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The fluctuating envelope of the pulse-to-pulse radar echoes from a range
cell consisting of a stationary target along with many independent, randomly
moving scatterers 1s assumed to behave like a stationary Rayleigh process.
In radar terminology this fluctuating or fading envelope of the pulse-to-
pulse radar echoes s called signal plus clutter. The envelope of the pulse-to-
pulse radar echoes may fade below some critical threshold level for a dura-
tion such that the performance of the radar becomes unsatisfactory. Theoret-
ical approximations for the probability densities of both the duration of fades
and the interval between fades of the underlying Rayleigh process are pre-
sented in graphs for various threshold levels and various signal-to-clutter
power rattos. The corresponding exact resulls are at present unknown. The
resulls of this paper apply to all other fields of science and technology for
which a stationary Rayleigh process characterizes a fading phenomenon.

I. INTRODUCTION

Consider a pulsed radar system ‘“viewing” a range cell consisting of a
stationary target along with many independent, randomly moving
scatterers as shown in Iig. 1. Each received echo consists of the vector
sum of all the elementary echoes originating from within the range cell.
The contributions from the randomly moving scatterers arrive at the
radar receiver with random phases. As a result, each received echo will
consist of a steady signal, from the stationary target, plus a Gaussian
perturbation. Aceordingly, samples of the envelope of the pulse-to-pulse
radar echoes can be considered as samples of an underlying Rayleigh
process. Thus, the effect of the randomly moving scatterers is to cause
the envelope of the pulse-to-pulse radar echoes to fluctuate or fade in an
irregular manner. The envelope of the pulse-to-pulse radar echoes may
fade below some critical threshold level for a duration such that the
performance of the radar becomes unsatistactory.
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Fig. 1 — A model for studying the duration of fades associated with signal
plus clutter. R(t,a) represents the envelope of the pulse-to-pulse radar echoes
from the range cell. At the level R, ¢ and ¢ 4+ 0 represent the duration of a fade
and the interval between fades, respectively.

In radar terminology the fluctuating or fading envelope of these pulse-
to-pulse radar echoes is called signal plus clutter. Classical discussions
of signal plus clutter were given by H. Goldstein and A. J. F. Siegert
and can be found in Refs. 1 and 2. A well-known example of signal plus
clutter is the envelope of the pulse-to-pulse radar echoes from a target
surrounded by a great deal of “chaff”’. Some other examples may be the
envelope of the pulse-to-pulse radar echoes from the aurora, the iono-
sphere, the sea, the ground, meterological precipitation, and a hyper-
sonic object during reentry of the earths atmosphere.

A natural assumption for studying the duration of fades associated
with signal plus clutter is that the random process underlying the fading
is a Rayleigh process. However, only a few theoretical results are avail-
able concerning the duration of fades associated with Rayleigh processes.
Thus, one is often unable to determine how well a Rayleigh process
actually characterizes the duration of fades observed experimentally.

The purpose of this paper is to present some additional theoretical
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results which characterize approximately the duration of fades one would
expect when the random process underlying the fading is indeed a Ray-
leigh process. We shall assume that the envelope of the pulse-to-pulse
radar echoes behaves like the Rayleigh process R(t,a) sketched in Fig. 1.
R(t,a) represents the envelope of a stationary random process consist-
ing of a sinusoidal signal of amplitude v/2a and frequency f, plus a
Gaussian process of unit variance having a narrowband power spectral
density Wu(f — f.) which is symmetrical about f, . We assume that the
radar pulse repetition frequency is several times greater than the band-
width of the Rayleigh process R(t,a) in order that an adequate number
of radar echoes are used to form R(¢,a). Also, we shall assume that the
variance of the receiver noise is negligible in comparison with the vari-
ance of the clutter.

Using notation consistent with Refs. 3, 4, and 5 we shall present
theoretical approximations for the following probability functions for
arbitrary signal-to-clutter power ratio “a’:

(@) P, (r,R,a), the probability density of the duration of a fade of

the Rayleigh process below the level E.

(i) Pi(r,R,a), the probability density of the interval between fades
of the Rayleigh process below the level E.

(¢5) F, (r,R,a), the probability that the duration of a fade of the
Rayleigh process below the level R lasts longer than 7.

(@) Fi(r,R,a), the probability that the interval between fades of the
Rayleigh process below the level £ lasts longer than 7.

The model considered in this paper also has application in the study
of the duration of fades in radio transmission. In fact Rice®7 led the way
by analyzing the duration of fades in radio transmission assuming that
the underlying random process was E(£,0).

