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Codes exist which are capable of correcting large numbers of random
errors. Such codes are rarely used in practical data transmission systems,
however, because the equipment necessary to realize their capabilities — that
18, to actually correct the errors — s usually prohibitively complex and ex-
penstve. The problem of finding simply implemented decoding algorithms
or, equivalently, codes which can be decoded simply with existing methods,
is perhaps the outstanding unsolved problem in coding theory today.

In this paper, a new class of random-error-correcting cyclic codes is de-
fined. These codes have two very desirable features: the binary members of the
class are nearly as powerful as the best-known codes in the range of interest,
and they can be decoded with the simplest known decoding algorithm.
Unfortunately there are relatively few codes with useful parameters in this
class, despite the fact that the class 1s infinite.

I. INTRODUCTION

The Bose-Chaudhuri'-Hoequenghem® (BCH) cyclic codes are, as a
class, the best of the known, constructive, random-error-correcting
codes. Fortunately a decoding algorithm, which can be implemented
with a reasonable amount of equipment, has been found for these
codes.™"”®

In this paper, a new class of random-error-correcting cyclic codes is
presented. These codes can be implemented much more simply than the
BCH codes and are approximately as powerful. Unfortunately, the class
is a small one.

II. DIFFERENCE-SET CYCLIC CODES

A simple perfect difference set of order I and modulus n = (I — 1)
+ 1 is defined as a collection of [ integers chosen from the set {0, 1,
-+, I(I — 1)} such that no two of the (I — 1) ordered differences
modulo » are identical. That is, each occurs once. Singer® has shown
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how to construet such sets when I = p* + 1, p prime, s a positive inte-
ger, while Evans and Mann’ have shown that a perfect difference set
cannot be constructed for any other value of i = 1600.

Since adding a fixed integer to every element of a perfect difference
set clearly results in another such set, no loss of generality is suffered by
considering only sets containing the element 0. In what follows, all
perfeet difference sets will be of this type.

Denote the elements of a perfect difference set of order p° + 1 by
dl = 0, dg, e ,dp8+1 and leL

f(x) = "+ ™ 4+ - 4 et +1

be a polynomial in the algebra of polynomials modulo 2™ — 1. The coef-
ficients of all polynomials are taken from GF (p"), r = s. Consider the
n-by-n cyelic matrix 6 over GF (p") whose rows are the coeflicient vectors
of 6(z), z8(z), --+, 2" '8(z). For reasons which will become apparent
shortly, the subspace of n-tuples generated by the rows of this matrix,
which is an ideal in the algebra of polynomials modulo 2" — 1, will be
considered to be the null space of a cyclic code of length n. The rank
of this matrix, which will be shown to be the number of check symbols
in the code, can be determined as follows. Consider the product

9(z)0(x1) =1 4 x"™% B A
+ wdz—dl + 1 + xdz—da + . + xd'-'-_dP""‘l
+ mn‘ps—(—l"'dl + wd;pﬂ-}-]*dz _|_ . + 1 (1)

Since the d; are elements of a perfect difference set, each integer 1, 2,
-, n — 1 appears as an exponent in this polynomial exactly once.
Thus, in the algebra of polynomials modulo 2™ — 1,

0(z)0@ ) =p +1+ax+2"+ -2 (2)

The reciprocal polynomial of #(z), which is denoted by 0% (z), is
equal to ‘%™ ° #@. g (z™"). Since p* = 0 mod p’, (2) reduces to

(x — 1)o(x)0* (@) =0
=gq(@)(@" —1) 3)
for some polynomial ¢(z).f Let 8(z) = f(x)h(z) where h(x) is the

$If the code symbols are chosen from GF((p’)"), p’ a prime not equal to p,
then GCD(6(z),z" — 1) equals a nonzero ground-field element, and the code speci-
gecli by h(z) is the trivial code which has n parity checks and no information sym-

ols.
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greatest common divisor of #(x) and 2" — 1. That is,
hiz) = GCD(0(x), " — 1). 4)

As a result the ideals (eyclic codes) in the algebra of polynomials modulo
z" — 1 generated by 6(x) and h(x) are identical. Thus, the rank of the
matrix 6 is simply » minus the degree of h(z), i.e., the number of check
digits in the code generated by g(x) = (=" — 1)/h(x).

