Simultaneously Orthogonal Expansion
of Two Stationary Gaussian
Processes — Examples
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This paper presents lwo evamples of the simultaneously orthogonal
expansion of the sample functions of a pair of stationary Gaussian proc-
esses. The pair of Gaussian processes are specified by zero means and co-
variances exp (—ea|s — t|), exp (—B|s — t|) in Ezample 1 and by
1 —|s—t|/2T,exp(— |s — t|/T) in Example 2. The expansion takes
the form of a trigonomelric series where the coefficients are mutually in-
dependent Gaussian variables for both processes, and the series converges,
both with probability one for every t and in the stochastic mean uniformly
in t, for both processes. This type of expansion is an extension of the Karhu-
nen-Loéve expansion lo the case of a pair of processes, and no concrele
example has been given previously.

The general theory of the orthogonal expansions is briefly reviewed in
Section I, while concrete results for the two examples are tabulated in Sec-
tion IT with a brief outline of the method of derivation. The complete deriva-
tion, which constitutes the principal part of this paper, is presenled in full
detail in Appendices.

1. GENERAL THEORY

Orthogonal expansion of Gaussian processes has been used extensively
for both theoretical investigation and application in communication en-
gineering. In the case of a single process, the expansion is a modified ver-
sion of the Karhunen-Loéve expansion.'” Specifically, if z(t), —T =<
t < T, is the sample function of a Gaussian process with zero mean and
a continuous covariance R (sit), —7T = s,t = T, then a(¢) can be ex-
panded in terms of the (orthonormalized) eigenfunctions f , & = 0, 1, 2,
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-, of R as follows:*

z(t) = ;&(x)fk(t), a.e. [P],

g(z) = (2,0e), a.e. [Pl,T

where P is the Gaussian measure induced by the process with zero mean
and the covariance R.

This expansion has two desirable properties: (i) for every measurable
set specified by the sample function x (t), there is an equivalent measura-
ble set specified by the coefficients, {£}, and (i) {&} are mutually in-
dependent Gaussian variables with zero means and variances equal to
the eigenvalues of E. Thus, many problems concerning the sample func-
tion ean often be reduced to equivalent problems concerning the coeffi-
cients alone, and they in turn can be decomposed into a collection of
effectively “one-dimensional problems”.

In the case of two Gaussian processes, the sample functions can be
expanded relative to a single set of functions such that their coefficients
are mutually independent with respect to the two finite dimensional dis-
tributions. Such “simultaneously orthogonal” expansions have often
been used to prove the equivalence-singularity dichotomy of two Gaus-
sian measures.”** The particular expansion theorem used here is due to
Pitcher.” Tt goes as follows: Let Py and P, be the probability measures
induced by two Gaussian processes with zero means and continuous,
positive-definite covariances Ri(s,t) and Ra(sit), —T = st = T.§ If
Ry R.R. is densely defined and bounded on £, and its extension to the

* R denotes both the covariance and the integral operator generated by it,
namely,

T
RN = f RGs,0f(s)ds,  fe L,
—T

where £, is the space of square-integrable functions on [—T,T].

+ Without loss of generality, the process under consideration is assumed to be
separable Jiénd measurable. (f,g) denotes the usual scalar product of two elements
fand gin £..

b Irﬂstead of regarding ‘‘two Gaussian processes’’ as two one-parameler families
of random variables, we consider a single one-parameter family of measurable
functions z¢, —T < t < T, with two probability measures P, and P, .

§ We assume that P, and P, are extended to ® and complete on Bp, and g, ,
where ® is the minimal ¢-field with respect to which z; is measurable for every
{ e [-T,T]. Since R(s,t) and Ra(s,t) are both continuous, we consider only the
Beparabie and measurable version of {z; , —T < ¢ < T'} without loss of generality,
where the separability is with respeet to §(Pi -+ Pq) while the measurability is
with respect to Bip,ry X @ and @ is the Lebesgue field of the subsets of [—T,T'].
Note that such a version is also separable with respect to both P, and P2 and meas-
urable with respect to ®p, X @ and Bp. X Q.
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whole of £, has a set of eigenfunctions which spans £, , then

z(t) = lim. ;;Z; (@) (R (1), [Py X p, P2 X pl,
m(x) = Lim. (z, R o), [P,Ps),
jorw
where g, k = 0,1,2, - -+ | are the orthonormalized eigenfunctions of the

extension of Ry R.Ry ™}, and p is the Lebesgue measure defined on the
subsetsof [—T',T, ansl eriyj =0,1,2 -+ areasequence of £,-functions
in the domain of B that converges strongly to ¢ for each k, namely,

Prj € B(Rl—!)’ !iln ” @k~ @rj ” = 0! k= 0! 1! 2! Tt .
j>o

As in the case of a single process, this expansion also has two desirable
properties:

(i) for every measurable™ set A specified by x(t), there exists another
measurable set A’ specified by {n] such that

Pi(AAA) =0=P(AAN)T
(ﬂ‘) El[mcn.fz = akfl ]g'-![nkﬂi} = kkakfr ]‘:,j = 01 1: 2, Tt

where A; is the eigenvalue of the extension of RTRR Y corresponding
to @i . As seen from the definition and the property (1), n., k = 0, 1, 2,
-, are, with respect to both P; and P, , mutually independent Gaussian
variables with zero means, and their variances are all unity with respect
to Py and A with respect to P, .

