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A conceptually simple, block-coding feedback strategy which applies to
all time-discrete, memoryless channels is introduced and evamined. This
strategy provides the first conclusive evidence of an improvement at nonzero
rales in the reliability of block coding with feedback on the additive Gaussian
noise channel. This result was previously observed by Berlekamp for the
binary symmetric channel.

I. INTRODUCTION

Coding with feedback has been considered by a number of authors.! 2
34.5.8 principally because of the advantage it is expected to enjoy in
rate, reliability, and equipment costs over coding without feedback.
Some early feedback results were obtained by Shannon, who showed
that channel capacity of a discrete memoryless channel (DMC) cannot
be increased using feedback! and established that the sphere-packing
(lower bound’-®) to the probability of error without feedback applies
to block coding with feedback on the DMC uniform at the input (the
sets of transition probabilities from each channel input letter are iden-
tical except for permutations”). He also conjectured that a sphere-
packing bound applies to block coding with feedback on all discrete,
memoryless channels.? (A conjecture supported recently by Berlekamp.?)

It has been shown that the exponent on the sphere-packing bound
agrees with the no-feedback, random-code exponent at rates above the
critical rate R...,”'° so that feedback cannot increase the reliability of
block coding at rates greater than R.;.. Below Rg::, Berlekamp first
showed that feedback will improve the reliability of block coding.? He
showed that the zero rate exponent of the probability of error with block
codes on the binary symmetric channel (BSC) and certain other binary
channels having particular symmetries is larger with feedback than the
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best no-feedback exponent at zero rate. Also, he showed that the error-
correction capability of block codes on the BSC at rates between zero
and R is improved with feedback.

Variable-block-length coding strategies, that is strategies where the
code length is controlled through the feedback channel, have been
proposed and in contrast with the block coding strategies have been
shown to operate with a greater reliability than that given by the sphere-
packing bound.** Hence, the best variable-length feedback strategy
is superior to the best block-coding feedback strategy. The block-coding
strategies, however, are interesting since any improvement in coding
reliability observed with them can be ascribed directly to the effect of
feedback on the choice of codewords representing messages. This is not
true of the variable-length strategies since, in this case, some unknown
fraction of the improvement in reliability is attributable to the variation
of the code length with the level of channel noise.

In this paper, we shall be concerned only with block-coding with
feedback and in particular with one particular block-coding strategy.
This is a strategy which makes efficient but not complete use of the
feedback channel. (This will be seen from the results.) It is recommended,
however, by its simplicity, its easy evaluation in terms of known, (no-
feedback) bounds, by its application to a large class of channels including
all time-discrete, memoryless channels, by the substantial improve-
ments it shows for many channels over the no-feedback, random-code
exponents and the improvement it shows for some channels over the
best upper bounds on no-feedback exponents. In particular, we see an
improvement over the random-code exponents over a middle range of
rates on the BSC with crossover probability less than 107 and on the
average-power-limited, additive Gaussian noise channel (AGC) with
signal-to-noise ratio (S/N) greater than 11.5 dB. This is interesting,
since some believe that the random-code exponents are the best, no-
feedback, block-coding exponents. Also, we see an improvement, again
over a middle range of rates, over the Wyner upper bound" to the no-
feedback exponent on the AGC with 8/N = 22 dB.

It is clear that our strategy does not make full use of the feedback
channel since the improvements noted apply only to cleaner channels
and then only over a middle range of rates. Also, it can be shown that
our strategy has an exponent which is smaller than the exponent implied
by Berlekamp’s results for the BSC.? It should be noted, however, that
the BSC is the only channel for which it has been previously shown that
feedback can improve the reliability of block coding.
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II. THE CODING STRATEGY

The feedback, block-coding strategy which we present was suggested
by arguments used by Shannon and Gallager to underbound the proba-
bility of error with block coding.”? Our strategy, however, leads to an
overbound to the probability of error with the best feedback strategy
since it does not make the most efficient use of the return channel. We
will deseribe this strategy without referring directly to the input and
output alphabets of the forward channel. We assume only that the
forward channel is time-discrete. With respect to the return channel,
we assume that it is noiseless and of large but finite capacity. The forward
and reverse channels are allowed to have a total delay of D channel
symbols.

