On the Use and Performance of Error-
Voiding and Error-Marking Codes

By E. O. ELLIOTT
(Manuscript received May 25, 1966)

In contrast to payroll or inventory data, which must reach the recipient
in its entirety, there is another class of data that includes radar-tracking
data, remote-sensory data or control data, etc., for which the requirement of
completeness 18 not so stringent. Error control for this class of data may be
accomplished by forward-acting error-correcting codes which void or mark
any detected errors that they do not correct. In order to evaluate these error-
voiding methods, the error rates for such codes are estimated in this paper
using the error statistics of the Alexander-Gryb-Nast study.

A class of 18 (about 50 percent redundant) cyclic codes capable of
correcting from one to five errors and having block lengths from 15 to 47
bits is examined. Only bounded-distance decoding is evalualted, but each
code 15 assigned each possible decoding radius up to the maximum per-
missible radius determined by the capability of the code. Since interleaving
generally reduces error rates, the error rates for this elass of codes are esti-
mated for interleaving constants from 50 to 300 in steps of 50.

1t is concluded that:

(%) If voids are permissible (at a rate of about 10~%) then low undetecled-
error rates may be achieved by a code capable of correcting many errors but
used to correct only two or three errors. Such a code might be about 50 per-
cent redundant and have a block length between 25 and 50 bits.

(%) It is impractical to obtain low void rates. If voids are not tolerable,
then retransmission is required to obtain low error rates.

(447) Interleaving is more effective with codes correcting three (or more)
errors than with those correcting only single or double errors.

I. INTRODUCTION

In contrast to payroll or inventory data, which must reach the recipient
in its entirety, there is another class of data that includes radar-tracking
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data, remote-sensory data or control data, ete., for which the require-
ment of completeness is not so stringent. The distinction between these
two classes of data is fundamental in the classification of customer re-
quirements in data transmission and the selection of appropriate error-
control methods.

If the complete data message is required at the receiving station
then error control must either be carried out by error detection and
retransmission or by forward-acting error correction. Of these two
methods the former is the more economical to achieve low error rates.
However, if completeness of the transmitted message is not essential
and receipt of say 99.9 percent would be satisfactory, then very in-
expensive error-voiding techniques may be employed to achieve the
desired low error rates. With these techniques an error-detecting code
is used to detect and then void (or mark) all detectable errors. If lower
void rates are desired some error correction may be introduced and the
remaining error-detection capability of the code used to void or mark
errors. In order to evaluate these error-voiding methods, the error rates
for such codes are estimated in this paper using the error statistics of
the Alexander-Gryb-Nast study.!

Data for which completeness is an important requirement would
include payrolls, inventories, orders, sales and banking records, etc.
Since aceuracy is a very important factor for this type of data, an
automatic retransmission error-control system would probably be re-
quired. However, one can imagine cases in which manual retransmission
would suffice. Errors could be marked or voided by the error-detecting
code and when errors are so indicated in a message the recipient could
initiate steps to obtain the missing data. This might be tolerable in
some situations if only a small fraction of the messages required this
special handling.

At the other extreme are messages which need not be received in their
entirety to be effective. Among these we might list radar tracking data,
remote sensory data, and remote control data. Again detected errors
would be marked or voided. In some cases, the discarded data might be
restored by some extrapolation or interpolation with neighboring blocks
of the presumed error-free data. In other cases, it might suffice to operate
with just the nonvoided blocks of data. For these procedures to work it
is of course necessary that the void rate be low enough. The void rate
itself however is not the sole factor determining the feasibility of the
system. The time distribution of voids may also be very important.
For example, with radar-tracking data a void rate of 10-* (words/word)
might be tolerable in itself but if it were realized on a channel on which
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the voids tended to occur in runs or bunches it might not be tolerable
since the tracking system cannot operate if too long a stretch of data
is missing. This paper is concerned only with void rates and does not
treat the time distribution of voids.

The splitting of a code’s funetion to achieve both error correction
and detection is accomplished by noting the distance of the received
word from the nearest code word. If this distance is less than or equal
to a given number which is called the employed correction radius then
the received word is decoded as that nearest code word, otherwise it is
not decoded and a detected error is announced. This is the method of
bounded-distance decoding. Although there are other methods of com-
bining error correction and detection, this one is considered here because
several practical decoding algorithms conform to it.

The codes are also evaluated over a range of degrees of interleaving,
because, if a given code is interleaved on a burst channel its performance
improves. Interleaving may be thought of as though it were accom-
plished by reading the encoded data into a rectangular array row by
row and then sending it on line column by column. The length of a row
is the block length of the code. The number of rows is the interleaving
constant ¢; two adjacent bits of an originally encoded block would be
sent on line with ¢ — 1 other bits between them.