In an accompanying paper,” Graham and MacWilliams prove that

there are exactly
n—k=|i(p;1):|+1 (5)

check symbols in a difference-set cyclic (n,k) code over GF (p). But since
#(x) and =" — 1 are both polynomials over GF(p), so are h(x) and
g (x), regardless of the field from which the code symbols are chosen.
Thus, (5) holds over GF (p"), r £ s, as well.

Although the derivation of (5) is fairly involved, it is easy to see that
n — k £ (n 4+ 1)/2. For each zero of " — 1 except unity must be a
zero of either 6(x), 6% (x) or both, so it must also be a zero of either
h(z), k¥ () or both. That is,

(x — Dh@" @) = r@)@@" = 1)

where r(2)f (2)f* (x) = q(x). Therefore, the degree of k(x) that is, k,
cannot be less than (n — 1)/2andn — k < (n 4+ 1)/2.

As defined, g(x) is the generator polynomial of the code whose null
space is generated by h(z). Two polynomials multiply to zero in the
algebra of polynomials modulo 2" — 1 only if the dot product of their
coefficient vectors, with the order of the components reversed in one
of them, is zero. Thus, the coefficient vectors of 6* (), z6*(z), -+,
2" 7'0* (x) are in the null space of the code generated by ¢ (x). Each of
these vectors represents a generalized parity check equation on certain
symbols in each code word. Since each of these equations has p* + 1
nonzero terms, each of the n symbols in every code vector is involved
in exactly p* + 1 equations. This follows from the fact that all the rows
of the matrix 6 are cyclically shifted versions of the first row and thus
all eolumns and rows have the same weight. Furthermore, because a
perfect difference set generates each difference exactly once, no two of
the p° 4+ 1 equations which check a particular symbol can both check
any other symbol. For if they could, this would imply that some differ-
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ence was generated twice by the perfect difference set, which is impossi-
ble. |

Consequently, these equations form an ‘orthogonal check set” of
order ' + 1 on the symbol in question. Massey’ has defined such a set
to consist of a collection of equations, all of which check a particular
symbol, with the property that no two symbols appear together in
more than one equation. He has shown that if it is possible to form an
orthogonal check set of order d — 1 on any symbol in a cyclic code,
then the code has minimum distance at least d and can be decoded with
majority-logic decoding. Thus, difference-set codes have minimum dis-
tance at least p° + 2 and, as described in Section III, can be decoded
in a very straightforward manner.

Although codes exist over all finite fields, binary codes are, from a
practical viewpoint, the most interesting. Table I contains a list of the
first few binary difference-set codes and their generator polynomials.
These codes have several interesting properties. For example, let d’
denote the minimum distance of a code which can be realized by thresh-
old decoding and let d denote the minimum distance of its dual code.

TasLE I—List oF Binary DirreErENCE-SET Cycric Copes

228

s _';_ ?. + ok d: 22' [ = 21 Generatorgl(;;:)!ynonﬁna!, Diﬁerence—gt(a:)p(alynominl

1 7 3 4 1 4,3,2,0 3,2,0

2 21 11 6 2 10,7,6,4,2 11,8,7,2,0

3 73 45 10 4 28, 25 22 16 12,8,6,4,2,0 45,42,36,29,25,24,10,2,
0

4 2731191 | 18 8 | 82,77,76,71,67,66,56,52,48,( 201,196,186,167,166,

10,56,34,24,22,18,10,4,0'| ~ 159,128,126,115,112,

103 67 50 46 24, 18 0

5 1057 | 813 | 34 16 244,242 236,234,232,228, 1023,990,924,905,879,

296,224,222 216,214,212,
211,210,209,208.203.202,
201,200,199,198,195,194,
103.191.189,188,186,184,
183.182.181,180,179,178,
177.176.175,174,169,167,
166.,165.164,161,160,158,
155.154.153,151,150,149,
147.146,142,141,138,137,
135,132,131,120,126,124,
123.122,121,120,116,115,
114.111,108.106,105,103,

101,98,96,95,88 83 81,
79,76,75,74,72,71,70,68,
59.55,52.51 48 47 45,
141,39.37,35,33,32,28,
26,23.22,18,17,14,11,
3,10

25 @,%

702,754,702,607 677,
507.555,528,511.452,
439,348 338,208,277,
255.219.138.127.109,
63,54,31,15,7,3,1,0
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Since any symbol appears in all equations orthogonal on that symbol
and no other symbol appears in more than one of these equations, it is
clear that the following bound holds for all block codes decoded with
threshold decoding:

d—-1d-1)=n-—1. 6)

For difference-set codes ' = 2° + 2, and in the binary case at least,
d = 2' + 1, the weight of 6 (x).’ Thus, the equality holds in (6) and the
codes are, in this peculiar sense, optimal.

