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Analysis leading to a figure of merit for differential pulse code modulation
(DPCM) systems with linear feedback networks is presenled. It is shown
that the figure of merit can be optimized. Simple DPCM has a 6-dB ad-
vantage in signal/quantizing noise ratio over pulse code modulation (PCM)
Jor speech. Optimization yields at most 4 dB more. Computer simulation of
the sysitem using actual speech samples leads to data supporting the figure
of merit as a useful measure of performance for DPCM systems with four
digits or more. The stmulation also provides data on the error speclrum as a
function of quantizer loading and on the probability density of the quantizer
input as a function of loading. Performance of the optimum system as a
function of increasing feedback network complexity is also shown.

Idle channel performance of a particular system is analyzed, indicating
the presence of inband oscillations in many cases. The best quantizer bias
from the point of view of idle channel performance is found. The level of
dle channel noise in DPCM 1is shown to be approximately equivalent to
that in PCM.

I. INTRODUCTION

Digital techniques for transmitting analog signals such as voice,
television, or facsimile have been known for a long time, and technology
has reached the point where some of these methods are commercially
feasible. Since cost is a critical factor in determining applicability of
these systems, there has been from the beginning an attempt to improve
the efficiency of analog-to-digital conversion by reducing the bit rate
required for a given accuracy of reproduction. One of the principal
methods involves removing inherent signal redundancy through the use
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of feedback around the quantizer, and has led to a wide variety
of schemes which may all be classed as differential systems. The origins
of differential pulse code modulation (DPCM) stem from patents by
the N. V. Phillips Company in 1951! and by C. C. Cutler in 1952.2 The
ideas also appear in several papers of about that time.?*® Since that
time, considerable research and development work has been reported,
and one has only to look at our reference list, which is certainly not
complete, to be eonvinced that the problems have been examined at
great length.

The work to be reported here is the result of a fairly extensive investi-
gation of the potential advantages and pitfalls of voice transmission by
practical DPCM systems and by alternatives which are essentially
variations on the basic theme of PCM or DPCM. The problems are
handled analytically as far as is possible. But rather than dilute the result
by using an over-simplified model for the input signal, a computer simula-
tion is used to advantage in more than one place. Optimum as well as
simple suboptimum systems are considered.

Some of the analysis reported here is applicable to systems other than
ones for voice transmission, but the one application is considered
throughout since it provided the motivation for the entire project. A
similar project was carried out independently by J. B. O’Neal® of Bell
Telephone Laboratories, but with special consideration given to televi-
sion signals. The special considerations introduced by the speech signal
include the need to investigate performance for a wide range of input
signal levels and a need to investigate idle channel performance.

There is considerable overlap with the work of Nitadori.” The work in
Sections III, IV, and V was influenced heavily by his original work, but
is based on broader assumptions. The validity of our assumptions is
checked by means of the computer simulation described in Section VI.
This simulation may also be construed as a check on the assumptions
used by Nitadori and others. Our optimum linear network is developed
from a viewpoint different from that of Nitadori.

The analytical results are also essentially parallel to those of Oliver
although his work is not direetly applicable to the differential systems
investigated here.

1I. SYSTEM DESCRIPTION

The pulse code modulation (PCM) system shown in Fig. 1 will serve
as the basis of comparison for all the others. The input and output shown
are sequences of samples, since all the systems under consideration will
require sampling. In the PCM system, one high-speed quantizer and
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Fig. 1 — Basic PCM system.

coder can be shared among many channels by time division multiplexing
the pulses representing the analog samples. There will be greater diffi-
culty multiplexing the inputs to the differential systems, thereby intro-
ducing higher costs associated with the terminal portion of the system.
It is this fact which controls the economics of the system. If, under an
equiperformance criterion, the differential system requires fewer digits
per unit time on the transmission portion of the system, but requires a
more expensive terminal, there will be a net advantage whenever the
repeatered line costs are a large enough portion of the total costs (i.e.,
long haul systems). It will be assumed throughout the paper that the
controlling source of impairment is the quantization noise introduced by
the quantizer with a finite number of steps of finite size. The overload
noise is hence included here. The measure of performance will be the
ratio of the mean squared signal to mean squared noise, or in the ease of
the idle channel, the mean squared noise alone.

The basic DPCM system which we shall consider is shown in Fig. 2.
Without going into the details of operation of the system at this point,
we note that the diagram actually represents a wide class of systems,
different members of which are obtained with different prediction net-
works. In actual fact, we shall be restricted in our investigations to
linear prediction networks, but this still leaves a rather broad class of
systems, '

The configuration of I'ig. 2 bears a resemblance to several somewhat
different systems described in the literature. We refer particularly to the
work of Kimme,” Kimme and IKuo,!® and of Spang and Schultheiss.!
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Fig. 2 — Basic DPCM system.
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These systems involve quantization noise feedback rather than predic-
tive feedback, and are thought of as shaping the spectrum of the noise
rather than removing signal redundancy. It has been shown by Kimme®
that there is an equivalence between a noise feedback system with predis-
tortion and post-distortion filters and a DPCM system with predistor-
tion and post-distortion filters. That is, given one configuration, there is
a transformation which yields transfer functions for the blocks of the
other configuration such that the performances are identical. However,
we have found the predictive feedback point of view useful in its own
right.