This memorandum examines the effect that block length, redundaney,
correction radius, and interleaving have on undetected error rates and
void rates over the switched telephone network. Specifically, a class of
18 cyelic codes with block lengths ranging from 15 to 47 bits is examined.
Among these are codes capable of correcting from one to five errors.
Although a variety of redundancies is represented, codes with about 50
percent redundancy predominate. Using data from the Alexander-Gryb-
Nast study, the error rates for this class of codes are estimated for each
permissible correction radius with no interleaving and with interleaving
with constants from 50 to 300 in steps of 50. A number of practical
means for implementing many of these error-control systems are avail-
able. For this reason, the present investigation aims at giving a useful
qualitative insight into the role of bounded-distance decoding for error
control on the switched telephone network.

For a more complete understanding of error control, it would be
necessary to consider alternative methods of decoding such as burst
decoding, threshold decoding, ete. Also error statistics for other channels
and modes of communication should be considered. This awaits further
development of analytical techniques and the availability of additional
error data.
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II. ESTIMATING ERROR RATES FOR BOUNDED-DISTANCE DECODING

A group code is commonly specified by the pair (n,k) where n is the
block length of the code and k is the number of information bits in a
code word. When bounded-distance decoding is employed, the correction
radius a is added to this pair and the code is specified by the triplet
(n,k,a). Of course, a is less than or equal to the maximum error-correcting
capability e of the code. Thus, if z is the transmitted word and y is the
received word then if y is at distance less than or equal to ¢ from some
code word z, v is decoded as z. If z # x then an undetected error results,
and if y is not within distance « from any code word a detected error re-
sults. To estimate the probabilities Pz and Pp of these two events (unde-
tected error and detected error) the method of Ref. 2 is employed as it
was in Ref. 3 to study permutation decoding which is a special case of
bounded distance decoding.

Because of the perfect distance symmetries between the words of a
group code, the probabilities Py and P, do not depend on which code
word is transmitted. Therefore, to calculate Pr and Pp and simplify
matters we assume the all zero word # is transmitted. Let C,(m) be
the total number of words of weight m which are at a distance less than
or equal to a from some code word. As in Ref. 2 let P(m,n) be the total
probability that m errors occur in a transmitted block of n bits so that

P(m,n)/(;) is an approximation to the probability that a particular

pattern of m errors occur. Then, assuming @ is transmitted we see that,
as an approximation,
P(m,n)
C.(m
= 3, Clm) A ()
m

Similarly, if D.(m) is the total number of words of weight m at a distance
greater than a from any code word then
P(mmn)

= 3 Dum) ( ) (2)
m

Clearly Di(m) = (:r,) — (,(m) and now the problem is to obtain Cy(m).

In Ref. 3 a formula is given for C(m,j), the number of words of weight
m which are at a distance j (j < ¢) from some code word, and since

Ca(m) = Z?=U C(mlj)
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the desired numbers are thus obtainable. Unfortunately, the formula in
Ref. 3 involves a summation with terms of alternating sign which re-
quires triple precision programming to obtain satisfactory accuracy
on the computer. As a consequence of this requirement, the following
alternate and more direct formula for C(m,j) was derived. With it,
double precision FORTRAN programming suffices.

j . Cy
Clmj) = Zwim + 2i = j) (’” e ”) (” oy J”) (3)
where w(r) represents the number of code words of weight r. It is ob-
tained from simple combinatorial considerations as follows.

Suppose x is a code word of weight » and y is a word of weight m and
let 7 be the number of bit positions in which z is 1 and y is 0, and [ be
the number of bit positions in which z is 0 and y is 1. Let j = ¢ + I
so j is the distance between z and y. Thenm = (r —7) +l=r+ 35 — 2¢
and © = (r 4+ j — m)/2. The total number of possible y’s of weight m

is then given by
r\[(n—r
VAVE=ETA

Considering that each code word of weight m 4 2¢ — j (= r) there-

fore has
m+ 2t —j\fn—m—2¢t47
7 j—1

distinet words of weight m at distance j (j < e) from it and clearly
m—j=<r=mjie,0=1=j7 (3) then follows.

III. ERROR RATES FOR A SAMPLE COLLECTION OF CODES

Cyeclic codes or shortened cyclic codes have received a great deal of
attention in the field of error control because of the ease in their imple-
mentation. For this reason a collection of 18 cyclic codes for which the
spectral functions w(r) were readily available was chosen for this study.
Most of these codes and spectra are given in Ref. 3. Those which were
not in Ref. 3 were included so that a wider range of redundancies would
be represented. The codes are listed in Table I which gives their block
length n, dimension %, minimum distance d, and maximum error-
correcting capability e.

Using (1) and (2) and the P(m,n) values from the Alexander-Gryb-
Nast study, the probabilities Pz and P, were estimated for each of these
codes. Samples of the results are shown in Figs. 1, 2, and 3.
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TarLe I—List oF Cycric CopEs

n k d e
15 11 3 1
156 10 4 1
15 7 5 2
15 6 6 2
15 5 7 3
15 4 8 3
15 2 10 4
17 9 5 2
17 8 6 2
21 12 5 2
21 11 6 2
23 12 7 3
23 11 8 3
31 21 5 2
31 20 6 2
31 16 7 3
31 15 8 3
47 24 11 5

Fig. 1 shows the effect which the correction radius has on error rates
for two of the codes. The undetected error rate is noted to decrease
about one order of magnitude for each unit decrease in correction radius.
Also, the detected error rate, which is about 10~%, is rather insensitive
to the correction radius.

