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The concept of a difference-set cyclic code has been described previously.
It was shown that such a code is almost as powerful as a Bose-Chaudhuri
code and considerably simpler to implement. It is the purpose of this paper
to determine some of the more important properties of this code and its dual
code (¢f. Sec. IV). It may be pointed out that the problems we consider are
equivalent to delermining certain properties of incidence malrices associ-
ated with a class of balanced incomplete block designs formed from simple
difference sets.

I. INTRODUCTION

The concept of a difference-set cyclic code has been described by E.
J. Weldon, Jr. in the preceding paper.! In Ref. 1 it is shown that such a
code is almost as powerful as a Bose-Chaudhuri code and considerably
simpler to implement. It is the purpose of this paper to determine some
of the more important properties of this code and its dual code (cf. Sec.
IV). It may be pointed out that the problems we consider are equivalent
to determining certain properties of incidence matrices of Desarguesian
planes.

II. SIMPLE DIFFERENCE SETS AND ASSOCIATED CYCLIC CODES

A simple difference set S is a collection of I integers |dy, --- , d})
modulo n such that every @ # 0 (mod n) can be uniquely expressed in
the form

d; — d; = a (mod n),
for some d, , d;in S. Of course, n = I(I — 1) 4+ 1. If 8(x) (the differ-
ence-set polynomial) is defined by
l
o(x) = Y 2%,
i=1
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then it follows that

g(z)o(z™) =1+ nz—:l ' (mod(z" — 1)).

=
This may be written
0(@)0@ ™) = 1 —1) + (" —1)/(x — 1) (mod(z" — 1)).

Changing to arithmetic over the finite field GF (p), where p is a prime
that divides I — 1, we have

(x — 1)8(x)8(x™") = 0 (mod (=" — 1)).

This means that 8 (x) has a nontrivial highest common factor h(2) in
common with 2" — 1 over GF (p).

Let R be the ring of polynomials modulo " — 1 over GF (p). The
ideal B-6(x) is the same ideal as R-h(x) and is a proper ideal in R, and,
in fact a cyclic code (see Ref. 5, Section 8.1). The dimension of this
code is (n — deg h(z)).*

The only known simple difference sets are obtained by a construction
due to Singer.” For this construction, n must be of the form p* + p* + 1.
Hence, | — 1 = p°, which determines the finite field one must use. For
p=2and 1 £ s £ 5, the dimension of R-6(x) was found by E. J.
Weldon, Jr. to be 3° 4+ 1. In this paper it is shown that in general the

dimension of B-6(x) is (p g 1) + 1.

III. AN EQUIVALENT PROBLEM

Letn=p*+p 4+ 1,r=p" — L ldi,dz, - ,di} is a Singer dif-
ference set modulo n, and 8 (x) the difference-set polynomial. In this sec-
tion all arithmetic will be in GF (p) (addition and multiplication mod p)
unless otherwise specified.

The degree of 2 (z) is the number of zeros of 2" — 1 which are also
zeros of 6(x). Hence, the following odd-sounding theorem is relevant.

Theorem 1: The number of nth roots of unity (over GF (p)) which are not
zeros of 0(x) is the number of integers t, 1 < t < n, such that for some

i, 1 = j =t — 1, the binomial coefficient (;::) is not zero (mod p).

* This roundabout approach is usual in coding theory. Appendix B contains a
direct proof that the dimension of R-8(z) is the number of zeros of z* — 1 which
are not zeros of 8(zx).
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The purpose of this section is to prove Theorem 1. Several preliminary
steps are needed.

Let » be a primitive nrth root of unity over GF (p); w = »" is a primi-
tive rth root of unity, { = »" is a primitive nth root of unity. The first
n powers of { are the zeros of +” — 1; the degree of the highest common
factor of #(x) and =" — 1 is the number of integers ¢ < n for which
(") = 0.

The powers of w generate GF (p"), and, since nr = p* — 1, the powers
of » generate GF (p™). Since GF (p™) D GF (p'), any linear combination

i.jw'y is again a power of ».

To construct a Singer difference set modulo #, one picks two arbitrary
distinet integers dy, d» (less than n), forms all linear eombinations
v 4+ o™ = ', and replaces ¥ by "7 (d; < n) by using »" = w
(cf., Ref. 2). The distinct exponents of » which are obtained in this way
form a Singer difference set.* Since o (0™ + W) = M , each
exponent d; will be produced r times; we can get each one exactly once
by using the equations

d o hy d
y1+y2=m3va,

L dy
)

d h
wr' vt =Wty

(1)

r—1 d d d

W T ™ = WM
where

l=p"+1 =r+4 2.