Unfortunately, the above theorem is not a suitable method of actually
obtaining the simultaneous expansion for a given pair of covariances
Ri(s,t) and Rs(s,t). As the result of defining the expansion coefficients
m and the expanding functions Ry'g, in terms of ¢, k = 0, 1, «- - , one
must first of all solve the homogeneous equation involving the extension
of Ry R.R, . Yet, there is no standard method of solution available for
this type of equation, since Ry 'RaR; * is not, in general, a simple operator
as Ry and R are. This may partly account for the fact that no concrete
example for the simultaneous expansion has been given previously. In
the next section and Appendices, we give two examples to illustrate an
indirect method of obtaining ¢ first and then calculating n, and Ri'ey .

* The measurability is with respect to ®yp,1+p. -
1A denotes symmetric difference, namely, AAA" = (A — A") U (A" — A).
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I1. EXAMPLES

The two examples we consider here are stationary Gaussian proc-
esses with zero means and the pair of covariances

Ri(st) = exp (—a|s —t]), Ro(st) = exp (—B|s —t|)

in Example 1, and

R;(s,t) =1- l’s% ] RE(s)t) = exp (_ Is ; t!)

in Example 2.

The method we employ to obtmn the expansions may be outlined as
follows: First, we prove that &y~ ‘R.R;* is densely defined and bounded,
by showing that RR, ™ is bounded. Next, we consider solutions of the
homogeneous equation

Roy. = MR .

If ¢ is a square-integrable solumon w1th a real number A , then Ry is
seen to be an eigenfunction of By~ R2R1 . Thus, the function Rig: in the
desired expansion is simply R . * Unfortunately, there are no such solu-
tions in Example 1, and there are only half of what is needed in Example
2. However, suppose we consider “formal solutions” of the homogeneous
equation and expand them relative to the set of eigenfunctions of R, ,
which forms an orthonormal basis of £, . Let y,; be the sum of the first
j terms of such an expansion. Then, it turns out that the normalized
version of {R1 Yij) j is the desired sequence {¢x;} used for defining ny .

That is, we show that (7) the normalized version of {RiYj} ; forms a
Cauchy sequence and its limit in the mean is an eigenfunction of the ex-
tension of Ry R.R;* with A as the corresponding eigenvalue for each
k, (i) the collection of all such limits forms an orthonormal basis of
£, , hence they are the only eigenfunctions of the oxtenslon Thus, the
desired expansion is obtained simply by calculating Riei , k= 0,1, 2,

Fmally, that the expansion series in both examples converge both
a.e. [Py, Ps] for every ¢ and in the mean [Py, Py] uniformly in ¢, is de-
duced as follows: We first observe that the ¢-functions of the series are
uniformly bounded in 7 and ¢, and the sum of the variances of the coeffi-
cients is finite with respect to both Py and P. . Thus, by virtue of mutual
independence of the coefficients, the partial sum of the series, denoted by

* The expansion in terms of Ryl is suggested in Ref. 6 without the connection
with Ri7R.R,.
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Z, (1), converges both a.e. [Py, Ps] for every ¢ and in the mean [Py, Ps)
uniformly in ¢ to some Gaussian variable Z (), Ei{Z ()} = 0 = Ex{3(¢)}.
Now, since 2,(¢) converges to x(¢) in the mean [P; X p, Py X ul,
Eyfaa(s)z,(t)} and Epfx,(s)z,(t)} converge in the mean [p X p] to
Ri(s,t) and R,(s,t) which are continuous. Hence, they converge uni-
formly to R;(s,t) and R»(s,t), respectively, which implies that

E\Z(s)E(t)} = Ri(s,t) and EZ(s)Z(1)} = Ra(s,t).

That is, {£(t), —T = t < T} is a Gaussian process with zero mean and
covariances I2; (s,{) and R.(s,t) corresponding to P; and Ps , respectively.
Hence, Z(t) = x(t), a.e. [Py, P, for every t. Thus, it follows that x, (¢)
converges to x(t) both a.e. [Py, Ps] for every ¢ and in the mean [Py, Ps)
uniformly in ¢.

The results are tabulated in the following summary. In both examples,
the orthogonal expansions of the sample function take the form of
trigonometric series, which asymptotically behave like harmonic series
for large indices. The coefficients are mutually independent Gaussian
variables with zero means, and their variances are explicitly given,
together with the asymptotic values for large indices. In addition, we
include for future reference the eigenvalues and the (orthonormalized)
eigenfunctions of the extension of B,—#R.R;7* to the whole of £, , though
they are not of the primary interest here.

