Fabry-Perot cavity was formed by coating reflecting films over
half the length of the delay line which was ground flat and parallel to
within one fringe over its entire length. The half nearest the transducer
was left without reflecting films to allow comparison of the multiple-
pass scattering interaction within the Fabry-Perot cavity with single-
pass scattering. The normal Fresnel reflection of the latter half was
reduced by the use of quarter-wave matching films in one delay line. A
second delay line had no antireflecting films.

The reflectivity of the 5-layer dielectric mirror was determined by
transmission measurements to be B = 0.89 at 63284, resulting in a
reflection loss pass of about 11 per cent. A value B = 0.9 is close to an
optimum compromise between enhancement, transmission loss, and exper-
imental convenience. The dielectric loss of the quartz was expected to be
about 0.2 percent per pass yielding Qi =~ 50Q, and T = (Qr../Qa)? =
0.96. The measured transmission factor for normal incidence was de-
termined to be approximately 0.80. The difference can be related to the
lack of perfect parallelism in the opposing faces'® and to the finite width
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fact that the light beam was not centered perfectly in the cavity and
illustrates the fact that the finite width of the mirrors resulted in walkoff
for the larger ring angles. For the case shown, the on-axis mode was not
resonant although it could be made resonant by warming the quartz
slightly. It should be noted that the actual transmission factors taking
only internal losses into account do not exhibit any variation since
cos 6, =~ 1. An analytical expression for the matching loss is given in
Appendix B.

Two delay lines were studied, one with ¥ < one minute of arc and
the second with ¥ =& 14 minutes (4 X 1072 radians). For the first KL
sin ¥ < /3 so that scattering could take place over both legs of the
round trip. In the second case, KL sin ¥ & 47 which allowed interaction
on only one leg. The acoustic transducers were evaporated CdS films
with an efficiency flat to within 1 dB over the measurement range of
200450 Me/s. Using techniques described in Ref. 4, it was determined
that the acoustic beam had an essentially uniform intensity distribution
over a width of 0.7 cm. The far end of the delay line was terminated
with a mercury cell with a reflection loss of 10 dB to inhibit acoustic
resonances.

The scattered light was collected and focused onto a Teflon* screen
on the face of the photomultiplier; the response was determined to be
independent of the seattering angle in the range of interest. The output
of the photomultiplier was fed into a phase-sensitive detector, the refer-
ence for which was the 1000 cycle/second square wave envelope of the
modulated acoustic energy. The output of the phase sensitive detector
was displayed on an X-Y recorder. The X-axis drive for the recorder
was derived from an angle transducer varying the acoustic frequency.
Calibration markers every one or ten megacycles/second were also
generated. Absolute acoustic frequency was measured with a counter to
within one kilocycle/second. Ring angles were determined to within 10
seconds of are.

Fig. 7 illustrates typical far-field visual or photographic observations.
The Tabry-Perot rings were generated by interposing a Teflon sheet
and scattering the incident beam. A second exposure was taken without
the Teflon sheet. The main beam was set on the first (fourth) ring and
the scattered light appeared on the fourth (first) ring on the opposite
side. As expected from (24) the acoustic frequency was essentially, but
not exactly, the same for both cases. Closer inspection under high mag-
nification indicated, as expected, that the ring angle for the frequency-

* Trademark of the E.I. du Pont de Nemours, Ine.
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shifted, acoustically-scattered light was not quite identical to the equiva-
lent ring angle for the light scattered by the Teflon.

Fig. 8 illustrates an experimental measurement for the case ¥ = 14’
The intensity of the scattered light is displayed as a function of acoustic
frequency under identical conditions and fixed angle of incidence for
single-pass and multiple-pass scattering. The incident beam corre-
sponded to ring # 1 and the scattered mode ring numbers are indicated
above the peaks. The vertical scale for the multiple-pass scattering was
larger by a factor of ten.

The enhancement factor was measured by comparing the single and
multiple-pass scattered intensity. Over the frequency range shown, the
single-pass scattered intensity variation with frequency was expected
to show the main and one upper side lobe of a smooth (sin z /z)? varia-
tion characteristic of Bragg scattering.* The distortion in frequency
scale was characteristic of the oscillator frequency drive. These expecta-
tions were borne out except for the small bumps which resulted from the
low Q Fabry-Perot resonances (R = 0.035) associated with the Fresnel
reflection at the air-quartz interface. The antireflection coated delay
line did not exhibit these bumps.t For the case ¥ = 14’, the measured

280 300 350 400 450
FREQUENCY IN MEGACYCLES PER SECOND

Fig. 8 — Intensity of the scattered light as a function of acoustic frequency for
single-pass and multiple-pass scattering. For the latter case, the gain is reduced
by a factor of 10.
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Fig. 9 — Transmitted power as a function of time. The dip corresponds to an
acoustic pulse passing through the light beam which removes approximately
25 per‘jent of the power. The acoustic frequency is 265 Mec/s and the time scale
is 5 us/em.