In Tig. 2 the undetected errvor rate is plotted as a function of the
efficiency of a 15-bit code. Each order of magnitude improvement in the
error rate requires an increase of three redundant bits (which is 20 per-
cent of the block length). An examination of the error rates for the codes
with block length 31 (not shown here) reveals that the same change of
three redundant bits is required to achieve an order of magnitude im-
provement with this longer block length code.

Error rates of double-error-correcting codes of about 50 percent
redundancy are presented in Fig. 3 as a function of block length. Again
the detected error rate is not a very sensitive parameter while the un-
detected error rate ranges over many orders of magnitude. Quite ac-
ceptable error rates are attainable with block lengths not much greater
than 25 bits.

IV. THE EFFECT OF INTERLEAVING ON ERROR RATES

Through interleaving (with constant t), the bits of a code word are
separated when transmitted on line so each pair of adjacent bits have
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Fig. 1 — Error rates vs correction radius (no interleaving).

t — 1 bits from other code words between them. The effect of this is to
decrease the error vulnerability dependence between the bits of a code
word so that the interleaved channel is less of a burst channel and more
like a memoryless channel. To examine the effect interleaving has on
error control with random error-correcting codes, the P,(m,n) probabili-
ties were approximated for interleaving constants ¢t = 50, 100, 150, 200,
250, and 300, and the error rates for the 18 codes were estimated as in
the previous section. To approximate the P,(m,n) values first the error
autocorrelation funetion a,(k) of the interleaved channels is obtained
from a smoothed version of the autocorrelation function a(s) of the
Alexander-Gryb-Nast data through the relation
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a(s) = alt-s).

Then the interleaved channels are assumed to have the property that
the lengths of the error-free gaps before and after an error are inde-
pendently distributed — i.e., the errors form a renewal process. (This
seems to be a reasonable assumption since interleaving breaks down
the memory in the error process. Its accuracy will be discussed below.)
From the autocorrelation functions a,(s) the gap-length distributions
P,(s) may then be calculated by the relations between them which are
given in Ref. 4, and finally the P,(m,n) values are obtained from the
P,(s) by the recursive methods of Ref. 4.

The undetected error rates of some codes used for forward acting
error correction only are shown in Fig. 4 as a function of the interleaving
constant {. There it is seen that interleaving is most effective on codes
correcting four and five errors and is of only modest value on the codes
correcting two or three errors. In fact, for the (31, 21) code it would
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appear that the error rate increases in the range { = 1 — 50. This may
result from the fact that the mathematical methods for obtaining
P(m,n) were different for t = 1 and ¢ = 50 since the renewal assumption
was not made in the case of no interleaving (! = 1). The renewal assump-
tion would appear to be more appropriate the larger the interleaving
constant ¢ becomes so our estimates of error rates would be more accurate
for the larger values of &.

The conclusion to be drawn from Fig. 4 is that it takes a powerful
code interleaved extensively to provide a low error rate. The price, in
redundancy, interleaving or decoding complexity, paid to do this is
high and it would take special circumstances to justify it.

In Fig. 5, block-error rates are plotted against block length to further
show the effect of interleaving. The relationship between error rates and
block length is linear and the slope is determined by the amount of
interleaving. The equivalent memoryless channel is also shown for
comparison. It appears that a very considerable amount of interleaving
would be required to approach the memoryless channel.

Although it is not shown here, the detected error rates for codes
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correcting several errors decrease a few orders of magnitude as the
interleaving increases over the range considered here.

We have considered only random error-correcting codes. In Ref. 5, a
burst-correcting code was studied at two levels of interleaving as part
of an error-control experiment.

V. CONCLUSIONS

Bounded-distance decoding has been examined as a means of utilizing
codes to do both error-correction and detection on the switched telephone
network with existing data sets. Data containing detected errors would
be either voided or marked.

If voids in the received data are permissible (at a rate of about 10~%)
then low undetected-error rates may be achieved by a code capable of
correcting many errors but used to correct only two or three errors.
Such a code might be about 50 percent redundant and have a block
length between 25 and 50 bits.

The void rate is rather insensitive to correction radius, block length,
and to a lesser extent, interleaving. It decreases with increasing correc-
tion radius, increases with increasing block length and decreases with
increasing interleaving (for multi-error-correcting codes).

Interleaving is more effective with codes correcting three (or more)
errors than those correcting only single or double errors.

If voids are not tolerable then retransmission is indicated as the
means to obtain low error rates. A powerful interleaved and highly
redundant error-correcting code is required to obtain low error rates.
It would probably be called for in only very special cases.

Further work should be undertaken to investigate other methods of
decoding codes, such as threshold or burst decoding, in order to gain
a more complete insight in the realm of practical error control systems.
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