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Through Gas Lenses
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The concept of a thin lens equivalent to a gas lens is used lo calculate
distortions of off-axis Gaussian fields in beam waveguides composed of gas
lenses. A computational method for the numerical solution of this problem
based on the Kirchoff-Huygens diffraction integral is developed. It 7s shoun
that off-axis Gaussian fields deform considerably as they travel through a
sequence of gas lenses. These deformations are substantial even though the
lens distoriions may be small. If the light beam deforms it is hard, if not
impossible, to steer it back on-axis. This problem can be avoided if some
means of beam redirection ave used to keep the field on-axis, thus preventing
the occurrence of significant beam deformation.

I. INTRODUCTION

Interest in optical communications has stimulated research to find a
suitable optical transmission medium. The beam waveguide first sug-
gested by Goubau! appears to be an efficient optical waveguide. It is
composed of lenses which periodically refocus the light beam, counter-
acting its tendency to spread apart by diffraction.

Gas lenses have been suggested as focusing elements of beam wave-
guides.234 Of the various types of gas lenses, the tubular gas lens, Fig.
1(a), has been studied in some detail.*# This gas lens can be represented
by an equivalent thin lens which is warped to fit the shape of the prinei-
pal surface of the gas lens and which is given its focal length with the
proper dependence on its radius. It was shown in Ref. 5 that ray tra-
jectories through 100 gas lenses coincide closely with ray trajectories
through the corresponding equivalent lenses. Replacing the complicated
gas lens with the equivalent thin lens simplifies considerably the study
of beam waveguides composed of gas lenses.

In this paper, we will make use of the equivalent thin lens concept to
investigate the propagation of wave fields through a beam waveguide of
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Fig. 1— (a) Schematic of the gas lens indicating the definition of principal sur-
face and focal length. (b) The equivalent warped, thin lenses representing the
gas lens beam waveguide.

gas lenses. The justification for replacing the gas lenses with equivalent
lenses comes from geometric optics.® One might wonder if the argument
based on geometric optics can be carried over into wave optics. The
geometric optics description neglects diffraction effects. Inasmuch as
diffraction effects can be neglected as the field passes through the lens,
the geometric optics description should give the correct answer. Based
on this line of reasoning, one may expect the equivalent thin lens to be a
good approximation, as long as the gas lenses are short compared to their
spacing.

The wave optics properties of the beam waveguide composed of gas
lenses are obtained using a two-dimensional version of the scalar Kirch-
off-Huygens diffraction integral. The problem had to be limited to two
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dimensions to make it tractable for computer caleulations. This simpli-
fication can be visualized as replacing the actual lenses by cylindrical
lenses.

We study how off-axis field distributions with a Gaussian intensity
profile propagate through the beam waveguide. Unfortunately there are
further limitations on the physical problem we can compute, imposed
by the limited size of the available computer memory. The calculations
are accelerated if as much of the integral kernel as possible can be stored
in the machine without having to recalculate it each time it is needed.
The IBM 7094 used for these calculations has 24,000 storage locations
available in its memory. Since we are dealing with a complex kernel,
100 integration points across the (linear) lens require 20,000 storage
locations. This means that we can use no more than 100 integration
points to compute our problem. This limits the ratio of lens aperture to
field extension across the lens which we can use. Either we use the full
lens aperture and launch a field which fills an appreciable part of it or
we use a very narrow field distribution and limit the aperture to a size
which allows us to approximate the narrow field reasonably well with
the 100 integration points at our disposal. This limitation forced me to
calculate the field distribution in the gas lens either at a much lower
frequency than that of the visible 6328A line of a He-Ne laser or to take
the actual laser frequency but use only a small fraction of the actual
lens aperture.

In spite of all these limitations imposed by computer economics, some
interesting results can still be obtained.

In a beam waveguide composed of ideal lenses no field distortion re-
sults as an off-axis Gaussian beam travels through the waveguide. In a
beam waveguide composed of gas lenses, off-axis Gaussian beams break
up into double humped shapes and deform so much that it is hard to
locate the initially well defined field distribution. This result is important
for beam waveguides using electronic control mechanisms to reposition a
beam when it has wandered away from the waveguide axis.® If the beam
breaks up into several beams, repositioning becomes impossible. This
problem can be minimized by using two gas lenses back-to-back close
together. The resulting combined lens has far less principal plane distor-
tion as the individual lenses and leads to far less field distortion.