Our feedback, block-coding strategy is a 2-step procedure. For each
of the two steps a block code is chosen and used without feedback. In
the first step, a codeword from a code of M codewords each having length
N, is chosen to transmit one of the M messages generated by the
source. In the second step, a code of L codewords* where each word has
length N, is used. Here N, and N, are chosen so that Ny + N. + D = N,
the number of channel symbol intervals allowed for the transmission
of one of the M source messages.

The decoder receives a noisy version ot the codeword chosen from the
first code and he then makes a list of the L messages which are most
likely given the received signal.t We assume that all messages are
equally likely, a priori, so that the L messages on the list are those
which have the largest likelihood probability. That is, if p (v, | m) is the
probability (or probability density, if the channel output alphabet is
continuous) of receiving the N, channel letters represented with w,
when message m is transmitted, then messages my, ms, ---, my, are
on the list if

1A

i

1A

pvi|m) = plwvi|m’)y allm' # m:, 1 L. (1)

Once the list has been formed, the list and the order in which messages
appear on the list is sent over the reverse channel to the transmitter.
Since D time intervals will elapse before the list reaches the transmitter,
the transmitter is ready to begin the second of the two steps after
N: + D intervals. In the second step, the transmitter chooses a code-
word from the second code of length N to indicate which message on

* L is arbitrary here but is fixed in later discussion.
T This decoding procedure is called “list decoding.” ***
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the list of the L messages is the source output. If the source output is
not on the list, the first codeword is transmitted. The received sequence
is decoded using the max-likelihood decoding rule.

IIT. EVALUATION OF THE STRATEGY

Our coding strategy which first establishes a list of most probable
transmitted messages and then resolves the ambiguity in the list can
lead to a decoding error in either of two ways. First, the message de-
livered by the source may not be on the list because of excessive channel
noise in the first N; transmissions or, second, it may be on the list but
the list may be decoded in error during the last N transmissions.

Now, the probability of a decoding error with the best feedback
strategy, Pes(N,M1), is less than or equal to P,(N,M,1), the probability
of error, with the feedback strategy given above. This, in turn, is less
than or equal to the sum of the probability of list decoding error with
the best list code (and no feedback), P.(N1, M, L), and the probability
of a max-likelihood decoding error with the best max-likelihood code,
P.(N,, L, 1). Thus, we have

Pe(N,M,1) < P;(NM,1) £ P.(Ny, M, L) + P.(N2, L, 1) (2)
where
N=N+N.,+D (3)

and D is the round-tip delay.

While our feedback strategy can be evaluated for any forward channel
for which bounds to P,(N,, M, L) and P,(N., L, 1) are known, we
restrict our attention here to the discrete memoryless channel and to
the time-discrete, average-power-limited, additive Gaussian noise chan-
nel. Bounds to these error probabilities for these two channels can be
found in several places.'"'*"® However, for easy reference we shall
refer to Gallager.”” Gallager does not bound P,(N,, M, L) in his paper
but the changes necessary in his analysis to bound it are relatively
easy to effect and are outlined in the Appendix. These changes are due
to unpublished results by Gallager® and are such that the random- code
bound to P.(N,, M, L) has the same form as Gallager’s bound” to
P.(N., M, 1) except that his parameter p is allowed to range between
0 and L rather than between 0 and 1.

The bounds to P.(N;, M, L) and P.(N:, L, 1) are given below where

= (logs M)/N1, R: = (log: L)/Nsand Oi(Ni),1 < ¢ = 2, are quan-

* See also Ref. 16.
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tities which approach zero faster than 1/N; :
PNy, M, L) S g7 mumoon) )
Po(Ny, L, 1) < 27imom), ®)

Here £, (R,) and E.(R.) are the random-code bound and expurgated
random-code bound, respectively, to the exponents on the two error
probabilities. The formal statement of these two exponents for the DMC
and the AGC is somewhat long. Consequently, we present Table I
which lists the location of the two exponents by equation number in
Ref. 10. We note again that £, (R;) has the same form as E, (R;), which
is the random-code exponent given by Gallager, except that 0 = p = L.

Equations (4) and (5) are used to bound (2). The block lengths

TaBLE I — LocaTioN oF ExroNENTS IN REF. 10.

