Error Probabilities in Data System Pulse
Regenerator with DC Restoration
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Consider a noisy channel which acts as a high-pass filler on the pulses
used for transmilting digital data in binary form. To combat the degrada-
tion of information in the channel, the pulses are detected and regenerated
at certain points with the aid of a binary pulse regenerator with dc restora-
tion. This device achieves complete restoration in the absence of noise.

In this paper, we give a procedure for evaluating the limiting proba-
bilities (after lengthy operation) of error patterns for a single dc restorer
in the presence of independent, additive noise. The procedure is based on
the observation that for the particular restorer in question, the effective
noise in the restorer is the sum of the present noise and the accumulated
noise. The latter may be described by a Markovian process.

I. INTRODUCTION

In this paper, we consider a binary pulse regenerator with de restora-
tion (Fig. 1). This system has the property that in the absence of noise
it functions error-free. To evaluate the performance of the system, one
would like to know the probability of occurrence for an arbitrary error
pattern when noise is introduced. This is highly desirable especially if
the information coding places high penalty on certain error patterns.
It will be shown in this paper that the limiting probability of any error
burst can be computed by an iterative procedure. The mathematical
theory justifying the validity of the procedure is somewhat involved
and will be given in a separate paper on Random Walk in Compact
Metric Space.!

II. THE SYSTEM

Our considerations apply to the data transmission system represented
by the block diagram given in Fig. 1. The input sequence di of random
41 impulses goes through a high-pass filter. The output of this filter is
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Fig. 1— Binary pulse regenerator with low-frequency restoration.

sampled synchronously with the impulse train input to yield s.. It is
assumed that the output is econtaminated by independent noise ng. A
slicer triggering +1 impulses b; is used for regeneration of pulses. There
is a low-pass filter in the feedback loop followed by a sample r which is
also synchronized with the input sequence. In the block diagram G and
H represent the filters followed by the samplers.

G is a discrete high-pass and H is a discrete low-pass linear filter.
S is assumed to be an ideal slicer discriminating between positive and
negative voltage levels. Thus, we have the system equations

s, = :ank_,-d.- E=01,--- (1)
e = ‘i:] R—ib; k=01,--- (2)
and
b = sgn {ng + cx + s 3)
where sgn « = 1if x = 0 and sgn z = —1 if 2 < 0, and g,(h;) is the

impulse response of the filter G (H) at time 7. As to the filters ' and H,
it is assumed that

(L) h., = O, Jo >0
(72) hi+g:=0 if 74 #0
(722) 0>g:i =rgiqg for ¢ =2

where 0 < 7 < 1. The interpretation of (i—#:7) is as follows: () There is
unit time delay in the feedback loop. (72) The filter H is chosen to
cancel the tails of the impulse response of @, a condition allowing the
error free operation of the system in the absence of noise. (#72) The
channel has exponentially decaying impulse response. It is this last
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property that will allow us to describe the cumulative error by a Markov
process.

The input and noise sequences are regarded as samples from two
sequences of completely independent random variables (r.v.). We as-
sume that d; = 1 or d; = —1 with fixed but arbitrary probabilities
p and q. The r.v.’s n, representing the noise have a fixed and, for the
time being, arbitrary distribution function (d.f.) N(z). Typically,
N (z) is the normal d.f., i.e.,

N(z) = ﬁ—; _[: exp (2°/20°dz). (4)

We say that the kth output by is in error if by # d; .

I1I. EFFECTIVE NOISE

When noise is absent from the system (ng = 0, n; = 0, ---) then
by = dy fork = 0, 1, --- . Clearly, by = do. Suppose that b; = d; for
i=0, -,k — 1. It follows from (1), (2) and (é7) that in this case

st + ¢ = dy. . Hence, by = di due to (3). The system is error-free in the
absence of noise. To clarify the effect of noise, notice that

k—1

s + o = 2 (hi—ibi + gr—idi)
bi=d;
b1 (5)
+ _EO (hi—ibi + gr—idi) + godi = godic + 2k,
byAd;

since h; 4+ g: = 0, ¢ # 0, and since b; # d; implies b; = d;, it follows
that

k=1 k—1
T = ;0 (hu—ibi + gr—id;) = 2 ; Gr—idi . (6)
by=—d; bi=—d;

The cumulative effect of errors prior to time & (d; # b:, 74 £ &k — 1)
is expressed by the real number x; .
The equation of the system, namely (3) now becomes

be = sgn {ny + xx + godil. (7)
Hence, the output b, will be in error when
et o< —go f de=1
n + x> +go if dp = —1.