Lemma 1: ¢'is a zero of 8(x) if and only if

- [t ;

=\
Proaof: Raising (1) to the power {r gives the set of equations
(y!fl + yll‘g)fr _ (whsyda)h . (yda)fr _ g_rd;l
(myrll + Vdg)lr — (”(14)11' — g_,ld'q

(wr—lyd'l + pdg)ll‘ — (vdg)lr — frdl.

* An example is given in the appendix.
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Thus,
6(¢') = Z;,: ()% =0
if and only if
OO RE NN E (%" 4+ ™) = 0.

This may be rewritten as

(r+ DOMT 0+ DO + 3 g ( ) ",

i=0
where
on = dih + do(tr — h).

Since r + 1 = p° the first two terms are zero; the remainder is

i (Z‘)v"" ; (o")?

=

Now,
—1 : 0 if h#0modr.
2 (W) = .
i=0 r if h = gr

In particular (for ¢ = 1) { is a zero of 8 (x). Since
r=—1lmodyp, v =7¢ and o = (d — do)jr + lrde,

the expression for g(¢") becomes

Jtrda Z (t? ) r=dy).

=1
which proves the lemma.
Lemma 2:
t—1
Z (t?’)g_ (dy—dg)i =0
=1 \J7

if and only if

(;:)—O(modp) Jor j=1,---,t— L

Proof: The difference set {dy, dz, - -+, di} may be obtained by picking
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any two distinet d;, d; contained in it, and applying the construction
previously described to »"f, »"/. By the definition of a difference set we
may choose d; — d; to be any number 1,2, -+, n — 1. Thus, 8(') = 0
implies

and the equation

=l g N
(tf‘ ).rJ =0
= \jr

will have (n — 1) nonzero roots. Since ¢ = n this is impossible unless
all the coefficients are zero. This proves the lemma.

The experimental evidence (for p = 2,1 = s = 5) showed that the
number of ¢ which are not zeros of 8(x) is 3' + 1. We guess (it turns
out correctly) that “+1” corresponds to ¢ = n,—{" is not a zero of
8(r),since (1) = 1 (mod p) —, and that it will be simpler to count bi-
nominal coefficients which are not divisible by p. The information con-
tained in Lemmas 1 and 2 is rephrased in the form of Theorem 1.

The following corollary is immediate.

Corollary 1: The degree of the highest common factor (over GF(p)) of
#(x) and " — 1 is the same for every Singer difference set.
1V. A THEOREM ON BINOMIAL COEFFICIENTS

In this section, we change to ordinary arithmetic (instead of mod p)
and count the number of integers ¢ which satisfy the conditions of Theo-
rem 1. In particular, our goal is to establish

Theorem 2: The number of t, 1 < t < p* + p°, for which
(;) %0 (mod p) (@)

s . . . 1\’
forr=p" — land somej, 1 = j < t, ts jusi (p -)F ) .

The proof of this result will depend upon several lemmas. We first need
some notation. Let P, () denote the greatest power of p which divides .
If w is written to the base p, i.e.,

h
w= 2 up 02w < p,
=
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tor some h, then D (u) will cenote® the sum of the “digits” of u, i.e.,
[
D(u) = Z Uy
i=1

As usual, we let [1] represent the greatest integer not exceeding u.

Lemma 3:

u

(u + v) #£ 0 (mod p)

if and only if
u; +v; = p — 1, i=012 ---
Proof: It is well known that

—[m
Py(m!) = Z |i'_1:|
i=1 P
(the upper limit = is convenient, but not necessary). Since

P, ((u . ﬂ)) = Py((u + 0)1) — Py(ul) — Pp(2)),

we have

if and only if

I P I

But it is always true that
[+ yl = [ + [,
so that (3) holds if and only if

[’i—_ﬂ]=[3]+[i], i=1,23 . (4)
' P P

Noting that, in general, [x/p'] is just one of the “digits” in the repre-
sentation of x to the base p, we see that (4) is exactly the condition that,

* We should more accurately denote this by D,(u) but since p is fixed in this
argument, no confusion will arise.
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for each j, the jth digit in the representation of u + » to the base p is
just the sum of the jth digits of « and v. Hence, (4) holds if and only if
u; +v; £ p—1, i=012 ---,

and the lemma is proved.
We note as a

Corollary:
Du+v) = D) + D(v)
with equality if and only if
u;+v; =p—1, ji=012 ---

We recall that the numbers of particular interest are

w=gr, 0=1r—n
where
a—1
fmp = 1= Xup  (vheew=p— 1)
i=0
Lemma 4:

Di{try =sw for 1 =t =0
Proaf: Set

s—1

t = Z}a,-'p"—l—au,

where we may take ap # 0, since D (p*u) = D (u). Now,

a—1

agr = (ap — 1)p" + 2, wp' + (p — ao).
=1

Consequently,

s—1

tr=(p =12 a;p' + apr
=

s—1

s—1 &1 . 3
=Y ap™ - Zla,-p' + (a0 — 1)p" + 2 wp' + (p — a)
i= =1

i=1

a—1

. 8_1 .
=> ap™ + (a0 — Dp' + ; (w — ai)p’' + (p — ao).