In summation, it has been shown that there exists a class of cyclic
codes of lengthn = p™ 4 p° + 1, i.e., those generated by g (z) = (z"— 1)
/h(x) where h(z) = GCD(8(x), 2" — 1), which have

2]+

parity symbols® and which have the polynomials 6 (z) and its multiples
in their null spaces. Because of this latter property, the codes have mini-
mum distance of at least p° + 2. Also, in what follows, it is shown that
this property can be used to implement these codes as random-error
correctors in a remarkably simple manner.

IIT. IMPLEMENTATION

Because the codes are cyclic they can be encoded simply. See pages
148 and 149 in Peterson.”

Massey’s majority-logic implementation of Meggitt’s" general decoder
for cyclic codes can be used to decode difference-set cyclic codes. A
decoder of this type is shown in Fig. 1; it operates as follows. With the
switch in the D position, the k-symbol data sequence is shifted into the
syndrome and data registers simultaneously. When the entire data
block has been entered, the switch is thrown to position P and the n-k
received parity checks are shifted into the syndrome register, forming
the syndrome. At this time, the output of the majority gate equals the
additive inverse of the noise digit which was added to the first data
symbol by the channel, provided that fewer than p°~" errors occurred
in the word.t Consequently, all that must be done to correct the first
symbol is to add the output of the majority gate to the received sym-
bol. This is done by the adder (®) during the first shift of the registers.

T The majority gate has the following characteristics: Its output equals the
additive inverse of the ground-field element which occurs most frequently among

its p* + 1 inputs, provided that that element occurs at least p** + 1 times. Other-
wise it equals zero.
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DATA 4 | (N-K)-STAGE SYNDROME REGISTER

P op \ (PS+1) - INPUT MAJORITY GATE/

R
N

| k - STAGE DATA REGISTER J—-E%—— pATA

Fig. 1— Fixed threshold majority-logic decoder for difference-set cyclic codes.

Because of the cyclic nature of the codes, repeating this process k times
corrects all errors in the data section of the word.

Performance can be improved slightly at virtually no cost by the
addition of the dotted connection and its associated adder to the de-
coder. This circuit removes the effects of corrected errors from the
syndrome as the errors are corrected. This can be seen as follows. The
first (highest-order) data symbol is checked by the parity check sym-
bols stored in the shift register stages just to the left of the feedback
connections. (This can be seen by examining the generator matrix of
the code in systematic form.) If a particular ground-field element is
added to the first information symbol to correct it, in order to remove
the error from the parity check equations which checked that symbol,
it is necessary to add the same ground-field element to each of these
parity check symbols. This can be accomplished by adding the symbol
to the feedback signal and shifting the register once. Successive correc-
tions can be made in exactly the same manner.

Although a code will correct all error patterns of weight not greater
than p"~ and some of greater weight if this connection is omitted, many
more patterns of weight greater than p'”" will be corrected if it is in-
cluded.

The presence of this connection also enables the decoder to detect
undecodable error patterns. This is done by shifting the syndrome
register n — k times after the data symbols are corrected. A decodable
pattern will have an all-zero syndrome after correction, while an un-
decodable pattern will not.
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The connections from the syndrome register to the p* + 1 summing
circuits are made as follows. Each of the p* 4+ 1 equations orthogonal
on the first information symbol involves one or more parity check sym-
bols. The sum modulo p” of all check symbols involved in the ith equa-
tion, ¢ = 1,2, ---, p° 4 1, equals the ith check sum orthogonal on the
first information symbol. Thus, the inputs to the ith summing circuit
are simply those parity check symbols involved in the ith equation.

This point is illustrated in Fig. 2 in which the decoder for the (73,45)
binary code listed in Table I is depicted. Table IT lists the 28-bit parity
check sections of the nine composite parity check equations orthogonal
on the first information symbol. Fach of these equations manifests
itself as one of the nine inputs to the majority gate of Fig. 2.1

A modification of threshold decoding, Variable Threshold Decoding,
has been used to decode quasi-cyelic codes.” It can also be used here to
mprove performance somewhat, at the cost of a slight increase in
complexity. Instead of keeping the threshold set at p"™' 4+ 1, it is ini-
tially set at its maximum value, p* 4+ 1, and an attempt is made to de-
code each of the n symbols of the received word. When an n-symbol
cyclic revolution of the syndrome has been completed without any
changes being made, the threshold is reduced by one and another attempt
is made. If another complete revolution is made with no changes, the
threshold is lowered again. If a change is made, however, the threshold
is immediately raised by one and decoding continues. Upon the com-
pletion of the revolution, the threshold is again lowered by one.