II. INTEGRAL EQUATIONS AND EXPECTATIONS

Let us define the following auxiliary probability functions for arbi-
trary level R and arbitrary signal-to-clutter power ratio “a’:

(1) @ (r,R,a) dr, the conditional probability that an upward level-
crossing oceurs between ¢t + 7 and ¢ + 7 4 dr given a downward
level-crossing at &.

(@) [U(r,R,a) — Q(r,R,a)] dr, the conditional probability that an
upward level-crossing occurs between ¢+ r and ¢+ 7+ dr
given an upward level-crossing at ¢.
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Explicit expressions for these auxiliary probability functions were
presented in Ref. 5.

Approximate theoretical results for P, (r,R,a) and P;(r,R,a) are
given by the following integral equations:

P, (r,Ra) = @ (,R,a) — Py (1,Ra) * [U(7,R,a) — Q(r,Re)] (1)
Pi(r,R,a) = [U(r,R,a) — Q(r,R,a)] @
— Pi(7,R,a) % [U(r,R,a) — Q(r,R,a)]
where * denotes the convolution operator, that is,

[rg = j;:f(t)g(r — i)di.

Equations (1) and (2) were derived in Ref. 3 by applying McFadden’s®
“quasi-independence” idea to the Rayleigh process R ({,a). Also, by
definition we have that

Ro(nka) = 1~ [ Po(eRa)dr (3)

and
Fy(rRa) = 1 — fu Pr(rRa)dr. (4)
The exact expectations E, (7,R,a) and E;(r,R,a) associated with the

respective densities P, (r,R,a) and P;(r,E,a) can be computed from
the following equations:

E, (rRa) = %ﬁﬂ
i n jon o (5)
2 (B™/2Z'n)iFy (n+ %5 2n 4 1; —2R+/2a)
) V(a2n) Rali(3; 1; —2R~/2a)
E1('J‘,R,a) = _1.. = exp {(R — '\/2_1'1)2/2] (6)
* B2 RiFy (3 1; —2R/%0)
where

5= (20 [ TWlf — 1) — ) df

Wi (f — f,) = narrowband power spectral density of the Gaussian
process involved in the definition of R (¢,a)
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average signal power
average clutter power

1F1(a;8;x) = the confluent hypergeometric function

(a + 1) 2"
=142+ 25T .o
B B(B + 1) 2!
Pr{ } = probability of the event inside the brace
N = average number of upward (or downward) crossings of

the level R per second.

Equations (5) and (6) were developed in Ref. 4, and they follow directly
from some well-known results reported by Rice and Bennett. Each
1F'y function appearing in (5) and (6) can be expressed in terms of a
Bessel function of imaginary argument.

Thus, with the aid of a digital computer one can compute theoretical
approximations for the probability functions of interest in this paper
along with the exact theoretical expectations given by (5) and (6).

III. RESULTS FOR A GAUSSIAN AUTOCORRELATION FUNCTION

In order to define the Rayleigh process R (¢,a) underlying the fading
phenomenon we need to specify both W, (f — f.) and the signal-to-
clutter ratio “a”’. The normalized autocorrelation function m(r) asso-
ciated with W (f — f,) is given by

m(r) = ’/:' Wu(f — f,) cos 2x(f — fo)rdf. (7)

Thus, m (r), rather than W, (f — f,), can be used to define the Rayleigh
process R (t,a) underlying the fading phenomenon. Notice that 8 appear-
ing in (5) and (6) is merely —m” (0). The primes denote differentiations
with respect to .

Ref. 1 points out that it is convenient to measure the normalized
autocorrelation function of the fluctuating low frequency power P (f) =
R*(t,a) and denotes this normalized autocorrelation function by p(P,7).
In explicit terms p(P,r) is defined as

_ E{[P(t+ 7) — EPWIP() — EP)]}

p(Pr) Var P(t)

L(®)
_ EP(t+ 7)P(1) — E°P(1)

Var P(1)

where
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E =

Var =

Expectation

Variance.

Refs. 1 and 2 relate m (7) and p (P,7) as follows:
m(7) = Va*+ (1 + 2a)p(P,r) — a. (9)

Ref. 1 also points out that the appropriate value of “a’’ can be estimated
by measuring the probability density of P(¢) and comparing the result
with the theoretical probability density of P (¢). Thus, (9) indicates
that the Rayleigh process R ({,a) underlying the fading phenomenon can
also be defined from measurements of the normalized autocorrelation
function p(P,r) and the value of “a.”