Modulation depths as large as 25 percent have been observed with
about 50 milliwatts of acoustic power. With efficient transducers the
required microwave power could be under one watt. These parameters
could be improved by the use of more efficient scattering materials
than quartz.
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APPENDIX A

Derivation of Exponential Decay Rate of Light Within the Cavity

With respect to Fig. 10 it can be seen that when the light travels a
distance ds within the cavity, the z-position is changed by an amount
dv = — |sin 8, | ds. In the absence of volume dielectric loss, the light
loses energy only at the resonator surface. This loss can be approxi-
mated as a volume loss by assuming that the discrete loss upon reflection
is distributed uniformly along the path of the light. This approximation
is best in the limit B — 1. Thus, if I represents the intensity of the
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ds dxr=-5INf5ds

Fig. 10—Cavity geometry for deviation in appendix A.

light, the change in intensity along a path of length ds can be written

dI = — I(gids—l—R_’L(l ~R) “052“‘18)
dk 1, RY1—-R) (42)
a (1 — cos 0,
_+I|sin0n||:§;+ koL :Idz

in which Qq is the dielectric Q. Noting that Q, = k.L/R™* (1 — R)
cos 0, and defining Q. ' = Qi ' + Q. ', (42) becomes

dl/dx = Ike/Qy.q | sin 6, |
= 2a,l.

(43)

The field amplitude therefore, decays as exp a,z.

The validity of this result can be demonstrated by the following
argument. Since the mirror surface has a phase variation given by
—kq(sin 8,)z, the far field diffraction pattern of the light transmitted
by the mirrors has the form
2

0
T(9) = ‘[ aadz exp [a, + k. (sin 8 — sin 6,)a]

1 (44)
T 1+ [(ka/ae) (sin @ — sin 6)7"
Using (43)
1
T(B) = 14+ [QQL.a sin 4, (Si]l@ — sin Ga)]z (45
) )

~q + [2Q1.0 cos 6, (cos 8 — cos 6,)]*"
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enhancement factors and bandwidths agreed to about 5 percent which
was better than could be expected.

The most detailed measurements were made for the case ¥ < 1.
Verification of (24) for the frequency of the interaction was obtained
by determining Q. .- and 6, and writing (24) as

(Qo,0r/2m) cos ¥
n[| sin 0, | + | sin 6o | (1 = Qa,ar/wa) cot? bar)]

(38)

in which X\ is the vacuum wavelength and n the index of refraction of
the quartz, and computing » from the measured frequencies and mode
angles. The angles 8, were sufficiently small (of order 107* radians)
that 7 sin 8, could be taken equal to the externally measured ring angles
and Ao to the air wavelength. The measured ring angles were consistent
with those computed for the cavity. The data yielded a value v =
5.940 =4 0.005 X 10° cm/sec, consistent with the uncertainty in meas-
uring 6, . Measurements in the single-pass scattering region were also
made by determining the Bragg angle © for scattering to w &+ Q defined
by

sin O, = v/c F IK/K (39)
which yields
O_ — @, ~sin O_ — sin O, = K/K'. (40)
The phase velocity is determined by
= (Q/2m)\o/ A0 (41)

in which A is the externally determined difference between the two
Bragg angles. The phase velocity was determined by this technique to
be 5.940 X 10° em/sec with the same spread in measured values, in
agreement with the optical Fabry-Perot measurements. The phase
velocity was also determined by setting the incident light at the Bragg
angle in the single-pass region and using the intensity of the scattered
light as a measure of the acoustic intensity while the acoustic frequency
was varied through a range of 2 megacycles/second. The acoustic Fabry-
Perot resonances were emphasized by removing the mercury from the
far end. Using the relation

AQ/ 27 = v/2]

in which 7 is the length of the fused quartz bar and AQ/2x is the spacmg
of the resonances yielded a value v = (5.950 £ 0.003) X 10° em/
second. While the difference here is small, it falls outside the range of
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experimental uncertainty. The difference has been ascribed tentatively
to pulling of the acoustic resonances by the transducer. The values of
v quoted in the literature™* fall in the range 590 — 5.96 X 10° em/
second.