The field distortion observed in these simulated gas lenses can be
attributed in part to the distortion of the principal plane. A fictitious
lens with the same focal length aberration as the gas lens but an un-
distorted principal plane shows less field distortion. However, the focal
length aberration also contributes its share of field distortions.
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A large part of this paper is taken up with the description of the calcu-
lation procedure. This is justified since the development of a workable
and logical procedure is perhaps the main contribution of this work. The
reader who is interested only in the numerical results may skip over the
following two sections to the section entitled “Discussion of Numerical
Results.”

II. THE TWO-DIMENSIONAL DIFFRACTION INTEGRAL

The Kirchoff-Huygens diffraction integral is a solution of the scalar
wave equation.

AY + g% = 0. (1)

As explained in the introduction, we are not interested here in the three-
dimensional case usually treated but in its two-dimensional counterpart.
The two-dimensional Kirchoff-Huygens integral is

1 v e g

¥(zy) = Ef.{an H,"(r) v o H (Br)} ds. (2)
The integral is to be extended over a closed curve S, n indicates the di-
rection of the normal to the curve S which counts positive if it points
outward of the area enclosed by S. H," is the Hankel function of zero
order and first kind. The variable r is the distance between the observa-

tion point z,y inside of § and the integration point £, n on S,

r=V(z -+ (y — 1)’ (3)

dS is the line element along the curve S. The constant 3 is related to the
wavelength A of the radiation field by

2r
=5 (4)

We are dealing with an optical radiation field. The observation point
z,y will always be far enough from the line S so that

gr > 1.

It is, therefore, possible to replace the Hankel function by its approxima-
tion for large argument and write (2)

™

XP\'7) [ (awexp (i8r) o [exp (ifr)
V(zy) = V35 j;{a_n—\/i__‘pa?(_\/_F)}ds' (5)
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Equation (5) relates the values of the field ¥ (£,7) on S to its values in-
side S. We want to use this expression to calculate the field at lensn + 1
if the field at lens n is known. Our lenses are the equivalent thin lenses
of Fig. 1(b) which represent the gas lens of Fig. 1 (a). The fields have to
be known over the surface of the lens which is not plane. We assume that
the lens is apertured by an opaque screen and follow the usual practice
of setting

¥(gn) =0 and X =0 6)
on
on the screen. We use as the curve S the line formed by the lens surface.
the opaque screen which extends from — o« < 7 < o, and close it by a
suitable curve at infinity. The following lens of the beam waveguide lies
thus inside S, Fig. 1(b).

The Kirchoff-Huygens integral presents a problem. It requires us to
know not only ¥ on S but also §¥%/dn. It is not sufficient, therefore, to
simply evaluate the integral (5) but also the integral which follows from
it by differentiation with respect to the normal m to the surface of the
next lens in the beam waveguide.

A substantial simplification results if instead of ¥ we use a function &
defined by the equation

¥ = e, (7)

This transformation serves the following purpose. The field propagating
in the beam waveguide can be expected to have phase fronts which are
not too different from that of plane waves. Since we colleet the field over
the curved surface of the lenses we have a substantial phase variation
simply because the curved surface crosses many phase fronts of the al-
most plane wave. The transformation (7) displays explicitly the plane
wave part of the phase variation. The remaining phase variation left in
® is much less rapid and therefore much easier to calculate. Substituting
(7) into (5) leads to an equation for . We also replace the phase con-
stant 8 by

D

B = ZWNE (8)
with
o

N is the Fresnel number which is often used to characterize optical
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resonators and beam waveguides. D is the distance between lenses and
“a’’ the half-width of their apertures.

Replacing ¥ by @ introduces the term exp [28(r + ¢ — 2)] under the
integral sign. We make use of the fact that # — £ is almost as large as
r and write approximately

_ Ly—a)"f, 1{y—naY
rhEoe 2:::—5{1 i(m—s)}' o)

Using (7), (8), and (10) we can rewrite (5)
ot = YD () (&~ E) o

+ qo»(n)}——-—————/‘/l i (gi) (11)

NG
-exp [er -(—u {1 —
a?