III. SUMMARY

3.1 Ezample 1
Ri(st) = exp (—a|s—t]), Rust)
=exp (=B|ls—t]), a>8>0

x(t) = > [ni(x) cos 6t + 9:(x) sin B, a.e. [P., P,

i=0
where 8,’s and ,’s are positive solutions of*
(e + B)8; tan 8,7 = o — 6.,
- (CE + B)ét ctn élT = aﬁ - é'iﬁy

and 7:, 9:, 2 = 0, 1, 2, - -, are mutually independent Gaussian varia-
bles with zero means and variances given by

ol . .
*0:'s and 6;’s are indexed in the ascending order.
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Exnd) = 2a/(a" + 6)r(82), E48) = 2a/ (& + 6)7(8:),
Wind = 26/ (8 + 02)7(6:),  Euf47) = 28/(8" + 677 (),
where

(a + B)aB
6' + (o + B*)6* + '8
éi"" 1=

m (s D)1, :

2aT 2aT
El. {1]:'2} ~ = 2 ) E; [’ﬁ:’ﬁ] ~ ;L y
(z' _|_1) - i°r?

r(8) =T +

For large 1,

T

*-a|=1

28T 28T
B}~ o, B 18~ 2T

. " -1 1 .
The extension of R, 'R.R: * has eigenvalues

,Ba—l-B :ga"+éf

Aoy =
T a g+ e’

and orthonormalized eigenfunctions

2 2713 n
on(t) = —2-;—]—,8 [L+ 6: :I cos ;T Lim. Z (o, , 8:) cos ag;T cos ast,
a

7(95) nsw =0

2a o + é-zir . s ) = A . .
i (t) = —— | sin 4T Lim. &;,0;) sin af;T sin aé,t.
L2 1 (t) o+ ﬁ[ 'r(G,-) i ;7(0‘1 ) Qao; Qao;

where

v(ag) = (1 + az)*/[T + 1 er )] a'e’ — ),

ayn . sk
and o; and &; are positive solutions of
ojtan as;T = 1, —gjetn ad;T = 1.

* g’s and “;’s are indexed in the ascending order.
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3.2 Kxample 2

_ o ls—t] _ _is—tl)
Ri(st) =1 o Ry(st) = exp —— )

2(t) = 2 [ni(x) cos 6t + 4:(x) sin 8],  ae. [Py, Py
i=0

where 8;s are positive solutions of
6;T tan 0,7 =

and 9;, 4,2 =0, 1,2, ---, are mutually independent Gaussian varia-
bles with zero means and variances given by

) Lo 1+ 6T
Ellmi = El{ﬂi} = m,

. 2
E2{ﬂi2} = E2["Ti2; = W.
For large <,
2 1 2 2
b; ?'T’ Eifni"} - Pt By {n; P
The extension of Ry ‘RyRy ™ has eigenvalues
26,°1"
Aoi = Noip = W;

and orthonormalized eigenfunctions

oni(l) = (TI i 37) cos B4

woii(l) = 2p0,(T) Lim. Z (=1 +3

sin i+ 3 I
o 103;)( _( _|_ J+2)T
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APPENDIX A

Ezxample 1

Ri(st) = exp (—a|s —t]),
Rz(s,t) = exp (_.815 — ti )J -

A.1 Eigenvalues and Eigenfunctions of R and R

Let we and fi, k = 0, 1, 2, ---, be the eigenvalues and the corre-
sponding orthonormalized eigenfunctions of ;. Then,
2 2 .
1=0,1,2---, (l)

Hai = a(l + o)’ Moit = e ok
fo:(t) = cos aa-"t/(T + M):

2a0;
in 2037\ ®)
faits(t) = sin abit / (T - M) :
2ai;
where ¢; and &; are positive solutions of
o; tan aeT = 1, —&;ctn ag T = 1, (3)

respectively, indexed in ascending order.*
Similarly, the eigenvalues and eigenfunctions of R, , denoted by
and g , are given by

y 2 2 (4)
P e AN Vet = o Ay o
* BT+ pd) B+ 88
g2:(1) = cos apit/(T + szgﬂ),
i
in 285:T\* )
gria(t) = sin Bpt / (T —~ §“‘2—") :
B
where p; and 5, are positive solutions of
Pi tan ﬁp{T = 1, —ﬁ.' ctn ,Bﬁ,T = 1. (6)

A.2 Boundedness of Ry'R

Since {fi} forms an orthonormal basis of £,[— 7,7, we only have to
show that || R.'Ri ¥ || is uniformly bounded relative to the index k.

* See Ref. 7, pp. 99-101.



ORTHOGONAL EXPANSION OF GAUSSIAN PROCESSES 1079

Namely, we must show existence of a constant ¢, 0 < ¢ < o0, independ-
ent of k such that

|RERT = 22 (e, <
[y
Consider even k's,and put k£ = 2¢,7 =0, 1,2, --- . Observe
(faiyg1) = 0, l: odd. (7)

Hence, we shall consider only even I’s. Note

T 2
(f cos ao,l cos Gp;t dt)
-7

. sin 2a0;T . sin 28T\’
(? + 2a0; )(7 + 28p: )

(f!!!';g?j)e = .7= 0: 112:"')

T
[ cos aot cos Bp;t di
T

cos ao;T cos Bp,T

= 2(ao; tan ao;T — Bp; tan Bp,T) P —p

(8)

) cos a1 cos Bp;T
a2gi2 — 52,0]2

where (3) and (6) are used for the last equality, and

= 2(a — B

2

(1 + 0';2) (‘Oﬁ2 ac, T = o, (1 + p,‘ﬂ) (‘052 ,Bp,'T = p,?, (9)
which also follow from (3) and (G). Thus,