III. SIGNAL-TO-NOISE RATIO IMPROVEMENT

Notation needed for the algebraic analysis of DPCM appears in I'ig. 2.
A stochastic model is assumed for the speech samples, x, , with a sym-
metrical zero-mean distribution not dependent on 7. The primed quan-
tities on the receiving end differ from the unprimed quantities only
when the repeatered line introduces digital errors. For the most part, we
shall ignore digital errors, and deal only with the unprimed quantities.

First, the quantizing error is defined as

e = & — Yi. (1)
Note that in (1) and in the equations to follow, the index ¢, which denotes
the time order of the samples, decreases to indicate samples further in
the past. Unless otherwise stated, it is meant that the equations hold
for all integers <.

The other fundamental relationships indicated by the block diagram
are

2z = x; — i (2)
Ei=F i+ y: 3)
Ji = 2 b, (4)

where the coefficients & ; are characteristics of the prediction filter. Note
that in the last equation only the samples of the output of the assumed
linear filter are indicated. This filter may have a continuous time re-
sponse so long as the samples conform to (4). The absence of an hy term
in (4) implies the presence of some delay around the loop.

Substitution of (2) and (3) into (1) gives

e; = ¥y — i';' . (5)
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Comparison of (1) and (5) indicates a very important point about
DPCM. The quantizing error samples, as defined in (1) are identical to
the error samples for the overall system, in the absence of digital trans-
mission errors, When quantizing is relatively fine, the successive quantiz-
ing error samples are statistically uncorrelated to a good approximation.
Therefore, the signal reconstructed from the error samples has a power
spectral density which is flat to a good approximation, as in PCM.
According to (5), these same statements also hold for the overall system.
There is no contradiction here, because e; in £; is not simply the response
of a linear network to the error e; in y; . In fact, the feedback introduces
error terms in z; , and these combine with the quantizing error to produce
the total error in &; . The flat spectrum does not hold for coarse quantiza-
tion nor when the probability of overload is high. In these cases, neither
the PCM nor the DPCM error spectrum would be flat, in general, nor
would the two spectra be the same. The spectrum of error which results
is discussed in detail later, and is determined by a computer simulation
in Seetion VI.

In order to determine properties of the quantizing error, e;, it is
necessary to determine properties of the quantizer input, z; . Substitution
of (4) and (5) into (2) yield an equation for 2;

2o =20 — 2 hainj 4+ 2 haeej. 6)
=1 =1

It is obvious that even if the last term in (6) were neglected, the statisti-
cal properties of z; , and in particular the probability density, depend on
joint statistics of the input and past samples of the input. In the case of
voice transmission, there exists empirical data on the probability den-
sity™ and spectrum'" of speech signals, but a good model for even the
joint statistics of a pair of samples is not known to the author.

At this point, let us discuss the properties of e; which it is desired to
find. The spectral properties of e; are already known, as mentioned
earlier, provided relatively fine quantizing with low overload probability
nolds. The probability density of e; is not considered important, since
there is no evidence to indicate a strong dependence of subjective quality
on this property. But the most often needed property is the variance of
ei. A well-known™"'® expression for the error variance of an L step
quantizer is in terms of the probabilities of the various quantizer steps,
p-;, and the step sizes, A;.

A

L 2
E{Biz} | DPCM = Z D=j é . (7)
=1
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To emphasize the dependence of the step probabilities on the input
variable statistics, we use the input variable as a subseript in addition
to the step index. This expression is approximate since among other
things overload is neglected, but it is most accurate for fine quantizing
and low probability of overload. We are interested in comparing this
with the quantizing noise in a PCM system with input z; and step sizes
A; . With the same type of notation the expression is

I 3 L A,-'z
e’} | vom = Z?n‘—- (8)
= 12

Although the ratio of the two quantities given by (7) and (8) is a compli-
cated function of the probability densities of z and z, and also of the
choice of step sizes, a rough understanding of what determines this ratio
can be found in simpler terms. Suppose the step sizes A'; are chosen to
have a fixed ratio with the step sizes A; ; that ratio being the same as the
ratio of the rms values of the two inputs. Then, to the extent that the
probabilities p,; and p.; are the same, the variances of the errors will be
in the same ratio as the variances of z and z. The probabilities in question
will be the same if the probability densities of the normalized variables
x/ Vg and z/ V7 are the same.

Whereas an analytic expression for the probability density of z cannot
be derived without a model for the joint statistics of x, empirical evi-
dence will be given later to show a strong similarity between the prob-
ability density of normalized speech, and that for normalized z in one
important case. It is hence natural to use as a figure of merit the ratio of
2* to 2%, which we shall refer to as SNR IMPROVEMENT.