T —E

The line element d:S was expressed by

dS=/‘/1+(d£) n C(12)

where 7 = 7 (£) or £ = £(n) is the function describing the curved lens.
The function ¢, () is defined by

1 8%,(n)

oln) = 5% (13)

The subscripts » and » + 1 have been added to underscore the iterative
nature of the process.

The iterative equation for the calculation of ¢,41 follows from &,
by differentiation. Neglecting certain small terms under the integration
sign results'in

vVND . * 1y —n az Yy — n oy
eon(y) = 2¢ P _21-[ T — & T —tom

'{(a" — ‘;—i) (1) + wv(n)} @ (14)

an VT

D (y =)’ 1(y — Y
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The symbol m was used to designate the normal of the (v + 1)th sur-
face y = y(z).

For reasons explained later, we also need the derivation of ® in tan-
gential direction . Defining

Q’I%

X = (15)

?.
B
we get the integral expression for x,41 by replacing d/dm by 9/ét in
(14), it is unnecessary to write this expression down since it is exactly
the same as that for ¢,41 except for the change just mentioned.

The three integrals for ®, ¢, and x have a substantial part of their in-
tegrands in common. This similarity facilitates the machine calculations
of these integrals greatly.

The power flow through the lenses can be computed from the expres-

. 7
sion

p=t f Im(¥VT*)dsS (16)

with w being the angular frequency of the radiation field and Im denoting
the imaginary part of the expression in parenthesis. Or replacing ¥ by
& and the line element by (12) we get with the help of (13)

P,=“’_25£{Re (D,0*) —%I‘P»JZ} 1/1-1—( ) dn.  (17)

Equation (17) ean be used to compute the power flow through the lenses
and observe power loss due to diffraction caused by the finite lens aper-
tures.

The reader who is familiar with the work of Fox and Li® might wonder
why the present case is so much harder to compute than the resonators
studied by these authors. Fox and Li used only one integral to describe
the field distribution over one mirror in terms of the field distribution
over the other, they did not calculate the integral for d¥/dn simultane-
ously with that for ¥. The reason for the success of the much simpler
theory in their case was the fact that the surfaces over which they had to
integrate were either perfectly flat or very nearly plane. The normal
derivatives occurring in (2) involve the cosines of angles e between the
normal to the surface of integration and the normal to the phase fronts
of the wave. As long as this angle is small

cose =~ 1

and the angle can be ignored. For the purpose of the normal derivative
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the wave can be treated as perfectly plane and the derivative can be
written as

0% _ ipw. (18)
an
However, the angle @ between the direction normal to the surface of our
lenses and the optical axis is not small. If € is again the angle between
the normal to the phase front of the wave and the optical axis then

a + e is the angle entering the cosine. But even if & is small
cos (@ + €) = cos @ — € 8in a.

The departure of the phase front from a plane wave can no longer be
neglected but enters in first order. The expression (18) is no longer a
valid approximation and the whole calculation becomes much more
difficult.

III. FIELD TRANSMISSION THROUGH THE LENSES

So far we have considered the transmission of the field from the sur-
face of one lens to that of the next. However, the lenses have so far not
even entered the picture other than to force us to calculate the field over
the surface of the lens. The process of calculating the effect of the lens
on the field is also rather complicated. In the case of plane, thin lenses
it is sufficient to regard the lens simply as a phase transformer which
retards the phase of the field differently in different parts of the lens.
This simple picture is inapplicable in our case of curved lenses.

Liouville’s theorem of statistical mechanics is the guide to the proper
deseription of a thin lens. I have shown in two earlier papers®® how rays
pass through thin lenses. The ray gets broken by the lens by an angle
which depends not only on the part of the lens which the ray intersects,
but also by the angle between the ray and the normal to the lens surface.
If v, is this angle for the entering ray and +. that for the ray leaving the
lens the dependence between these two angles is given by?®

siny, = sinv + F(y). (19)

The funection F(y) is determined by the lens. The focusing property of
the lens determines the angle v:' if vi' corresponds to a ray incident
parallel to the optical axis. y:' and v; are known from the desired focal
length of the lens and its shape. F(y) is determined by substituting
y2 = 72 and y; = 1 into (19).