For purposes of computation we shall take Wy (f — f,) and m(r) as
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Fig. 2— Py (us , ko , @) is the probability density of the duration of a fade of
the Rayleigh process below the normalized level ko . The autocorrelation function
of the Gaussian process involved in the definition of the Rayleigh process is m(r)
and the signal-to-clutter power ratio equals “a.”
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Fig. 3 — Pi{uy, ko, @) is the probability density of the interval between fades
of the Rayleigh process below the normalized level k, . The autocorrelation fune-
tion of the Gaussian process involved in the definition of the Rayleigh process is
m{r) and the signal-to-clutter power ratio equals “‘a.”

follows:
Wo(j 1) = = \1/% exp [:%igﬁ] (10)
and
m(r) = exp [‘(Lz"l] (11)

This particular choice tends to characterize the radar clutter fluctua-
tions observed experimentally.”* From (11) we see that it is convenient
to define normalized time as uy = Z2wopt.

For the experimenter it is convenient to normalize the threshold level
with respect to the average value, ER (f,a), of the Rayleigh process. We
shall consider three such normalized levels k,

R _ ., 2 1
ER(ta) ko =1, ﬂ’\/ﬂ' (12)

The expectation ER (t,a) was derived by Rice’ and is given by
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BR(40) = 1/§ 1F1(—§1; 5 —a). (13)

When @ = 0 we have that B = +/(x/2), 1, 3. These latter two values
of B were also considered by Rice' for the case a = 0.

Tigs. 2 through 10 present the computed results for @ = 0, 1, 4, and
k, = 1,2/, 1/4/2x. The numerical evaluation of @ (r,R,a) and
U(r,R,a) — Q(r,R,a) was carried out by using Simpson’s rule. Integral
equations (1) and (2) were solved numerically by using the trapezoidal
rule. All results are plotted with respect to normalized time u; . The cor-
responding experimental results for £, = 1 and a = 0, 1, 4 were presented
in Ref. 4, and they agree well with the approximate theoretical results
presented in Figs. 2, 3, and 4.
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Fig. 4 — Fy(us , ko , a) is the probability that the duration of a fade of the
Rayleigh process below the normalized level k, lasts longer than us . Fi(us , ko , a)
is the probability that the interval between fades of the Rayleigh process below
the normalized level k, lasts longer than wy .
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Fig. 5 — Py (us , ko , a) is the probability density of the duration of a fade of
the Rayleigh process below the normalized level k, . The autocorrelation function
of the Gaussian process involved in the definition of the Rayleigh process is m(r)
and the signal-to-clutter power ratio equals “a’’.
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Fig. 6 — Py(us , ko , @) is the probability density of the interval between fades
of the Rayleigh process below the normalized level ko . The autocorrelation func-
tion of the Gaussian process involved in the definition of the Rayleigh process is
m(r) and the signal-to-clutter power ratio equals “a’.
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Fig. 7— Fo(us , ko , a) is the probability that the duration of a fade of the
Rayleigh process below the normalized level k, lasts longer than uy . Fi(us , ko , @)
is the probability that the interval between fades of the Rayleigh process below
the normalized level ko, lasts longer than u, .

For deep fades and large signal-to-clutter power ratio “‘a”, one would
expect P, (r,R,a) to approach a Rayleigh probability density. For as
“g” gets large the Rayleigh process R (f,a) tends to behave much like a
Gaussian process, see (3.6) of Rice,” and the durations of deep fades of
Gaussian processes are known to be characterized by a Rayleigh proba-
bility density.”” Figs. 8 and 10 show that this is, approximately, the
case when k, = 1/4/27 and a = 4. Thus, for k, < 1/4/2r and a = 4 we
have the following approximate results:

P, (r,Ra) = 2TWH (EL_) exp [—g (EL_)] (14)

and
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m T 2
F, (r,Ra) = exp [— i (ET) ] . (15)

The value of E,  appearing in (14) and (15) is given by (5) with
R = Ik.ER (t,a).

Equations (14) and (15) are useful approximations when k, is small
and “a” is large for an arbitrary normalized autocorrelation function
m(r) such that m” (0") = 0, although we have been treating the re-
strictive Gaussian autocorrelation function defined by (11). The condi-
tion m""(07) = Oleads to Q” (0",R,a) = 0, and thus the approximation
given by (14) is exact at + = 07. As a partial check on this gener-
alization we also verified that (14) and (15) begin to be useful approxi-
mations when k, = 1/4/2r, a = 4 for the normalized autocorrelation

functions
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Fig. 8 — Py (us , ko , @) is the probability density of the duration of a fade of
the Rayleigh process below the normalized level k, . The autocorrelation func-
tion of the Gaussian process involved in the definition of the Rayleigh process is
m(r) and the signal-to-clutter power ratio equals “‘a.”
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and

mu)=[y+mh|+“fy]ap@wqqy (17)