E{ﬂ?sg}
E{Z,'Z} ’

We now return to (6). Under the assumption of vanishingly small
statistical correlation among the error samples, and between the error and
the input signals, the variance of z; may be written

E(z’} = L{(:c — é hjx.-ﬂ-)2} + Efef} il h; . (10)

It may be noted that the last term in (10) becomes a negligible fraction
of the total for high enough signal-to-noise ratios. We note also that the
figure of merit depends on the ability to predict x; with a linear sum of
past samples. In fact, we can optimize the figure of merit by choosing the
h; to be the optimum linear prediction coefficients in the sense of mini-
mum mean square error (see Papoulis, Ref. 17). On the other hand, it

SNR IMPROVEMENT = (9)




DIFFERENTIAL PULSE CODE MODULATION SYSTEMS 1129

should be noted that the optimum coefficients provide a best match to a
particular set of signal properties. But speech signal statistics are not
constant from speaker to speaker, nor even for one speaker. Therefore,
it is best to investigate as well some suboptimal systems with parameters
not dependent on signal properties. We also note in passing, that adap-
tively controlled prediction coefficients might provide an even better
solution to the problem. We do not treat the adaptive case in this paper.

1V. SIMPLE, NONOPTIMAL, DPCM

Historically, most of the investigations of predictive feedback systems
have not included general feedback networks. One of the most common
systems has an integrator or accumulator in the feedback path. That is,

hy =1
hi=0 js=1. ' (11)

It is easy to show that in this case,

od

fi= ,=El Yii (12)
and
2, = Ty — Ti + €. (13)
Then, by (10),
Eizfy = Bzl 2(1 — ;)] + Ele; ) (14)
where
Elzxxial
T TERT
Neglecting the last term in (14), the figure of merit becomes
SNR IMPROVEMENT & ;™. (15)

Hence, the figure of merit is greater than unity whenever the normalized
adjacent sample correlation of the input signal exceeds 0.5. This result is
identical to results obtained by Oliver,® Nitadori,” and O’Neal,® although
derived under different assumptions. Empirical work to demonstrate the
validity of (15) will be shown in a later section.

This scheme has the advantage that there are no parameters dependent
on signal statistics. On the other hand, performance does depend on



1130 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1966

signal statistics. If p1 drops below 0.5, the performance is actually worse
than PCM. Another disadvantage to this system is that digital channel
errors introduce a permanent change in the dc level of &/ . In fact, the de
level of #; will, in the presence of random channel errors, execute an
unrestrieted random walk until the output saturates. Further discussion
of this problem will be found in the next section. In spite of these diffi-
culties, this is the scheme most widely investigated in the literature. In
fact, the computer simulation to be reported later will use this system.

V. OPTIMUM LINEAR FEEDBACK NETWORK

As was mentioned previously, the linear feedback coefficients &; may
be optimized in order to minimize the variance of z;, thus maximizing
the figure of merit given by (9). Note that our assumptions have been
such as to eliminate the effect of the quantizer nonlinearity from the
expressions, and that the solutions given here are optimum only for the
cases where our assumptions hold. The problem is somewhat simplified by
assuming that the sums in (10) terminate at j = N. Since the mutual
information between samples usually becomes zero when the samples are
remote from each other, the coefficients h; will approach zero for large j.
Therefore, the truncation at j = N does not limit the applicability of the
result in cases of interest. Differentiation of the right side of (10) with
respect to the variables &; , and setting the resulting expressions equal to
zero gives the following set of linear algebraic equations.

1
p = (1 + R)hl + hepr + hape 4 - + hwpya

1
hip + (1 + I?) by + hspr + -+ + hypn—s

P2 (16)

1
PN = hlPN—-l + hZPN—Z + h:iPN—:i + e + (1 + f_() hN,

where
K = E{a}}/E{ef)

is the signal-to-noise ratio, assumed constant, and p; = E{rx: ; JE{z3).
With the exception of the coefficients on the principal diagonal, this is
identical to the equations given by Papoulis'’ for determining the opti-
mum linear prediction coefficients. By dividing each equation through by
the coefficient on the principal diagonal, the equations are again nor-
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malized, with new correlation coefficients. The problem is of course the
classical Wiener-Kolmogorov prediction problem in discrete form.

For small N, the algebraic expressions for the solutions are easily
obtained. For larger N, a computer solution is more suitable. These
solutions may then be put back into the original expression for the error,
It is easy to show'’ that the minimum variance of z; may always be
written in the form:

Bio) i = Bz} [1= S (o / (14 2)) ] (7

Hence, the optimum figure of merit becomes

1
SNR IMPROVEMENT = 1 I\ (18)
1= Zh,-(p,-/(l +H))
opt. =1 K

It is clear that with fixed sampling rate the minimum error will either
remain constant or be monotonically reduced for progressively larger N,
That is, each sample further in the past can only add information on
which to base a prediction. However, since speech is not perfectly pre-
dictable from past samples, it is to be expected that the minimum vari-
ance will approach a finite, nonzero, limit as N becomes large. A numeri-
cal example showing this relationship, with data from actual speech
signals, is given later.

The stability of the closed loop which is present in the DPCM trans-
mission terminal has not heen studied in detail. However, the following
reasoning clarifies the issue to some extent. Suppose the quantizer
granularity is neglected, i.e., assume y; = z; . Then, using (2), (3), and
(4), it is easy to show that

A

T = Wy

Yo = & = Xy — E hj.lfi_j .
=1
Then the system is stable under a simple criterion requiring the sum of
the magnitudes of the 4;’s to be finite, and possibly under some weaker
criteria. This simple case depends on a precisely unity gain amplifier in
place of the quantizer. If the gain should remain linear but drift from
unity, there exists a forward path from f; to 4, . If the gain of this path is
sufficient, instability could result. If the granular charaecteristic of the
quantizer is considered, it can be seen that oscillations are possible, in
the manner of the bang-bang servo. Some of these cases are investigated
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in Section VIL. In the cases studied there, the oscillation is bounded, and
this means stability in an operational sense.