4 A (e — B)° cos® Bp;T

vai ] N @ G(Bpi)azgiz
.y (fai s 99.') T + Lin 2aq;T B2 (ale® — B%,2)? ’ (10)
2a0;
where
a(8) = cos” 6T
: T+ sin 26T~
26

Also note that
czza.-2 _ 1 1
Bpi(ate® — Bp)* (% — B%)  oPelfp)

1 1 1
+ 2a’q,? (am + Bp; + g — ﬁP:‘) .
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First, through direct caleulation with the use of (5) and (8),

and from the fact that {g.} forms an orthonormal basis of £, ,

-] T 2 T
> [ f cos aait go;(t) dt:l = f cos® aoit di
i=0 -1 —-T

T 2
I:‘[ cos aoit g2;(t) d¢:| — 4(a — B)? cos® ac:T a(Bp;)

sin 2ao;T
=T+ 2a0;
Thus,
48 (& — B)* cos® Bp,T
@ a(Bp;) < B/a (11)
=0 (T + sin QQG{T) (a%c® — 8%~ cost aoT )
2a0;

Secondly, it follows from (3) and (6) that

T+ sin 2ao; T 7 I:l i 1 .2)] > T

2a0; aT(l + o
in 28,7 (12)
T sin pi > T,
+ 2Bp;
and
2 2 K : 2 T :
. 9 . .
a'oj >(7f.?): B p;s >(T“?)’ J=12 . (13)
Thus, a(8p;) < 1/7. Hence,
Bin — .
i 4 P (C( ﬂ)z cos? .BPJT a(spj)
i=0 (T + sin 20!0’{T) ‘120';'2!821952
2a0; (14)

B 2
4:*(0!—,8) ©
< a” [ 1 +1zl]_

o’ay BodT? ' vt {5 P
Thirdly, let k; (z) be a function of the complex variable z defined by

-4

h(z) = ztanzl — B

Then, ki (z) satisfies the condition of a theorem on expansion in rational
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functions,” and has poles =4=8p; and the residues a (8p;), 7 = 0,1, 2, - -
Hence, according to the theorem,

- 1 1 _ N ao; .

J_;oa(ﬁp;) (aa's ¥ Bos + p— BP:‘) = hlag;) = T (15)
where (3) is used for the last equality. Thus,

B (& — 8)? cost Bo:
Z 4& (Q’. ﬁ) cos ﬁpJT (l(ﬁp;) ( 1 1 )
=0 T sin 2a0;T 2ad0® \ao; + Bp;  ao; — PBp;
+ T (16)
28(a — B)
< aaaozT

where (12) is also used.

Therefore, upon combination of (11), (14), and (16), together with
(7), we conclude that for even k’s 3", (vi/m) (fi , g:)* is bounded by the
sum of the right-hand sides of (11), (14), and (16), which is obviously
independent of k.

For odd k’s, we can arrive at the same conclusion by following the
similar steps.

A.3 Formal Solutions of Rop = ARy

The formal solutions of the homogeneous integral equation

T T

L exp (—B|s — t[)gu(s) ds = \i [T exp (—a|s — t])¥x(s) ds

are
_ B +0f L Ba b,
hh_aﬁz'f'ﬂ.é’ A2|+1_c_t g+9‘_g: 1'_0:]:-0 y (17)
Yaill) = cos 6t + fffé (¢ — T) + 8(t + 1)),
oy (18)
Yo (1) = sin 0t 4+ 200 [5p — 1) — 81 4+ 1)),
a—+ 3
where 8; and @; are positive solutions of
(e + B)0, tan 8.7 = af — 67,
(19)

—(a + B)b; ctn 6,7 = af — 6/,
~ *See Ref. 8, p. 134.
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b

respectively, and they are indexed in ascending order. Namely, if 6; and
6;,1=0,1,2, -+, are solutions of (19), then the following equalities
hold for every i:

T
f exp (—B|s — t|) cos ;s ds

" :fﬂ fexp [—8(T —0)] + exp [—8(T + )]}
2 2 T
= g‘%ig’:z[[ exp (—a|s — t|) cos 6;s ds
+ ‘:’S_:‘g {exp [—a(T — 8)] + exp [—a(T + t)]}],

T (20)
f exp (—B|s — t]) sin b:s ds
—r

+ G‘.m+8T fexp [—B8(T — )] — exp [—-B(T + )]}
= g%%’_ [f exp (—a|s — t|) sin b;s ds
:n_:l fexp [—a(T — t)]—exll[—a(T-i-ﬁ)]l:l-

The above assertion can be verified through direct caleulation.
A4 Eigenvalues and Eigenfunctions of R R.Ry

A4l (R} form Cauchy sequences

Let Y, k, 1 = 0, 1,2, ---, be the Ith partial sum of the series ob-
tained by formally expanding ¥ of (18) relative to {fi} of (2), the eigen-
functions of R;. Namely, forz =0,1, 2, ---

Yaioa(t) = Yaiamn(t),

n

= Z[f cos()sfg,(s)ds—i—‘?

=0

f?J(T)]IEJ(t) (21)

Vaitr,nn (L) = Yot 2nta2(t)

n

= Z I:fT sin éi3f2j+l.(s) ds

=0 —T

SmBT

fzj+1(T):| Fainr(8).