DMC | AGC
EL(Ry) 21,22 125,127,128
E.(R) 86,87 133

N; and N, of the two codes are chosen before transmission to approxi-
mately optimize the bounds (4) and (5). That is, we set

NEL(R) = N.E.(R,). (6)
Since Ny, = (N — D) — N, we have

N, — (N — D)E.(R,)
' EAR.) + Eu(Ry)
Thus, the exponent N/, (R;) becomes

_ (N — D)E.(Ry)EL(R))
N.EL(R,) = TR F BB (8)

The signaling rate of the code is defined as B = (log, M )/N so that

D
(1 — N) R\E.(R,) (9)
. (Re) + BB

The exponent to the probability of error with our feedback strategy,
Eq(R), is defined as

(7)

R=%R1=

7 BNRT _ Iogg Pf
E(R) = lim N (10)

N-»x
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so that if we assume that D/N — 0 as N increases and if L is independ-
ent of N (R: — 0), then

_ E.(0)EL(R,)
BAR) = 570y + Bo(Ry) (1)
where
R R.E(0) (12)

T E.(0) + EL(Ry)

Hence, E;(R) and R are parametrized by the rate R, .

Let us now consider the list size L and show that it should be made
independent of N. The list size appears in (11) and (12) through the
list decoding exponent E,(R;). As mentioned above, this exponent is
parametrlzed with a parameter p, 0 < p < L. Associated with E(R;)
is a rate R such that if R1 < R.* then E.(R;) is a straight line of
slope — L. Also, if R, > R.* then E.(R;) has slope P < L. Thus,
E.(R,) is largest for fixed R, if L is such that B, > R.*. For any R, ,
the L satisfying this inequality is fixed and finite. Now, examination of
(11) and (12) will show that E;(R) vs R is largest thn E.(R) is
largest so that E;(R) is maximized over L with a value of L which is
independent of N. We choose to use that L for which B, > R.* so that
the arguments made in the previous paragraph hold.

It can be shown’ that the exponent E,(R;) is equal to the sphere-
packing bound Ey, (R,) for By = R .*. Thus, we have, as our final result,
the achievable (lower) bound, E;(R), to the largest obtainable exponent
with feedback, Er(R), given below:

EI(O)EBD(RI.)
E:(O) + EBI}(R].)

Ey(R) 2 E/(R) = (13)

where

R.E.(0)

F0) § BB (14)

R =

A simple construction for E;(R) from E.(0) and the sphere-packing
bound is shown in Fig. 1.
IV. SOME EXAMPLES

The exponent F;(R) on the BSC is significantly smaller than the
exponent implied by Berlekamp’s results and for this reason is not shown.
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Fig. 1 — Construction for E; (R) on AGC, 5/N = 256.

A computer study of K, (R), however, shows that £ (R) is larger than
the random code bounds with and without expurgation over a middle
range of rates when the crossover probability p = 107". It is found that
this range of rates increases with decreasing p.

The exponent E;(R) is shown in Figs. 2 and 3 for the time-discrete,
average-power-limited, additive Gaussian noise channel with power
signal-to-noise ratios of 64 (18.1 dB) and 256 (24.1 dB), respectively.
In the first case, an improvement is seen over both the expurgated and
unexpurgated random code exponents for a very large range of rates,
namely, 0.15 < R < 1.6, in nats, and in the second case E;(R) is
larger than the Wyner upper bound'' to the exponent without feedback,
E.(R), for a substantial range of rates, namely 0.90 = E = 1.80.
Computer calculations have shown that if /N < 160 (22 db), then
E;(R) < E,(R) and if 8/N < 14 (11.5 dB), then E;(R) = E.(R),
which is the random-code exponent without feedback.
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Fig. 2 — Exponents on AGC, S/N = 64.

V. CONCLUSIONS

We have introduced and examined a conceptually simple block-coding,
feedback strategy. Using this strategy as an example of block-coding
feedback strategies, we have found the first conclusive evidence of an
improvement in the reliability of block coding with feedback at non-
zero information rates on the additive Gaussian noise channel. This
improvement is measured with the exponent on the probability of error
and we have shown that an exponent larger than the random-code
(lower bound) exponent can be obtained on many channels such as the
relatively clean BSC and AGC and that on at least one channel, the
AGC with S/N = 22 dB, an exponent which is superior to the best no-
feedback exponent can be achieved. These results have been shown to
hold when there is a nonzero channel delay as long as that delay does
not grow as fast as linearly with block length.