(8)

Thus, the effective noise in the system at time & is not n, but ne + 2 .
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Due to the assumptions concerning the independence of all input
random variables d; , the variables n, and x, are independent. Let the
d.f. of z; be F.(z). Also, let p (k) = prob {b; = di}. It follows from (8)
that

p(k) = p [ N(~g — 2)dFu(z)
(9)
+q [ (1= N(tgo — 2))aFua).
Since p, g, and N (x) are known, the problem reduces to the study of the
sequence of r.v.’s Xo, X1, -+ with d.f.’s Fo(z), Fi(z), --- .
It follows from (77) and (6) that
Tty = 2 k;: i + 2gds
oo, (10)
=ra — adp i di # by,
where ¢ = —2¢g; > 0. Or
Tppr = 1y I dp = by . (11)
Thus, there are three possibilities for transitions, each of which takes
place with probability depending on the value of x; . Namely,
T =1y — a if dp =1 b, with probability o (z:),
Tpp1 = Tk if di, = b, with probability p.(x:), (12)
Tppn =12, +a if dp = —1 = b, with probability ps(z:).
The transition probabilities p, (z), n = 1,2,3 are determined from (8):
m@) = pN(—go — )
p(@) =1 — pux) — pslz) (13)
pa(x) = ¢ll — N(g, — 2)].

If we assume that the r.v. X, is independent of all the input variables,
then the sequence of r.v.’s Xy, X;, X,, :-- where x4, is related to
X, by the transitions characterized by (12) and (13) forms a Markov
chain. We shall use this property, however, only to the extent of rela-
tions (12) and (13).

Observe the way X, is obrained from X, . Given the value of X,
the random variable X,,; may have three possible values, the values
assumed at X; by three linear functions defined over the range of X .
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The choice of the actual transformation used to generate the next value
X4 of the r.v. X, is made by performing an independent experiment
with three possible outcomes with respective probabilities p; (X},
p2(X;) and p3(X,) which, as indicated, are functions of the value X, .

IV, ITERATIVE PROCEDURE FOR THE COMPUTATION OF ERROR PROBA-
BILITIES

This type of random walk is studied in Ref. 1. It is shown there that
whenever 0 £ r < 1, the sequence of random variables X, , Xz, - - - has
a limiting distribution A (x) and also that the mean value of any con-
tinuous function f(x), with respect to A (z), ean be computed by
iteration without actually obtaining A (x). This result will now be
applied to our problem.

Let Uf(x) be the function

Uf(x) = m@)frx — a) + p(a)f(rx) + psf (rx + ) (14)
where po (), n =123 aregiven by (13).

Also, denote by U*f(z) the kth iterate of the transformation Uf(x),
namely,

Uf@) = U @) k=12, (15)

Then, from Ref. 1 we have
lim U%(x) = [ fz)dA (o). (16)
3

We then obtain from (9), (13), and (16) that
lilkﬂ pe = lim U (pr(x) + pa(x)). (17)
: k

T'or the general case of [ consective errors starting with the kth out-
put, we write
p(kd) = Prob (b # di, -+, beyia # diyia) (18)

and for the conditional probability of [ consecutive errors given X, = x,
we write

p(kl|x) = Prob (by = dy, -- -, ey # dejia I X, ==xz). (19)
Clearly,

p(kd) = fp(k,ﬂ:c) ar(z). (20)
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On the other hand, it follows from (12) and (13) that

p(ktl]z) = .;. pler, -+, &) (21)
=L
where
pler, -, e @) = Poge, (X)Poye, x + a&r) - - (22)
P2+e;(7' 4 al e + o 4 8)),
with e,y = 1,0,—1 according as deys = 1 # by, diyi = biya,
disi = —1 5= beyq. Clearly, p(k,l | x) is independent of k. Hence, on

account of the theorem used before,
a(1) = lim p(kD) = lim Up(kl|2) = [ p(hi|2)dd(z), (23)
k k

is the steady state probability of [ consecutive errors. Other error pat-
terns may be treated similarly.

V. SUMMARY

Observing that the cumulative error in a certain kind of data trans-
mission system is a Markovian process we have derived an iterative
procedure for computing the limiting probability of arbitrary error
patterns. Using this method one can obtain numerical estimates of these
probabilities by the aid of (23) once a computer program has been
written to perform the iteration given in (14). SBuch a program is not
presently available.

A more general treatment of data transmission systems in which
error reduction is achieved by quantized feedback may be found in a
paper by W. R. Bennett on Synthesis of Active Networks.?

VI. ACKNOWLEDGMENT

The author wishes to express his thanks to J. Salz for calling his
attention to this problem.

REFERENCES

1. Zador, P. L., Random Walk in Compact Metric Space, to be published.
2, Bennett w. R., Synthesis of Active Networks, Proc. Symposium on Modern
Network Synthesm New York, 1955.