ORTHOGONAL EXPANSION OF GAUSSIAN PROCESSES 1083

Then, {Ry'¥i}: forms a Cauchy sequence for every k.
Proaf: It suffices to show that for every k
lim IR |* < 0.

IFrom (1) and (2) and through the use of (19),

n

Z [fT cos 51'Sf2j(s) ds

=0

H Rl%‘bﬁ,h ”2

cos ;T

w20 |2

(1 + a;%)

R \ 22°(1 + o))
=t :‘Zo alac)) oz =gt

Note also that

22'(1 +4") _, o 486 _l( 1, 1
(9‘_2 _ a20j2)2 = {3 . — azajz)z 8; + 20’,‘ i o ; '

Next, with the aid of (2), (3), and (19), we find

i 4’ 4 0 cos’ 0T alas;)
U—r o8 0 Ji(1) di] I CE ) R (o

Also observe that

[ [ " in 26,7
2 [f cos 6. f2;(t) dt] = f cos’ Bt dt = T 4 DT
. . .

2 26,
Thus,

o _ ale’ +6) 2 sin 26,7
(a + e 0T L) Ga e~ @ aa (T T )

Next, following the procedure for obtaining (15),

cos” 0, Y a(ag;) ( ! + 1 )

_ 4a
(a + B)* i=0 O 0; + as;  6; — ag;

4 cos® 4T
a—+ Ba®+ 62’

where (19) is also used. Hence,

% sin 26,7 | 2 cos® 6;T 2ar(6;)
=2 i — i
o + 9{2( + 20, T a+ B ) a4 02’

lim || R | =
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where

(e + BlaB
T (ol T )P T o (22)

and (19) is used for the second equality.
By following the same steps, we obtain

(8 =T +

llm ” Rl Yoit1,1 H

Thus, the assertion is proved.
A.4.2 Orthornormality of { rpk}
Define ¢im, k,m = 0,1,2, --- | by
@2i2n = P2l = (llim I Ryl ||2)_l' RiYoi
: H 2\ —4 3 (23)
©@2i+1,2n+1 = @2i+1,2042 = (lzlm " Ri'Yaitaa ” ) Ry'Ysita,ont1 -

Define ¢, by

w2 = Lim. ©2i 2 , @il = Lim. ©2i41,2n41 « (24)

Then, {¢;} is a sequence of orthonormal funetions.
Proof: Normality is obvious. To prove orthogonality, let us first write
o, explicitly.
. i 2a2(1 4+ o)]* cos ag;T
ou(t) = Lim. b; Z [2e( *)] . cos aot,
nm (T + sin 2acr,T)( I Y

a ag; 91' )
2a0; (25)
. 2a2(1 4+ &2)]! sin ad,T .
poi+1(t) = Lim. b; - " sin ad i,
n—>00 =0 (T _ sin 2aajT)(a23'-2 _ 92)
20 ; ’ '
where
2 2 i . 2 2P ain A,
b — [Z(a + 6 )} cos 07§ [Q(a + 0, ):| sin 0.7 49
(6,) a+ 8 (i) a+ B

First, note
(p2i , pam1) = 0, i,m=20,1,2, ---.
Secondly,

B * _ 24°(1 + o)
(‘PE,’,W?M) - btbm ;.Z; a(aaj) (92 — & 0'12)(9111 - aza' ‘2)
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and

2°(1 + o) 1 [a2+-ef( 1o, 1 )
(62 — a%a?) (0 — a®a®) 0.2 — 62 6 0; + ao;  0; — ao;

_£+M( Lo, 1 H.
O On + ac;  On — ao;

Again, following the same procedure for obtaining (15),

bibm (o + 67 bs
0,,.2 _ B 6,‘ 3,‘ tan B,T —

a4 Om )_0
On O tan 0,7 — « ’

(@2:‘ ) '.02»;) =

where (19) is used for the second equality.
By following the same steps, we also obtain

(i1 y @2m1) = 0.

A4.3 o} forms an orthonormal basis of £,
Since {¢;} is a sequence of orthonormal functions and {f;} is an ortho-
normal basis of £, it suffices to show that for every [ = 0, 1, 2,

ZU: o) = 1.

First, note that (f;, @) vanishes unless [ and k have the same parity.
Secondly, from (2) and (25),

;’ (fz.‘ ) ‘pzj)e =

“

1
(a + ﬁ)(T +

sin .,acr,T )

Z cos® 6;T 4a20,2(a2 + 6 2)
= (e + 8)7(8;) (ac® — 672)%

and also note

1a’s;"(a’ + 6,°) _ 2 2 [ 1 1 :|
W = a(l+e) (ag; + 3;‘)2 * (‘W" - H,-)2

ag(l — 0'52) 1 1
+ ao; (aa.- + 8; + ao; — 9;).