These ray optics properties of the lens have to be used to determine its
influence on the field. The normal directions to the phase fronts coin-
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cide with the rays associated with the field, they have to be determined
from the derivatives of the field function. Let us assume that we split
the field function ¥ into its magnitude & and phase angle 8¢

= G exp (i)
or using ® rather than ¥
& = (exp [B(F — z)]. (20)
The function d (x,y) is the eikonal of geometric optics and satisfies the
eikonal equation of free space
|ve| = 1. (21)

We take the tangential derivative of ®

ae o fad  ox G 1
a = |:’£.3 (5&" ) + -6_t é:l (22)

The term a¢/d¢ can be expressed in the following way

aa_v§.§=|vlﬂ (?J_S

= = 3 cos (kt);

ds/dt is a unit vector in the tangential direction ¢, (kt) is the angle be-
tween the direction normal to the phase front of the wave and the
tangential direction. Using (21) and the property of the unit vector we
obtain

ad
57 = o0 (kt). (23)
With the help of (15) and (23) we get from (22)

X 1 1 0@
cos (kt) = TR + 5G Al
The left-hand side of this equation is real by definition and so is G and
its derivatives. This means that the imaginary parts of the right-hand
side have to cancel each other and we obtain

4y _ 9T X
cos (ki) = o Re (5) (24)
Re designates the real part of the expression in parentheses. The deriva-
tive dx/at is known from the geometry of the lens, and x as well as &
have been computed from their integral expressions. The angle between
the rays associated with the field and the tangential direction ¢ of the
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curve describing the lens shape is thus determined. The angle (kt) is
related to v; , the angle between the ray and the normal to the lens sur-
face, by

) (25)

so that
cos (kt) = sin ;.

The angle v, between output ray and lens normal is obtained from (19).
Indicating by a prime the angles and field quantities of the field after
leaving the lens we have

cos (kt)' = sin v,

and from (23)
t
o = [ cos ()"t (26)

t1
or

A =¢ — ¢ = [: [eos (k't) — cos (kt)] 1/ 1+ (%)Edy. (27)

The transformed field after it has pa.ssed the lens can now be calculated
®,41 = ®,41 exp (18AF). (28)

Finally, we need to know the normal derivative ¢,,1" of ®,,1 before we
are ready for the next iteration step. Replacing derivatives with respect
to ¢ by the normal derivatives with respect to m in (22) and multiplying
by 7/8 we obtain

oz a 11 4G
Pl = l:-gn' - a—m + E(—?%]‘ﬁﬂq. (29)

The derivative 99/¢ was equal to cos (kt), similarly we can write

9 _ cos (km). (30)
aom

The angle (km) is related to v1 by
(km) =7 — 71.

The reader might wonder why I bothered introducing the angle (kt)
and the derivative x since d9/dm which is determined by ¢ gives the
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angle v, directly. However, ¢/dm only determines cos vi . The conver-
sion of cos v, to sin v leaves the sign of y; ambiguous. No such ambiguity
arises if (kt) is computed.

The angle (km) belonging to the output field can now easily be ob-
tained with the help of (19) and (24)

’

9 _ cos (km) = — /1 — sin’y. - (31)
am

Substituting (31) into (29) written for the primed quantities we get

’ dr X ] ’b 1 aG ]
Pl = [5;% — cos (km) + E@-{y'n]‘i’wﬂ

or using (29) once more and keeping in mind (28)
et = vy exp (8A9) + [cos (km) — cos (km)Jen’.  (32)