Because the N = 1 case results in considerable simplification, it will be
examined a little further. For this case,

h1=p1/(1 +%) (19)

and the figure of merit becomes

1
SNR IMPROVEMENT = 7.
1ﬁ[ /(1 +i)] (20)
o1 o K
Tor large K this is approximately
SNR IMPROVEMENT| =~ 1 . (21)
=1 1 — p?

Comparison of (21) and (15) shows a slight advantage for the opti-
mum case over the nonoptimum case, both using one past sample for
prediction. Note also that the optimum case always holds an advantage
over PCM whereas the nonoptimum case holds an advantage only when
p1 > 0.5. However, the optimum case requires a parameter adjusted to
the assumed signal statistic p;, whereas the nonoptimum case has no
such parameters.

I't should be noted that when p; > 0, the prediction network for the
optimum case with N = 1 is merely an attenuation with delay. The
overall response of the network from y; to f; is that of a “leaky” integra-
tor with delay. This system is one that has been proposed as a means of
reducing the problem created by digital channel errors. The effects of
digital transmission errors decay exponentially. Hence, the system out-
put does not execute an unrestricted random wallk.

VI. COMPUTER SIMULATION — AN EXAMPLE

Because an adequate mathematical model for speech is not available,
it was necessary to resort to simulation of the system on the computer,
using as input digitized sampled speech, recorded on computer tape.
The tape was kindly provided by J. F. Kaiser of Bell Telephone Labora-
tories. Measuring devices for probability density, variance, and auto-
correlation were also simulated on the computer. Knowledge of the
autocorrelation function alone is sufficient for evaluation of the figure of
merit in each case. But statistics of the derived random variable z are
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useful in checking the assumptions leading to our results. Autocorrela-
tion of the quantizing error is also useful in checking our earlier assertions
concerning error spectrum.

First, consider the properties of the signal contained on the input tape.
The original digitization for computer purposes is linear quantizing with
11 digits. The quantizing error thereby incurred is ignored in further
work because quantization introduced in the simulations is much more
coarse than this. Table I(a) indicates the normalized autocorrelation of
the samples. Note that sampling is at the rate of 9.6 kHz. The spec-
trum, constructed from this data using a hanning window,8 is shown
in I'ig. 3(a) on linear coordinates.

Shown for comparison purposes in Fig. 3(b) is a spectrum constructed
as follows. Speech spectra from Dunn and White' for men and women
are averaged, and the sum multiplied by the attenuation characteristic
of a local loop with a 500 telephone set.'® Although the spectra in Figs.
3(a) and (b) are not precisely the same, the general characteristics are
sufficiently close to ascertain the worth of the particular sample. It should
be noted that the sample represents only 5 seconds of speech in real time,
and cannot be expected to provide a representative average statistic
with high precision. However, there is close enough agreement with
published statistics to make our point.

Fig. 4 shows the probability density function of the speech sam-
ples normalized relative to their RMS wvalue. This was drawn using
data obtained by computer processing the input tape. The curve is
shown only for positive values of the samples and actually represents an
average of both halves of the data. Shown for purposes of comparison
are the Laplacian distribution, often used as a speech model,'® and the
Gamma distribution proposed by Richards.?® The presence of intersyl-
lable and interword quiet time and the presence of low level unvoiced

TaBLE T — AuTOCORRELATION COEFFICIENTS — py

a

N !J.ﬁ-kHz( g:unples S.O-kHz{bS)umpIes
0 1.0000 1.0000
1 0.9035 0.8644
2 0.6683 0.5570
3 0.3875 0.2274
4 0.1311 —0.0297
5 —0.0632 —0.1939
6 —0.1939 —0.2788
7 —0.2695 —0.3030
8 —0.3003 —0.2823
9 —0.2980 —0.2208

10 —0.2659 —0.1330
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Fig. 3 — Speech spectra; (a) data used in simulation; (b) published data.
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consonant, sounds account for the sharp spike at the origin. The general
shape conforms reasonably well to data presented by Davenport.™

However, the main reason for using the speech samples is that the
second-order statistics are supposed to be representative. It is necessary
to take this on faith by extrapolating the favorable comparisons of the
first-order statistics and the spectra.

The theory presented in Section I'V predicts that the figure of merit for
the simple, nonoptimal, DPCM is given by (15). Using p; from Table
I(a), we get

10 logio (SNR IMPROVEMENT o 6 xx;) = 7.14 dB. (22)

Under the assumptions developed in Section III, this is the amount by
which the overall signal-to-noise ratio will be improved in comparison
to PCM, with the same quantizer, comparably loaded.