Now, consider a function of the complex variable defined by

Z

ho(z) = (¢ + B)z tan 2T — af + 22
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ho(z) satisfies the condition of the previously quoted theorem and has
poles 40, and the residues

cos’ 6T

CE O

Also,

d - 1 1 — _ sin 2aa;T
d-—zhE(z) |z=arv" = (1 + o) |: 1+ o2 (e + B)( 2a0; )]

Thus, according to the theorem,
(1 — a) © * 0,7 1 1
o ( o) > cos 6, ( + )
ao; = (a + B)7(8;) \ao: + 0; ac; — 6;

_a(l %) _ a',-2
_—a_m_hz( ao;) 1+

where (3) is used for the second equality. Also, through the use of a
modified version of the theorem,*

. cos” 0, 1 1
o(1+a) ,_Zo @+ B)r@) [(am T2 | (aoi = 6;-)2]
= a1 + o) a% Ba(2) lomas; = (a + B)

sin 2aa;T 1— ¢
. T 1 — T .
( + 2a0; ) 1+ o

Hence, upon combination of these two results,

- cos’ 6;T 4o il + 67) ( sin 2aa'.-T)
Z + B)r(6;) (a%e — 6;%)* = (a+§) : '
* The modlﬁed version:

Let f(z) be the function satisfying the condition of the theorem (Ref. 8, p. 134),
having poles a, and their residues b, . Then,

PO 2 1) o

n (au—:l:)’z_d

i

This is proved by noting that
1 1)
cm & — :v)"‘

2ri
%chl the left-hand side vanishes as m — =, where Cy, is the contour defined in
ef. 8.

f(z) lsmz + Z

:r:)2 ’
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Thus,

o0

Z(fﬂi,fpzj)'= 1, 1=1012---

=0

By following similar steps, we obtain

o0

Z (Joisr, 02501)” = 1, 1=01,2---,

=0

and the assertion is proved.
A.4.4 Closed form-expressions of Ri'g

i 2a 3
; i i) = e — — il,
Ry'esi(t) [(ag 9.'2)7(0.-)] cos 6t
i=0,1,2 . (27)
ooy = [ 22 Taa
Ri'gaina(2) [(a2 9.‘2)7(9,-):| sin 8,
Proof: Trom (25) and (1),

iom

_Rﬁgcy_i(ﬂ) = ”ﬂl bia ZCj(ﬂ) (B 1 + - 1 )

n-»o0 i 7=0

) - bt & 1 1
—Rypoin(t) = lim 2= &;(t ( _ )
vesn(l) new i :ZD 0 Bi+a&j+ﬂi_a&j ’
where b; and b; are given by (26) and
e(t) = cos aa;T cos aajt &(t) = sin a6;T" sin ad,t

7 + (sin 2a0,1T/2a0,)’ T — (sin 2a4,7/24;) "
In order to sum the series, consider

z cos zt
zsin 2T — acos 2T

hy(z) =

Observe that h;(z) satisfies the condition of the previously quoted the-
orem, and has poles +acs; and the residues ¢;(t),j = 0, 1, 2, --- .*
Thus, with the use of the theorem,

T N O )L
R, qag.(l) = 8 ha(ﬂ.) = (a2 F 0‘_2) cos 0,7 cos 6,

* The residues of hi(z) are shown to be ¢;({) through direet calculation with
the use of (3).
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where (19) is used for the second equality. Similarly,

_ da+ B)bs
(a® + §:2) sin §:T
Then, substitution of (26) into the above gives (27).
AA45 A\ and ¢ are eigenvalues and etgenfunctions of RR.R
Meand ¢r, k = 0,1,2, -- -, are the eigenvalues and the corresponding
orthonormalized eigenfunctions of the extension of RR.RT to the
whole of £ .

— Ri'paini(t) = sin 6.

Proof: Tt suffices to show that for every k

Rleitpk = liLm. Rleﬂwkm B

where gim, m = 0, 1, 2, -- -, are defined by (23), namely, gin is the
mth partial sum of the series obtained by expanding ¢, relative to

{1

Through direct caleulation,

T

f exp (—B|s — t|) cos ;s ds
Ly

_28
BQ + 6{2

cos ;.

n (;)S_l_ﬂig {exp [—B(T — )] + exp [—8(T 4+ )]} =

Thus, from (17) and (27),

+ b [
Nei( Rilpns) (1) = é—:q—ofzi,-_i’;[‘/_; exp (—g|s — t|) cos b;s ds

4 980T [—B(T — O] + exp [-B(T + i)]}]-
a+ g

On the other hand, from (23) and (21),

(RaRy g2 ,20) (1) = (RoR: pni 2t1) (£)
+ B)b: & r

(e + B8)b: 3 (Rafs) (1) [[T cos 85 f2;(s) ds

= 2% cos 6,7 55

cos 0;T

2
+ a+ B

fzj(T):I .
But, since

j_-T exp (—8|s — t]) cos f;s ds = lim. Zﬂ: (Raf2,)(t) [T cos ;s f2;(s) ds,

T n-=w j=0

we only have to show
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n

exp [—B(T — )] + exp [—B(T + t)] = 2 lim 2 fo;(T) (R f2,) (1),

n—+0 j=0

ie.,

n

Ro(T) 4+ Ro(—T2) = Lim. 2 [fi(T) + fil = T)I(Raf1) (2).

n>w =0

But this is certainly implied by
R(st) = 2 (o, REfOA((0),  —T st =T, (28)
A=0
where
T
Res) = [ R(su)Rau) du
r