The transformed field quantities of (28) and (32) are certain to conform
with the requirements of ray optics. However, this is not quite sufficient
to satisfy all the wave optics requirements. Numerical results have shown
that the fields ® and ¢ substituted into the power formula (17) yield a
different number for the power flow than the one obtained from using
(17) with ® and ¢. The fields & and ¢ after having passed the lens should
carry the same amount of power as the input fields. The transformation
procedure, outlined so far, takes into account the phase of the field and
the change in slope of the phase fronts in accordance with physical prin-
ciples but it does not account for any change in field amplitude which the
physics of the (lossless) lens might also require. In fact, the failure of
this transformation to obey conservation of energy points to a need to
readjust the field amplitudes. To correct the amplitudes of the field quan-
tities ® and ¢’ locally, I computed the ratio of the integrals of (17) taken
with the two fields. Letting I be the integrand of (17) calculated with
the use of ® and ¢, and I’ the corresponding value obtained using @' and
¢, I calculated

(33)

=
[
~~

and introduced
®” = R®
and (34)
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This last transformation does not affect the phase of the field or its slope
but adjusts the field amplitude so that using ®” and ¢” the power is
conserved in the process of transmitting the field through the infinitely
thin and lossless lens. This last transformation does not transform away
diffraction losses, however, since those occur in passing the field from one
lens to the next.

This completes the description of the iteration procedure. It is sur-
prising how much the calculation is complicated by the simple fact that
the lenses are not plane but curved. One might regard the simplicity of
the plane lenses as a lucky break. The present procedure naturally is
more time consuming. To pass the field through 100 lenses of the lens
waveguide with plane lenses using the simple procedure of Fox and Li
takes 0.023 hours of 7094 computer time. The procedure described above
takes 0.13 hours for the same number of lenses or 5.65 times as long.
The present procedure is that much more involved.

IV. DISCUSSION OF NUMERICAL RESULTS

The calculation procedure described on the previous pages was used
to study the fate of an off-axis field distribution as it propagates through
the beam waveguide. In a beam waveguide composed of ideal, thin
lenses the field would suffer no distortions as it travels through the lenses
provided that its shape corresponds to a mode of this structure. A mode,
even if displaced from the axis, keeps its shape in a perfect beam wave-
guide. The center of gravity of such an off-axis mode follows the ray
trajectory of geometric optics. The field may look somewhat different as
it passes different lenses. But whenever its path brings it back to its
original position on the lens it assumes the original shape.

This property of ideal lens guides is no longer true for beam wave-
guides composed of distorting lenses. Now the original field distribution
is echanged even if the field returns to its original position. These field
distortions are best displayed in a motion picture. However, in a paper
one has to limit oneself to the display of a few representative frames of
such a motion picture.

To launch the field into the waveguide I started with an ideal lens
whose focal length corresponded to twice the on-axis focal length of the
simulated gas lenses. This procedure was chosen since the modes of the
ideal beam waveguide have plane phase fronts right on the lens or in
other words after the field has traversed one-half of the lens. A plane
phase front and the flat starting lens allow us to take

1 3Py

% =5
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so that ¢, is known initially and the field can get started. On all the
following lenses ®, as well as its derivations are calculated.

Figs. 2(a) and 2(b) show the shape of the principal surface p and the
focal length f of the lens as functions of position y/a. The function p
as well as the focal length f are displayed normalized with respect to the
length L of the gas tube. The coordinate y is plotted normalized with
respect to the radius e of the tube. These curves correspond to a gas
lens operated with a gas velocity which minimizes the focal length at an
input gas temperature T, = 300°K, wall temperature of gas tube 355°K,
an index of refraction of n = 1 4+ 4.210~* and a ratio* of L/a = 50.

We consider a beam waveguide composed of gas lenses of this type
spaced so that D/f, = 2, where D is the distance between adjacent
lenses and f, is the value of the focal length at y = 0. Into this beam
waveguide we launch a field with a Gaussian intensity profile whose
center of gravity is shifted off the optical axis as shown in Fig. 3(a).
This field distribution corresponds to a mode of the ideal confocal beam
waveguide which is shifted off-axis. The position and shape of this field
on the next two lenses is given in Figs. 3(b) and 3(c). Since the beam
waveguide is nearly confocal, the center of gravity of the field moves
like a ray in a confocal waveguide. No field distortion is yet discernible.
Jumping 100 lenses ahead in the beam waveguide we see in Figs. 4(a),
4(b), and 4(c) that the field begins to distort from its original shape.
After having traversed 150 lenses the field shows a distinet break-up
into two peaks, Fig. 5(a). The appearance of the field on two adjacent
lenses can be quite different, Fig. 5(b). Finally, we see the wave field on
the lenses 209 and 210 in Figs. 6(a) and 6(b). The distortion has changed
somewhat but is not basically different.