In Fig. 5(a) are shown curves, determined by the simulation, of signal-
to-noise ratio in dB versus input level for PCM and DPCM. The quan-
tizers are 4 digit in each case, and have nonuniform steps conforming to
the p = 100 logarithmic nonlinearity of Smith.’® In both cases the 0 dB
reference input level was determined by trial and error such that the
total probability of the two largest quantizer output levels (plus and

SMITH NONLINEARITY ;

1= 100
9.6kHZ SAMPLING

4 DIGIT DPCM

S/N RATIO IN DECIBELS
B
[\I\J

10
4 DIGIT PCM
5
(8)

0 I I |

1
L 15
& (b) 7.14 dB, THEORETICAL
39 FIGURE OF MERIT
w10 \
3o .
gL ——= —_— Y
]
2 51
e
~
w g , | |

10 o -10 -20 -30 ~40

INPUT RELATIVE TO FULL LOAD IN DECIBELS

Tig. 5 — (a) Signal-to-noise ratio by simulation. (b) Actual improvement com-
pared to theoretical.
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minus) is 0.005. This arbitrary rule was suggested to me by Mr. J. T
Kaiser of Bell Laboratories. The noise includes overload noise, and hence
does not conform to the approximate equation (7). Fig. 5(b) shows the
difference in dB between the two curves of Fig. 5(a) and also a straight
line representing the 7.14 dB difference predicted by the theory. The
results indicate that whereas the theory does not predict the exact im-
provement it does so within about a dB over an input range of about 30
dB. Some improvement in the prediction made by the theory would be
expected with quantizers with larger numbers of steps, since the quan-
tizing error term in (14) would then be smaller. This would reduce the
discrepancy created by dropping that term in arriving at the figure of
merit in (15). But the prediction will never be good in the overload
region, because under that condition there is a high probability of large
errors, regardless of quantizer step sizes, and the error samples become
correlated with each other and with the signal. In addition, some of the
discrepancy must be due to the fact that the normalized probability
density of z is not the same as that of z. That assumption was made in
determining that the figure of merit represented the improvement in
signal-to-noise ratio. The assumption that the normalized probability
density of z has a particular shape will be poorest under lightly loaded
conditions, because the quantizing error becomes a large fraction of the
signal z. Even when quantizing error is a negligible component of z, the
result depends on the second-order statistics of the input variable z,
and these statistics have been guessed at but are not known. The simu-
lation was also carried out using another companding characteristic,
with similar results, but those results are not shown here.

Observe in Figs. 6(a), (b), (c), and (d) the normalized probability
density of z under various conditions of loading. These curves were ob-
tained from the computer simulation. Note that under progressively
lighter loads the probability density changes to bimodal. This can be
explained in terms of the oscillation present in DPCM systems under
light load when the quantizer is of the midriser type. (See the next sec-
tion.) The fact that the shape is well maintained in the overload region
has not been explained on intuitive or theoretical grounds, but note that
in spite of the shape assumption being met, the variances of x and z do
not maintain the ratio predicted in (15) because of the error term in z.

Further evidence related to our assumptions is shown in Figs. 7(a),
(b), (c), and (d). There the normalized quantizing error power spectral
densities for progressively decreased load on the quantizer are shown.
In the very lightly loaded case, approximating the idle channel, the
oscillation at the half sampling frequency is clearly shown. This was
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mentioned earlier, and is described in full in the next section. The error
spectrum remains approximately flat under changing load until the
overload phenomena begin. In overload a sharp concentration of energy
at low frequencies occurs. No analytical explanation of this has been
developed. However, this is not due to a signal correlated component of
error because that component was removed computationally in arriving
at the spectra shown. It may be due to a statistical dependence more
complex than linear correlation, however. The fine structure present on
the curves should be ignored, since it is due to the truncation in time of
the autocorrelation data used.

Finally, we note one additional point. The simulation was done with a
sampling rate of 9.6 kHz. The sampling rate in Bell System voice-fre-
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Fig. 7— Normalized error spectra versus frequency relative to sampling fre-
quency; (a) overload; (b) threshold of overload; (c¢) average load; (d) light
load.

quency PCM equipment, such as the T1 Carrier System, is approxi-
mately 8 kHz.'9-2! If the value of p; for 8-kHz sampling can be deter-
mined, a prediction of the advantage of DPCM systems with this sam-
pling rate can be determined. If the autocorrelation function of speech is
reconstructed by means of the cardinal series, the value at 0.125 usec is
determined as

p1 | s k. = 0.8644.

All the correlation coefficients determined in this way appear in Table
I(b). The figure of merit for nonoptimal DPCM is then

10 log1o (SNR IMPROVEMENT | § s1s) = 5.7 dB. (23)
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This means that for the 8-kHz sampling rate, approximately one digit per
sample can be saved by using DPCM.

Not considered in the simulations described here are the variations in
speech statistics which are known to occur. The usual way of handling
the volume variation is to use companding to shape the curve shown in
Tig. 5(a). However, the characteristic number p; will also undoubtedly
vary among talkers, perhaps correlated in some way with volume. No
statistics on this are known to the author.

With the correlation coefficients given in Table I(b), it is possible to
compute the optimum linear feedback coefficients, from (16). Since
slightly greater generality is obtained, this will be done for K — oo,
With a signal-to-noise ratio of 30 dB or more, one would expect practically
negligible difference. Of great interest is the figure of merit calculated by
(18) as a function of N. Fig. 8 shows this relationship. Note that for
N = 1, the figure of merit is practically 6 dB, just over that attained by
the nonoptimal case. For large N the improvement levels off at just over
10 dB, less than 2 digits better than PCM. Better than 9 of the 10 dB are
available using only N = 2. No simulations have been run for this type
of system; hence no check has been made of the assumptions as in the
nonoptimal case.