To prove (28), we first note that the series on the right converges to
Ry’ (s,t) in the mean. In addition,

|fet) | < 17

as seen from (2) and (12). Hence, it suffices to show that

2 (e, R | < oo,
k=0

which is implied, through the Schwarz inequality, by
D || Rafi | < o0
=0

Hence, we have shown that

AoiRigei = lim RoRy " gnim 1=0,1,2, ---

m-—>o0

Through the same argument, (28) implies

Npfttee i = lim By “erigam .

m >0

APPENDIX B

Example 2

Rl(é‘,t)

Ra(st) = exp (— s — |),

II
—
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B.1 Eigenvalues and Eigenfunctions of R1 and R
The eigenvalues and the orthonormalized eigenfunctions of R, are

1 T

M2 = 1161:2! Hei+1 = m, T = Or 1, 2: R} (29)

. . N7
¥y (t) LHJ_ (t} — A + E Tt (30)
Jr21' = (T‘ + Sin 26{71);, f2!7+1 - T% ]
26,
where 6;,7 = 0, 1, 2, -- -, are positive solutions of
8,7 tan 6,7 = 1, (31)

indexed in ascending order. Similarly, the eigenvalues and eigenfunctions
of R, are

2T 2T
mi = T4 pERy R T [ par (32)
sin 6t
i(8) = fauill), itill) = —m
ga:(£) Fai(2) gait1(t) (T ~sin ZGiT)’ (33)
28;
where §;,17 = 0,1, 2, - -, are positive solutions of
—6,T ctn §,T = 1. (34)
B.2 Boundedness of RSR
From (29), (32), and (33),
iy —} 260,°T" .
“Rle fzil{2=m;@<2, 2:0,1,2,-.._
Since
(feitr,00) =0, j7=0,1,2,--+,
we have, through (29), (30), (32), and (33),
PR 2. 20T AT cos® 6,17 (i + )%
RyRy fonn ||” = o R T
” 2 fvl j2 +1 ” Jg[:) 1 + GjZTJ " sin 293T [le_(lyz _ (?‘ + %)Z'ﬂﬁ]z

26,

and also note
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(7 + %)27r2 _ gjoz
671" — (i + 1T 6°T° — (i + 3)'F
(35)
1
T — (i )
Now
S\ 4T cos® 6,T 6,°1* = .
- P = (foit1, Goj =1,
=0 _ sin 20,7 0,7 — (i + )7 :;u Jaisas gainn) (36)
24;
= 26,7 T cos" 6,T 1
S+ 67T, sin 20,T 67T — (i + 1)t
26,
< i éjoE T COSﬂ éJ-T
i (1 + 6 T sin 24,T ’

28;

where the first inequality follows from the Schwarz inequality and (36)
while the second follows from (34).* Hence, || Ro'Ry oyt |’ is also
hounded by a constant independent of i.

Thus, by using the argument in A.2, we conclude that RR7Y s
hounded.

B.3 Formal Solutions of Riy = AR

Unlike Iixample 1, the even solutions of

Low(=r D ueas=n [ (1= we o @)

are bonafide functions while the odd remain formal. They are

26" T
1+ 02T’

(38)

Ay = 7\2£+1 =

Yo (t) = cos 8,

‘l/2i+l(t} = sin 81 + T sin 91T[6(t - T) — B(t + T)]-
* It follows from (34) that

sin 24,7 1
p o2 iy — )T,
2, T'( + 1—%&#1”) >

which corresponds to (12).

(39)
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Again, the precise meaning of the odd solutions is that if 8;,7 = 0, 1, 2,
-, are positive solutions of (31) then

T
f exp (— u) sin 6;8 ds 4+ T sin 6,T
L T

[l 5572w

W [T (-t -
=116, 1 — =5 ) sin fis ds 4 ¢ sin 0.7

for every 7. Again, the above assertions can be verified through direct

calculation.
B.4 Eigenvalues and Eigenfunctions of R R

B4l { Ritwnisa i) form Cauchy sequences”

Define, for each ¢ = 0,1, 2, -- -,
lp2¢'+l,2n+1(t) = ‘I'J'zi+1,2n+2(t)
n T
= i B-,‘ 25 d
;[[Tsm 5 fo;(s) ds (41)

+ 27T sin 8,T f2j+1(T)]f2j+1(t)-

Then, {Ri*zi41,:: forms a Cauchy sequence for every 4.

Proof: From (29) and (30) and through the use of (31) and (35)

n T
| Rioiprsonps I = Zﬂ |:fT sin 8;8 fojia(s) ds
=L

+ 27 sin 6,7 fgj-]-l(T)] 2_2
(J -+ 5) T
cos’0;T < 0.21* 1

P 3 — o em? 2
02 = |:31-2T2 . (J _l_é) ﬂ_z:| 0, T — (J + %) o

T .
. 2 sin 26,1
gtdt = T — 227

7'sm tdt =T 99, . (42)

46,273 cos’0,T [

Z ‘ N 7 =
=0 [31"1'2 — (J + §) wz]

* Note there is no need for considering such sequences for the even solutions
¥ai's, since they are already £:-functions.
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In order to sum the second term, observe that the funection of complex
variable tan z satisfies the condition of the theorem repeatedly used,
and has poles (j + %)=, j = 0, £1, £2, --+, and the residues —1.
Hence, using the theorem,

ol 1 _ tan 6,7
1)” IR (43)

i=0 g 2/mv2 : 2
0:"1 (J + 3

Thus, combining the two results,
. 1 sin 20,7
E}_I,I; ” R1ilf/2.'+1.2n+1 ”2 = Glz—T (T + 201_ ) .