Eventually one of two things must occur. Either the threshold will
drop to its minimum value and remain there, or it will enter into some
sort of limit eycle wherein it changes repetitively between two or more
levels. In a practical system this latter difficulty can be obviated by ter-
minating decoding after a fixed number of attempts, and if it is ap-
propriate, signaling a detected error if the syndrome is not all zeros.
It seems likely that roughly 2¢ cyclic revolutions of the word will suffice
to decode nearly all decodable error patterns.

IV. A COMPARISON

In an unpublished report,” the author estimated that approximately
3600 transistors would be required to instrument a decoder for the
(273,200), d = 18, code formed by shortening the (511,438) primitive
BCH code.} Also it was estimated that the decoder’s internal circuitry

7 Using a combination of sequential and combinational eircuits, rather than
strictly combinational cireuits, would undoubtedly result in a slightly cheaper, but

conceptually more complex decoder.
1 This was before Berlekamp’s work.>
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TasLe II—PaArITY SECTIONS OF THE NINE COMPOSITE PARITY
CuEck EquaTioNns ORTHOGONAL ON FIrsT INFORMATION
SymeoL 1N (73, 45) CobE.

Bit position
Eq Number

0123|456 7|89 10111213 14 1516 17 18 1920 21 22 23|24 25 26 27
1 1
2 1
3 1l 1
4 1 1 1
5 1 1 1 |1
6 1{ 1 1 1
7 1 11 1
8 1 1 11
9 1 1 1 11

would have to operate roughly 85 times faster than line speed to enable
it to keep up with the data. These estimates were based on the assump-
tions that only transistor storage was used and that speed would be
sacrificed to reduce the number of transistors needed whenever practical.
For example, the decoder is a serial, rather than parallel, device.

Assuming that the syndrome register, exclusive-OR. circuits and ma-
jority gate are duplicated, the internal circuitry of the decoder for the
(273,191), d = 18, binary difference set code can operate at line speed.
The numbers of transistors required for the various decoder components
are tabulated below.

Circuit Function Number of Transistors

Data register 382
Syndrome registers (2) 328
Exclusive-OR’s 400
Majority gates (2) 40
Clock and switches 30
Miscellaneous 20

Total 1200

The complexity of the two decoders is compared in the following
table.

Decoder
Clock Rate Ease of Design,
Number of (multiples of Construction,
Decoder for Code Efficiency  Transistors line bit rate) & Testing
BCH Code 0.73 3600 85 difficult

Difference-Set Code 0.70 1200 1 very simple
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This type of comparison is quite crude and is admittedly chosen to
illustrate the strong points of difference-set codes. Also, in light of
Berlekamp’s work,® !® it may be possible to reduce the number of tran-
sistors required for the BCH decoder by as much as a factor of two and
its speed by twice that. However, despite these facts, the difference-set
decoder remains a much simpler piece of equipment than the BCH
decoder. Also, a comparison of longer, more powerful codes would
demonstrate the relative simplicity of the difference-set decoder even
more dramatically.

This comparison is not intended to demean the BCH codes or their
very elegant and general decoding algorithm. There are certainly many
cases, in fact nearly all cases involving long, relatively efficient random-
error-correcting codes, in which they are by far the most easily imple-
mented codes. Rather, the comparison is simply intended to point out
that, in certain cases, difference-set codes are much easier to implement
that the BCH codes, and to suggest that there may be other classes of
cyclic codes for which the same is true.

V. CONCLUSIONS

A new, relatively small, class of random-error-correcting cyclic codes
has been presented. These codes, which are approximately as powerful
as the best cyclic codes for given values of efficiency and length, are
very easily implemented. Consequently, they are concluded to be at-
tractive for use in error-control systems where forward-acting random-
error-correction is required.

VI. ADDENDA

Subsequent to the discovery of these codes, the author became aware
of the unpublished, but earlier, work of L. D. Rudolph.” In it a class of
threshold-decodable codes, which contains the class of difference-set
eyclic codes, is described. Also, (6) has been derived by Mitchell in
Ref. 15.
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