FIGURE OF MERIT IN DECIBELS

0 | | l L 1 | | |
0 1 2 3 4 5 6 7 8 9 o 1
NUMBER OF DELAY LINE TAPS -N

Fig. 8 — Figure of merit vs predictor complexity for 8-kHz sampling.
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VII. IDLE CHANNEL PERFORMANCE

Of importance in the design of PCM systems is the so called idle
channel performance. Shennum and Gray? calculated the output noise
of a PCM system with low level thermal noise input, as a function of step
size relative to rms noise, and as a function of the bias of the quantizer
thresholds nearest the origin. This noise ean be larger or smaller than the
input thermal noise causing it. A phenomenon with similar causes but
different effects occurs in DPCM systems, and these effects are analyzed
here.

In this analysis we restrict ourselves to the nonoptimal DPCM de-
scribed earlier, and represented, for purposes of analysis, in Fig. 9. The
Gaussian independent thermal noise samples z; are the input, and the
samples f; are the output. It is convenient, for analytical purposes, to
consider uniform quantizer steps with unit step width and height. It is,
of course, common for speech quantizers to be nonuniform, but the steps
are generally almost uniform near the origin, the region with which we
are concerned. The values computed here for idle channel noise should be
compared with those for PCM when the step sizes are the same. Under
this condition the systems are approximately equivalent with respect to
quantizing noise performance.

The statie characteristic of the uniform quantizer we have assumed is
shown in Fig. 10, indicating the decision levels b;, the representation
levels a;, and the biases A and B. The quantizer is assumed to have an
infinite number of levels. The biases A and B can represent either drift in
the quantizer or a deliberate design, or both. In the overall system, the
decoder at the system output, may exhibit a third bias different from 4,
but that problem is separate from the ones being considered here. There
is another factor, similar to these biases, which must be considered; it is
the initial condition on the accumulator output at the outset of the idle
period. With the exception of the de level created in f;, and the algebraic
sign, the initial condition is identical in its effect to the bias B. Hence,
it is no restriction to arbitrarily choose B, if we wish to ignore the de

Yi
QUANTIZER

z

Fig. 9— Simplified DPCM model.
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Fig. 10 — Quantizer definitions.

level, as long as the full range of initial conditions is considered. Ifor con-
venience, choose A = B. Then the only two remaining independent
parameters are the bias A and the initial value, /.

Under the above et of assumptions we note that the following relations

hold.

q = i b (24)

2
b;=a;+3;  ba=a;— % (25)
y=a; if a; —3 =2z <a;+ 3. (26)

For further convenience, let us assume a particular set of a;’s for refer-
ence. Let

ai =j+% j=-—=2-101,--. (27)
Then
a; = a;j + A. (28)

It is sufficient to study cases covering the range —3 < A < }, and in
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fact symmetry of the system precludes the necessity of studying half this
range.

Of interest is the conditional one step transition probability of the
output value f; . We note this with two subsecripts, the second denoting
the initial value, the first the subsequent value. The superscript indi-
cates the number of time periods that elapse in the transition.

Prya;r ) =probla; — 3 2 — I < a; + 3. (29)
In terms of our previous notations, this may also be written
Priaissr = probfj £ @ — I — A < j+ 1. (30)

Equation (30) is the fundamental equation deseribing the generation of
the samples f; . However, it still does not give the mean squared value of
fi; nor any other statistical characteristics in which we are interested.
We may note that the sequence of samples f; is first order Markov, but
this doesn’t bring us closer to a solution for our problem.

Let us note that following the initial value 7, in one step, there is an
enumerable set of possible values of f;, of the form {7 + a;}. (Only a
small finite subset of this enumerable set have significant probability.)
Following each of these possibilities in one more step is another enumer-
able set of possible outputs; but in general the set of possible outputs is
different following each member of the set {I + a;}. This makes the state
diagram for the sequence of values of f; extremely complicated in general.
It will be necessary to resort to computer simulation to discover what
happens in these eases. But under some special assumptions it will be
possible to carry the analysis further, and we take those cases first.

Let us first consider the special case, A = —3, called the midtread
case. Then by (28), a; = 7, where j is any integer. Under these conditions,
the set of possible outputs following 7 in one step is {{ + j}, including
itself. Following any member of this set in one more step is any member
of the same set of possible outputs, since the sum of integers is an integer.
See Iig. 11 (a) for a flow graph to further clarify this case. Only three
output states are shown although an enumerable number is required in
general. Any member of the output set may be identified by the integer
appearing in the expression for that member. The conditional one step
transition probability from any member of the set to any other is written

pa =problj—k—3 <2 —-I—k<j—k+3. (31)

Equation (31) denotes a matrix of values of the conditional transition
probabilities, which will be called the one step transition matrix, P,
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P11 Pew Pon c
P(U — Ce P Poo Po - . (32)
< P P Pu

L . . : -

In general, P’ has enumerable dimensionality, but the probabilities
become negligible in cases of interest for large enough magnitude of the
indices, hence truneation of the range of the indices creates negligible
error.