=1
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Thus,
&—1 81
D(tr) =Y ai + (@ — 1) + (s — )w — Zla.- + (p — a)
i=1 &=
=sw for 1=t=2r=p —1,
which proves the lemma.

Note that if 1 < ¢ < n, there is a 1 to 1 correspondence between ¢
such that D (&r) = w and ¢ such that D (ir) = 3sw — n. For

0< (@*=1)—tr=(n—t)r
and clearly
D((n — )r) = 3sw — D(ir).
Lemma 5:
sw = D(lr) = 2sw, for 1 =t < n.

Proof: We show that D (tr) = 2sw; the other inequality is then immedi-
ate by the preceding remark.
Since ¢ < p* + p' we have either

§—1
t — ph + ; a{p'b

or

&—1 8

=1
t=1p' ‘=Eo bip' + 2 ap'.

In either case, let ¢; denote the first summand and ¢, denote the second
summand (so that { = #; + t).
By Lemma 4

D(tr) = D(tor) = sw.
Hence,

D(tr) = D(tyr + tar) £ D(twr) + D(lor) = 25w

and the lemma is proved.

We recall now that in Theorem 2 we are considering integers ¢ which
satisfy (2). By Lemma 3, this is equivalent to finding 7 and ¢, with
1 £ j <t < n,such that

D(tr) = D(gr) + D{{t — j)r).
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But Lemma 5 implies

25w = D(tr) = D(@r) + D((t — j)r)

v

sw + sw = 2sw.
Hence, we must have

D(tr) = 2sw, D(jr) = D((t — j)r) = sw.
On the other hand, suppose for some %, 1 £ v < n, we have

D(ur) = 2sw.
Let i denote P, (u) and set u = p"u’. As in Lemma 5, set
T ul' - ug',
where 1’ < rand D (u.r) = sw. Since
D(u'r) = D(ur) = 2sw

then we must have D (u'r) = sw. Thus for j= Py,

ur
. ) # 0 (mod p).
ar

We can summarize this discussion in

Lemma 6: The number of t which satisfy (2) is exactly the number of { for
which

D(tr) = 2sw.
By a previous remark, this is just the number of ¢ such that
D(tr) = sw.

This problem is equivalent to finding the number of v, 1 £ u < pr -1,
such that

D(u) = sw and u = 0 (mod 7). (5)

We state the result in
) e . . - (p+ 1Y
Lemma 7: The number of inlegers w which satisfy (5) is 9 .

Proof: Write w in the form

8—1 . =1 A 2 §—1 p
w= 2 ap' +p L bp +p L e

t=10

= A+ p'B + p“C,
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where

0=A,BC=r=p" —1
Then

u=A+B+C+ @ — 1B+ (" - 1)C
and so we have
u = 0 (mod r)

if and only if

A4+ B+ C =0 (modr).
Since u > 0, then by Lemma 5,

DA+ B+ C) = sw.
But
DA+ B+C)=DA)+DB)+ D) =D(u) =sw
by the corollary to Lemma 3. Hence, we must have
DA+ B+ C)=sw=D(A) + D(B) + D(C).

This implies that

a; + b +c¢i = w, i=0,1,---,8 =1,
and consequently
A+B+4+C=r
However, the requirement that r divides u implies
A+B+C=m,

so the only possibility left is

a; + b +ci=w, i=0,1,---,8s =1
Since the number of ways (cf. Ref. 4, 6.6) of obtaining w as the ordered
sum of three nonnegative integers is (w ;— 2) - (p -2+_ 1) then the
total number of choices for A, B, and C' (and hence for u) is just

(p -; 1) . This completes the proof of Lemma 7.

By combining the preceding lemmas, Theorem 2 is proved.
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V. CODING THEORY

It has been shown' that the minimum distance of the dual code of the
cyclic code R-6(x) is at least p* + 2. It is now easy to show that the
minimum distance of K-8 (z) itself is p* + 1.

Since K- 0 () contains 6 (x), p* + 1 is an upper bound for its minimum
distance; it suffices to show that it is also a lower bound.