Comparison with theory of experimentally determined values of
enhancement and bandwidth is hampered slightly by an uncertainty in
the value of (1 — R) which could be as large as 10 percent. On the
other hand, the product

(AQ/2x )gopt%

using (33), (37), and (36) is independent of K. Preliminary measure-
ments for the case ¥ = 14’ were very encouraging. Since the case ¥ < 1’
was believed to be more interesting most of the measurements were
made here. To simplify interpretation, the measurements were restricted
to seattering from a given ring to the same ring on the other side of
normal incidence (¢ — a). Some of these measurements are summarized
in Table I. The calculations were performed taking T,, = 0.96, however,
correcting gopy for the matching loss as experimentally determined. In
all eases both AQ/2r and gupf were larger than calculated, the product
being as much as 80 percent larger than expected. Values smaller than
expected could possibly be attributed to an imperfect Fabry-Perot
cavity. No explanation for the larger values can be offered at this time.

Under optimum conditions, the modulation depth was approximately
25 percent as shown in Fig. 9. The acoustic power was estimated to be
about 50 milliwatts.

IV. CONCLUSION

Experiments illustrating acoustic scattering in a Fabry-Perot resonator
have been described and compared with a coupled-mode theory. The
acoustic frequencies for resonant scattering agree with theory to within
the experimental uncertainty of 1:500. The agreement on enhancement
tactors and bandwidth is within 80 percent but well outside experi-
mental uncertainty; the measured values are on the large side.

TapLe 1
. Da,a/27 AR/ 2w )ex !!Aﬂ Tex 4 Q/27)enle.
Ring i) Bex T . A e
2 220 73.3 3.1 26.5 17
3 283 47 3.27 22.5 12.5
4 333 49 1.94 13.6 10.5
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Note that when there is no internal loss, Qu. = Q. = k.LR'/(1 — R)
cos @, and

1
1 + [4R/(1 — R)*|lk.L(cos 6 — cos 6,)]°

T(0) ~ (46)
which corresponds very closely to the Haidinger fringe formula in the
limit R — 1. Thus, the approximate expression for the optical decay
(43) is most valid in this limit.

It can be shown that the difference between the Lorentzian form of
(46) and the true Haidinger fringe formula arises from the approximation
in which the discrete reflection is replaced by a fictitious volume loss;
the stepwise decay of the light intensity becomes an exponential decay.
This approximation is, of course, best when the steps become vanishingly
small, i.e, when B — 1. A demonstration of the more precise result is
straightforward but lengthy and will not be included here.

APPENDIX B

Derivation of Cavity Transmission for Off-Axis Modes

Assuming that the cavity transmission for a given mode may be
approximated by T(8) given in (46) and the energy distribution of the
incident beam by F(f) then the transmission factor may be written

/2
[ royr©)
/2
T =" . (47)
[ Fioras
—x/2
For an incident beam with rectangular cross section of width W incident

at angle 6, ,

ooy _ | sin 3kW (sin 0 — sin a,,):]”
F(o) = [ 15 (sin 6 — sin 6,) (48)
and
+ ) 2 2 2
f [sin® /2" (1 + a’z")]ldx
T =t (49)
f [sin® z/2%|dx

in which

PR, (U [L tan 6¢.:|2
T a-repLlw I
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The integral in (49) can be evaluated by a straight-forward contour
integration to yield

T=1—a™  sinhal (50)

In the limit (L tan 6,/W) < a — 0, T = 1, as would be expected, since
the angular spread in the incident beam is small compared to the angular
spread of the cavity mode. In the opposite limit (L tan 6,/W) « a — o,
T ~ a ' and the transmission factor for successive cavity modes of
increasing angle 8, varies as cot 6, .
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of the incident light beam which resulted in an angular spread com-
parable to or larger than the angular width of the Fabry-Perot modes.
The measured transmission factors for off-axis modes were smaller than
the value for the on-axis mode since the angular width decreases with
increasing mode angle. This is illustrated in the photograph of Fig. 6
which displays the transmission factor of the cavity as a function of
angle of the incident light relative to the surface normal. The upper line
is unity transmission. The measured transmission factors became in-
creasingly smaller for increasing mode angle indicating that as the
angular spread of the rings became increasingly smaller, less of the
incident light was matched into the cavity mode. This situation, while
normally undesirable and easily avoidable, was experimentally conven-
ient since it guaranteed that the dominant feature of the light distribu-
tion in the incident beam mode was an exponential decay as postulated
in Section II. The incident beam mode usually corresponded to a rela-
latively small angle and the matching loss was not excessively large.
The lack of perfect symmetry about normal incidence arose from the

1!
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Fig. 6 — Measured Fabry-Perot cavity transmission factors as a function of
angle of the incident light relative to the surface normal.
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Fig. 7 — Photographs of typical far-field observations of scattering in the
Fabry-Perot resonator. The angles of the incident and scattered beams are in-
terchanged in the two photographs.