Similarly, let us consider the special case, A = 0, called the midriser
case. Here, a; = j + %. The first set of possible outputs following I is
{I + j + %, a set which does not include 7. The next set of possible
outputs, following any member of the above set is {7 4 k} where k is any
integer. The third set of possible outputs, following any member of
{I + Kk} is the same as the previous set {I 4 7 4 3}. Hence, there are two
subsets of the total output set, and the output alternates between these
subsets. Observe that the flowgraph for this case, Iig. 11 (b), has arrows
only between the two subsets, none within the subsets. (For convenience
the number of members of each subset has been truncated at three.)
We may solve the problem of indexing the members of these sets by
defining the index in the form

l=2(G+3)=2+1
for the first subset, and
=2k

for the second subset. Now with this notation we may write the one
step conditional transition probabilities as before.

o j—k—1<__ _-]f j—k+1
Pit —pmb{——z—:.ﬂ:l I 2<—2— ,
= 0, j — k even.

Beecause of the alternation between members of two sets, about twice
as many possible outputs have to be used in this case as in the first case
to make the truncation error negligible.

Cases with larger numbers of output subsets may be found under the
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following conditions. Suppose A is any rational number of the form
+m/n where | m/n | = %. Then the number of output subsets is M if M
is the smallest integer satisfying

1 m .
M (§ =+ r_a) = Integer.

The cases for M = 3, 4, 5, etc., could be worked out algebraically as we
have for M = 1, 2, but those cases become unwieldy by the method being
used. For clarity, the case A = —§ (M = 3) is shown in Fig. 11(e),
truncated at 3 members of each of the three subsets.

Let us return to the midtread and midriser cases. It is a simple matter
to write the conditional probability equations governing the output
sequence, and then to arrive at expressions for the output power and
autocorrelation function. We write

P(U) — P(l) P(V—U. (34)

Equation (34) is a form of the Smoluchowski equation. By iteration, one
can easily solve for P™.

P = [PO). (35)

Let the a priori probability of the 7th member of the output set be

designated C;, and let the square matrix €' be formed with major diag-

onal elements ('; and other elements zero. The probabilities C'; may be

determined from P by simultaneous solution of the following equations:
;= 2. Cpl  foralls

all k

.l= ZCk.

all k

(36)

Equations (36) are an overdetermined system, but in general there is a
unique solution, obtainable by not using one of the first group of equa-
tions. Now the joint probability of the output at a given step and the
output » steps later may be written as the matrix

Q” = PVC (37)

and the autocorrelation as a function of » may be written as the quadratic
form

R®) = fQf, (38)

where f is a row vector for which the elements are the members of the
set of output values, indexed as indicated when developing these sets.
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f" is the corresponding column vector. For purposes of defining R(0),
P is defined as the unit matrix. All the terms on the right side of (38)
may be evaluated by means of the computer, once the transition prob-
ability matrix is evaluated. The transition probabilities given by (31)
or (33) may be evaluated in terms of the probability function assumed
for the samples x; . It is here that the ratio of variance of x; to the step
size (unity) enters as a parameter. Since the x; are assumed to be samples
of thermal noise, the probability density is assumed Gaussian with zero
mean. The most important computed result is R (0), the mean squared
output noise relative to the squared step size. The dependence of R (0)
on the parameters A, I, and z.2 is shown in Fig. 12. The values shown in
Fig. 12 vary between the same maximum and minimum values ealculated
for PCM by Shennum and Gray.” Note that the noise exhibits much
more fluctuation as a function of I in the midtread case (A = —1),
although its minimum value is smaller. However, the initial condition 7
is a parameter which cannot be controlled in the design; hence, midriser
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Fig. 12 — Idle channel noise in DPCM system.
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operation is a considerably better choice. The other values of R(»)
contribute little by way of additional information except to show peri-
odicities and de values. In the cases studied to this point, these effects
were small. Of these two, the midriser case is the only one exhibiting a
periodicity. The amplitude of the periodicity depends on the initial value
I. The frequency is the half sampling frequency and is easily filtered out
in practical systems. This is the same periodicity which showed up in
the simulation deseribed in Section VI, and which is indicated in the
noise spectrum shown in Fig. 7 (a). Aside from the small de and periodic
components, the output noise samples were uncorrelated.