Equation (16) corresponds to an ideal bandpass power spectral density
Wi (f — fo) given by

@f)" for fo—feSFSfotfe
Wo(f — fo) = (18)
0 otherwise.
Equation (17) corresponds to a power spectral density Wu(f — fo)
given by

8/(3ﬂ'f2)
Wi(f = fo) =5 F— T (19)
()
fa
where
ws = 2mfa.
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Fig. 9 — Pi(us , ko , a) is the probability density of the interval between fades
of the Rayleigh process below the normalized level k . The autocorrelation func-
tion of the Gaussian process involved in the definition of the Rayleigh process is
m(r) and the signal-to-clutter power ratio equals “a”.
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Fig. 10 — Fy~(up , ko , a) is the probability that the duration of a fade of the
Rayleigh process below the normalized level k, lasts longer than ws . F1(us , ko , @)
is the probability that the interval between fades of the Rayleigh process below
the normalized level ko, lasts longer than w, .

For a given m(r) with m” (0%) = 0 along with ¢ = 4, k, = 1, the
duration of fades and the interval between fades of the Rayleigh process
R (t,a) behave as if they were generated at the mean value level of a
Gaussian process having a normalized autocorrelation function of m (7).
For example, compare P, (us, &, ,4) of Fig. 2 with the experimental
points plotted in Fig. 2 of Ref. 3. Also compare Py (u, ko, 4) of Fig. 3
with the experimental points plotted in Fig. 3 of Ref. 3.

IV. CONCLUSIONS

Assuming that the random process underlying a fading phenomenon
is a stationary Rayleigh process, one can compute useful theoretical
approximations for the probability functions which characterize the
duration of fades and the interval between fades. The corresponding
exact results are at present unknown.
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For deep fades and large signal-to-clutter power ratio the duration of
fades is characterized, approximately, by a Rayleigh probability density.

For large signal-to-clutter power ratio the duration of fades and the
interval between fades of the Rayleigh process below the mean value
level behave as if they were generated at the mean value level of a
certain Gaussian process.

The results of this paper apply to all fields of science and technology
for which a stationary Rayleigh process characterizes a fading phe-
nomenon.

V. ACKNOWLEDGMENT

It gives me great pleasure to acknowledge stimulating discussions
with 8. O. Rice. I am also indebted to R. T. Piotrowski for programming
the digital computer.

REFERENCES

1. Kerr, D. E., Propagation of Short Radio Waves, M.L.T. Radiation Labora-
tory Series, 13.

2. Lawson, J. L., Uhlenbeck, G. E., Threshold Signals, M.I.T. Radiation Labora-
tory Series, 24.

3. Rainal, A. J., Zero-Crossing Intervals of Envelopes of Gaussian Processes,
Technical Report No. AF-110, DDC No. AD-601-231, The Johns Hopkins
University, Carlyle Barton Laboratory, Baltimore, Maryland, June 1064.
Abstracted in IEEE Trans. Inform. Theor., IT-11, No. 1, January, 1965, p.
159.

4. Rainal, A. J., Zero-Crossing Intervals of Rayleigh Processes, Technical Re-
port No. AF-108, DDC No. AD-600-393, The Johns Hopkins University,
Carlyle Barton Laboratory, Baltimore, Maryland, May 1964. Abstracted in
IEEE Trans. Inform. Theor., IT-11, No. 1, January, 1965, p. 159.

5. Rainal, A. J., Axis-Crossing Intervals of Rayleigh Processes, B.S.T.J., 44,
July-August, 1965, pp. 1219-1224.

6. Rice, 8. O., Radio Field Strength Statistical Fluctuations Beyond the Hori-
zon, Proc. IRE, 41, February, 1953, pp. 274-281.

7. Rice, 8. 0., Distribution of the Duration of Fades in Radio Transmission,
B.S.T.J., 37, May, 1958, pp. 581-635.

8. McFadden, J. A., The Axis-Crossing Intervals of Random Functions — II,
IRE Trans. Inform. Theor., IT-4, March, 1958, pp. 14-23.

9. Rice, 8. ., Statistical Properties of a Sine Wave Plus Random Noise, B.S.T.J.
27, January, 1948, p. 123, equation 3.13.

10. Kac, M. and Slepian, D., Large Excursions of Gaussian Processes, Annals
Math. Statisties, 80, December, 1959, pp. 1215-1228.