Hence, through the use of the argument in A.4.1, the assertion is proved.

(44)

B.4.2 Orthonormality of {e:)
Define ¢ , 6 = 0,1,2, ---, by
@2 = foi, P4l = %im Prit1,l (45)
where ¢ = 0, 1,2, -+, and
paipre(t) = (hnl | Rpoiga,e 7Y Raniga,e -
{0
Then, {¢i} is a sequence of orthonormal functions,
Proof: Normality is self-evident. Note, from (30) and (41),
(‘P‘.Zi;‘PZm) = 5im, (‘PE[ ,‘Pﬁm-}-l) = 01 m = 0) 1? 2: Tty

1Y
> (1+3)
. Pl ] 2
= [6.-2T2 _ (j n %) ﬂ_z:":gszz _ (j n %) _A_'a:l

_ 2ai(T) fom(T) i B

and
(902i+1 ,tP2m+1) = 4szi( T )fzm( T )

GmQ - 8i2 7=0 G,T + (J + %)ﬂ_
B{ G'm
+ A o, 1
O
B 1
BmT —_ (j‘ + E)ﬂ'



1094 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1966

Thus, from (43) and (31),

6,7 tan 6,7 — 6,71 tan 6, T
0,2 — 632

(02i11 5 oomtr) = 2foi( T )fom(T) =0

B.4.3 {¢i) forms an orthonormal basis of £,

First, note from (30) and (45),

E(fztgﬁf’fn E(fz:,fz; = ; 1:=05 1123"'

Next,

o0 o0
;.Z% (fzi + 1,qf=‘k)2 = Zu (f21.'+1 , gaz;-+1)2
— =

N A S
i‘ AT cos6,T (“”+§) m
- 2 2
"‘°T+Sm2i”[9 ™ (1 +%) ﬂ_z]
7

;} :;20 [f_: 008 (1' T %) ET s fi(s) ds:r
1.

Thus, using the argument in A.4.3, the assertion is proved.

[

B.4.4 Closed form-expressions of Rigw
(Ri'ps:) () = d: cos 64, (Riprinn) (t) = di sin 64, (46)

where

1 —4
d = 6T(1+1—|—0¢2T2) :

Proof: The even part of (46) follows immediately from the even parts
of (45) and (29). Now, from the odd parts of (45) and (29),*
7 . . 1 m
n 2(—1)'d8;T cos 0T sin|j + =) =1
1 . 2, T
— (Ry'¢2i1) (¢) = Lim. Z o
n>o =0 9{2'1"2 — (J + 5) T2

* Note, from (34) that

sin 26T 1
— = 1 _—].
T+ 2% T( + )
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In order to sum the series, observe that a funection of complex variable
sin z(t/T)/cos z satisfies the condition of the theorem repeatedly used,
and has poles (j + %), j = 0, =1, £2, ---, and the residues

—(=1)’sin (j + %) (x/T)t.

TChus, according to the theorem,

a( i . 1 T
» 2(—1) .5111(34-5)?,5:_%
=t pare — (j + %)2 x? 8.T cos ;T

Hence, substitution of the above yields the odd part of (46).

B.4.5 M\ and ¢ are eigenvalues and eigenfunctions of R R.R
The assertion of A.4.5 holds.

Proof: That Ny; and ¢e;, % = 0, 1,2, - -+, are eigenvalues and eigenfunc-
tions of the extension of By *R.R: " is easily seen from (29), (32), (33),
(38), and (45).*

Tor the odd part, i.e., Asiy1 and ¢si41, we need to show that

)\g,q.lRla(pgprl = l.i.l'll. R2R1g%¢p25+1,m . (47)

m—>=x

Through direct caleulation,

T
|s—t|).
: — sin 8;s d
-L« E‘{]J( T sin ;s ds
— AT T+
+ T sin 6;T |:exp( —T——> exp( T):l

T
1+ 62T

sin B‘t

Hence, from (37) and (46),

T
7\2f+1(RL%<02i+1)(t) = db’ T |:f exp (— s ; ! [) sin 6;s ds
T

T sin 6: _T -y I
+ T sin 6;,T |:exp ( 7 ) exp( i )]]

On the other hand, from (45) and (41),

* Note ¢ is an eigenfunction of Ry *R.R,™} itself, without extension to the
whole of £2.
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(RZRI_%§D2E+I,211+1)(” = (R2R1-5¢2i+1,2u+2)(t)
T

401 3 (Rafin)(0) | [ s i () ds

=T

Il

+ 27 sin 6,T fz;‘+1(T):| .
But, since

j-T exp (—-— 'i,;—”) sin f;s ds = Lim, i (Rafaj+1) (1)

-7 n>w j=0

T
f sin #:s f2j+1(8) ds,
-7
we only have to show

exp (._. T_T;t) — exp (— T_ﬁi_j) = 2 lim _Zﬂzofzj+1(T)(R2f2j+l)(t):

n>0 =
which is implied by (28).

Then, by following the argument after (28), (47) is proved.*
The second assertion of A.4.5 is valid in this case also, since {¢} of
this example forms an orthonormal basis.
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