Other cases, that is those with other values of A, were solved by simula-
tion rather than algebraically. This is because the possible output values
become more closely spaced and much higher dimensionality of the
matrices is required for aceuracy. The simulation is actually quite simple,
since all the blocks shown in Fig. 9 are already shown as mathematical
operations. The input samples are taken from a so-called Gaussian ran-
dom number generator program, which produces essentially uncorrelated
samples, and having a distribution which is quite accurately Gaussian
but which truncates at six times the rms value. The output noise level
showed no marked difference from the two cases already presented.
Hence, the detailed results will not be shown except for one very interest-
ing case. As indicated earlier, there are particular values of A for which
the possible outputs are divided into 3, 4, 5, - - - ete., subsets. In these
cases, the output sequences through these subsets in a definite order,
although the particular member is chosen randomly. Clearly there is in
general more than one rational fraction A for a given period A/, and the
pattern followed by the sequence of output subsets may be different for
different rational fractions that go with a given value of M. As a con-
sequence, there is a periodicity at 3, &, &, --- ete., of the sampling
frequency respectively. This periodicity falls in the band below the half
sampling frequency, and cannot be filtered out as in the midriser case.
The sample sequences of the output are not periodic in general because of
the randomness of the choice of a particular member of each subset.
However, if in each subset there is one highly probable member and
others of very small probability, the sample sequences are almost peri-
odic. In the limit of zero input noise, the output sequence is a periodic
function. In all eases, the mean and variance are periodic functions of
time. As an example, a flowgraph for the case M = 3 is shown in Fig.
11(c). At cut A, all the arrows are from subset 1 to subset 2. No other
arrows leave subset 1. Similarly, eut B intersects all the arrows from
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subset 2 to subset 3, and cut (' intersects all those from subset 3 to subset
1.

For the members of a given output subset, a priori probabilities may
be computed by the methods indicated in (36), and these probabilities
can be used to compute the mean and variance for the places in the
sequence where that subset applies. The mean and variance for a case
where the periodicity is s%th of the sampling frequency is shown in Fig.
13. In the case of the variance, both the theoretical curve computed from
the probabilities and the curve obtained from the simulation are pre-
sented. Good agreement is shown.

If the value of A is irrational, the sequence of output subsets does not
close on itself as in the eases indicated here. Hence, the period is not an
integral multiple of the sampling interval. However, a similar phenome-
non takes place with respect to periodicity of the mean and variance of a
continuous signal reconstructed from the output sample sequence.

With the simulation method it is possible to study cases with non-
uniform quantizing as well as the uniform cases studied to this point.
One case with a small amount of nonlinearity was tried but no signifi-
cantly different phenomena appeared in the results.

It is elear that the model used here for idle channel noise is not ade-
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quate to deseribe what goes on in other systems such as DPCM with
optimal feedback.

By way of summary, let us note that all evidence presented here points
to the midriser case (A = 0) as the best one from the system design view-
point. This is because of the inband periodic component present in the
output of all of the other cases except the midtread case. The annoyance
created by these inband periodicities will depend on their amplitude and
frequency. This could be further studied by the simulation methods, and
evaluated with subjective tests. But the midriser design should prove
satisfactory, and additional investigation has not been undertaken. The
midtread case is the only one showing no periodicity, but it is also the
only one showing a high degree of dependence of the output variance on
the initial condition I. Since the value of I cannot be controlled by the
designer, the midtread case is also unsatisfactory. We note that it is only
the quantizer output bias which must be controlled closely in the practi-
cal system, since the input bias change is equivalent to a change of
initial condition, and we have found no great dependence on this param-
eter except in the midtread case.

It may be that the midriser design would no longer appear best when
one considers crosstalk into an idle channel with a shared coder. Since
this has not been investigated, no conclusions are presented on this
point.

VIII. PRE-EMPHASIS

Equation (13) shows that in simple DPCM, it is the difference between
adjacent input samples which forms the principal component of quantizer
input. This leads one to the idea that a similar performance advantage is
to be gained by using a pre-emphasis network with PCM. The network
should approximate a differentiator. The principal qualitative difference
in performance of this system is that an integrator is needed at the output
to restore the original signal. This destroys the independence of the error
samples and creates a subjective change in the output noise. It is not
known whether frequency weighting of the noise will adequately account
for the subjective changes. This problem was examined briefly, but is not
reported in detail here. The pre-emphasis filter can be optimized, subject
to a frequency weighted error ecriterion. It was found that, using this
objective performance measure, an advantage nearly the same as that of
simple DPCM can be attained.

Pre-emphasis (and de-emphasis) ean also be used with DPCM systems.
However, the differential aspect of the system makes use of most of the
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advantage to be gained, leaving little additional for the filtering. In other
words, the effects are not disjoint.

IX. SUMMARY

The results presented have fallen into approximately three categories.
First, an analysis of signal to quantizing noise ratio has been presented,
indicating the advantages to be gained by the use of various forms of
DPCM, including simple DPCM and optimal DPCM with varying
amounts of memory. The analytical results are discussed in the light of
results obtained by other authors and the assumptions used. Second, a
computer simulation was used to check the assumptions implicit in the
present work and that of others. The probability density of the quantizer
input and the quantizing error spectrum were studied by the simulation
technique. The computer was also used to evaluate the performance to
be expected when DPCM is used for speech transmission. It is shown that
approximately 6 dB or one digit per sample advantage over PCM is
attained by the simplest DPCM system. With optimal linear prediction,
10 dB or less than two digits per sample advantage over PCM is at-
tained. Finally, the performance of the DPCM idle channel is investi-
gated. It is shown that periodicities in the output of the idle channel
sometimes are present. Amplitude and frequency depend on the bias of
the quantizer output. It is pointed out that the most satisfactory design
is the so-called midriser case, where the periodicity is at the half sampling
frequency and can be filtered out in a practical system. The idle channel
noise of DPCM varies in a different way from that of PCM. The level of
the idle channel noise is approximately the same in both PCM and
DPCM, when the quantizing noise performance is the same.
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