By Theorems 1 and 2, ¢ is a zero of 6(z) if D(ir) = sw (this is, of
course, only a sufficient condition). By Lemma 4, the p° — 1 numbers
t=1,2,---,p" — 1 have the property that D (&) = sw; clearly ¢t = p°
also has this property. Thus there are at least p° consecutive powers of
¢ which are zeros of 6(x). By the usual proof of the Bose-Chaudhuri
bound* (See Ref. 3, Section 9.1) the minimum distance of B-8(x) is at
least p° + 1.

Theorem 2" is a summary of known results about difference-set cyclic
codes.

Theorem 2': Let dy,ds, -+, d; be a Singer difference-set modulo n,
where n = p* 4 p° + 1. Set

!
0(x) = 3 a’i.

=1
Let R be the ring of polynomials modulo " — 1 over GF (p). Then R-8(x)
p+1

§
9 ) + 1, and minimum distance

18 4 cyclic code of dimension(
P+ 1

It has been shown that for every Singer difference-set modulo =,
there exists a set of integers ¢ such that ¢* is a zero of the difference-set
polynomial. The set of such ¢ is the same for every difference set, but
this of course does not mean that every 6(z) has the same zeros in com-
mon with " — 1. The difference set is constructed by means of a primi-
tive nrth root of unity »; » determines the choice of ¢, and a different
choice may or may not lead to a different set of zeros for 6(z).

APPENDIX A

Example

Takep = 2,s =2,n=2"+2"4+1 =21, = 2° — 1 = 63. The
polynomial ° + & 4 1 is an irreducible factor of z* + 1 over GF (2)

* The proof applies although R-6(z) is not necessarily a BCH code.
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[see Ref. 6, p. 309, polynomial fio]. In this case, w is a cube root of unity
and the above polynomial factors over GF (4) into

@+ 2+ o'+ )@+ 2+ wr + o).

We take a zero of the first polynomial for », and for purposes of caleula-
tion it is convenient to express it as

1 10
yv=|w 0 1
w 0 0

It is readily checked that the characteristic equation of this matrix is
2 + 2° + @'z + w. A table of the relevant powers of » follows.

1 1 o] w 1 1“’ w w1
v=1w 0 1 Y =1 & 0 V=l 1 &
w 0 OJ ©w OJ W @ w
[0 1 0] [ 1 1]
Vi=1e 11 =11 o 0
o 0 1] o w 1 ]
(o 0 1] (0 w ]
V= le o 1 =10 0 1
[0 o 0 o 1
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1l o w
3 6 2 12
wr' + v = lw o 0 = wy
2 2
o o o]
_ .
@ @
2 3 f 2
wr + v =11 o w|= wy
0 1 0

Hence, 3, 6, 7, 12, 14 is a difference-set modulo 21. In this case, r =
22 — 1 = 3, and the appropriate values of ¢ are 5, 10, 20, 19, 17, 13;
9, 18, 15. (tr = 15, 30, 60 ete.) It is readily checked that each ¢r has a
digit sum (to base 2) of 2s = 4.

APPENDIX B

Let 8(x) = ao + ax + -+ + a._x"". The ideal R-0(x) consists
of all linear combinations over GF(p) of the n polynomials 2'0(x)
(mod (x" — 1)),7=0,1, ---, n — 1. Its dimension is therefore the
rank over GF (p) of the matrix

o @ Az  crr (py

1 @ Q1 - Qpo
A =

ay a dag -+ @ J

Let ar, as, - -+, a, be the n zeros of " — 1 over GF (p); they are all
distinet since p does not divide n. Let A be the matrix

(1 1 e 1)

!al as e

i ‘
A= ;af s a,.e




1070 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1966

Then
det A = [] (@i — a;) #0,

i<j=<n

and the rank of A is the same as the rank of AA. Now,

[6(e1) 6 (cn) coe B(am) ]
10 (a1) o () e anf(ay)
AA =
Lﬂlln_lﬂ (1) azn_lﬂ(az) s ﬂnn_le(an) J=

Suppose the a; are arranged so that 8(«;) # 0,7 =1, - -+ , ¢, and 6(a;) =0
t=1¢4+1, ---, n The last n — ¢ columns of AA contain only zeros,
so that the rank of 4A is = ¢. The ¢ by ¢ matrix in the upper left hand
corner of AA is

(6 (1) 6 (ao) coo B(ay)

a8 (ﬂtl) ol (052) e ayf (‘1:)

|
(" 0 (en) @' B(a) cr @ T(a)
and the determinant of this is

0(a1) -8(az) - -- 6(a;) H (@; — a;) #0.

i<j<t

Thus, the rank of AA (hence, the dimension of B-6(x)) is exactly .
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