The gain in reliability seen above can be translated into reduced
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equipment costs or increased rate. We have made our comparison of
coding with and without feedback on the basis of fixed rate and block
length.

It is important to emphasize that the improvement in the perform-
ance of block coding using feedback is due entirely to the fact that the
codewords in the code are allowed to change with the channel noisc.
In our example, the list formed after the first step changes with the level
of the channel noise so that the association of codewords in the second
code with messages on the list becomes channel dependent.
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APPENDIX

Equation (1) states the rule for choosing messages m; , ma, -+, My
to be placed on the list when list decoding of list size L is used and the
channel sequence v, is received. An error is made if the transmitted
message m, say, is not on this list. Using an argument similar to that
given in Ref. 10, (2) through (6), the probability of error with list
decoding when message m is received can be stated formally for a par-
ticular code as

Pon = 2 P(v1] Xn)®n(V1).
ViEVN,
Here Vy, is the set of channel sequences {vi} of length Ny, Xn is the
mth code word in the code and ®,,(v,) is a characteristic function which
is one if v; results in a list which does not include m and is zero other-
wise. Gallager, in unpublished work, has shown that the characteristic
funetion ®,, (v;) may be overbounded by the following

1 P(w, [Im,r)””’ cor P(w |x”'L,)111+p plL
Bp(vy) < {MZ;, #Eﬁ P01 | ) 1 <<« P(Vy | X)) 17

12igL

where p = 0. Carrying out the random code arguments as given in

Ref. 10 with 0 £ p £ L, we have the desired result.

REFERENCES

1. Shannon, C. E., Zero Error Capacity of a Noisy Channel, IRE Trans, IT-2,
September, 1956, pp. 8-19.
. Shannon, C. E,, unpublished seminar notes numbered 1p-3p, 1956.
. Berlekamp, E. R., Block Coding with Noiseless Feedback, M.LT. Thesis,
August, 1964.
. Horstein, M., Sequential Transmission Using Noiseless Feedback, IRE Trans,
1T-9, 1963, pp. 136-143.
. Weldon, E. J., Asymptotic Error Coding Bounds for the Binary Symmetric
Channel with Feedback, Ph.D. Thesis, Dept. of Electrical Engineering, Uni-
versity of Florida, April, 1963.
. Chang, S. S. L., Theory of Information Feedback Systems, IRE Trans, IT-11,
1956, pp. 29-40.
. Fano, R. M., Transmission of Information, M.L'T. Press and John Wiley and
Sons, New York, 1961,
. Wozencraft, J. M., List Decoding, Quarterly Progress Report No. 18, Re-
search Laboratory of Electronies, M.I.T., January 15, 1958.
. Berlekamp, E. R., private communication. )
. Gallager, R. G., A Simple Derivation of the Coding Theorem and Some Ap-
plications, IEEE Trans, IT-11, January, 1965, pp. 3-17.
11. Wyner, A. D., An Improved Error Bound for Gaussian Channels, BS.T.J., 63,
November, 1964, pp. 3070-3074.

12. Shannon, C. E., Gallager, R. G., and Berlekamp, E. R., Lower Bounds to Error
Probability for Coding on Discrete Memoryless Channels, submitted to In-
formation and Control.

Dt o WO

(=R =T S S =]

—



13.
14,
15.
16.
17.

BLOCK-CODING FEEDBACK 977

Elias, P., List Decoding for Noisy Channels, Technical Report No. 335, Re-
search Laboratory of Electronics, M.I.T., September 20, 1957.

Elias, P., Coding for Two Noisy Channels, Information Theory (C. Cherry,
Editor), Butterworth, London, 1956.

Shannon, C. E., Probability of Error for Optimal Codes in a Gaussian Channel,
B.S.T.J,, 38, May, 1959, pp. 611-656.

Ebert, P. M., Error Bounds for Parallel Communication Channels, M.IT.
Thesis, September, 1965.

Gallager, R. G., unpublished notes.