The field of Fig. 3(a) fills one-third of the gas lens between the points
where it carries more than exp (—2) of its peak power. If we assume a
tube with @ = 0.317 em (0.125 inch) a waveguide mode of that width
corresponds to a light wavelength of A = 4.60 X 10—* em which is 7.26
times as long as the wavelength of the 63284 line of the HeNe laser.

I mentioned in the introduction that the width of the field distribu-
tion with respect to the tube radius cannot be made arbitrarily narrow.
To consider fields which are similar to modes of the beam waveguide at
A = 6.328 X 10-% em forces us to reduce the lens aperture. The ratio
of field extension and waveguide aperture is maintained if we reduce the
wavelength from A = 4.60 X 10~* em to A = 6.328 X 10~° ¢cm and
aperture the lens at a value of y/a = 0.371 of Figs. 3 through 6. Using
only that part of the waveguide between —0.371 = y/a = 0.371 and

* These values correspond to vy/V = 6.45 and C(L/a) = 0.192 with »/V and
C(L/a) defined in Ref. 4.



1358 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1966

TN @
AN
w1/ \
| \

0425 / \

0.400 \

0.3750N_A1 N
450

4.00 \ /
3.75

3.50 \ /
3.25
3.00

2.75 \ /
2.50] //
2.25

-0 -08 -06 -04 -02 o 0.2 0.4 0.6 0.8 1.0

y/a

r|o

|-
—‘—'_.—-
"-I-._._._.

Fig. 2—(a) The principal surface p of the gas lens normalized with respect to
the tube length L as a function of y/a. (b) The focal length f of the gas lens
normalized with respeet to the tube length L as a function of y/a.
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renormalizing the y-coordinate so that these boundaries again correspond
to —1 = y/a = 1 leads to the shape of principal surface and focal length
as shown in Figs. 7(a) and 7(b). This is still the same lens, with the
only difference that we expanded its center portion. The center portion
of the lens has far less distortion as the whole lens of Fig. 2. Figs. 3(a),

25
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Fig. 3 — The Gaussian field distribution on the first three lenses represented
by Fig. 2. The power P carried by the field is P = 1.
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Fig. 4 — The distorted field after passing through 100 lenses P = 0.969.

3(b), and 3(c) show again the field distribution on the first three lenses
at the wavelength of A = 6.328 X 10~% ¢m and the apertured lens.
After traversing 120 lenses this field suffered noticeable distortions
shown in Figs. 8(a) and 8(b), even though it ‘“sees” now only the center
portion of the lens where the focal length depends only very little on y
and where the principal surface is much closer to a plane. The dotted
curves also shown in these and all remaining figures of field configurations
were obtained by maintaining the focal length of the equivalent gas
lens, but using a lens with a perfectly flat principal plane. The compari-
son between the solid and dotted curve shows that the field distortion
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can be attributed mainly to the distorted prineipal plane of this gas
lens. The change in width of the field distribution on adjacent lenses as
seen in Figs. 8(a) and 8(b) is caused by the departure of the beam wave-
guide from exact confoeality. Figs. 9 and 10 show how bad the field
distortions get after 250 and about 400 lenses. Most surprising is the
fact that the field distortions of Figs. 8 through 10 are only slightly less
severe than those of Figs. 4 through 6, in spite of the substantial im-
provement of lens aberrations.

To study this point further I constructed a gas lens with even less
principal plane distortion by using two gas lenses back-to-back as shown
in Fig. 11. The center portion of the principal surface and focal length
curve is shown in Figs. 12(a) and 12(b). The expansion and renormaliza-
tion of these curves is the same as that of Figs. 7(a) and 7(b). The
principal surface of this lens, Fig. 11, approximates a plane even better
than Fig. 7(a) however, there is more focal length distortion apparent
in Fig. 12(b) than in Fig. 7(b). This lens distorts substantially less than
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Fig. 9 — Field distortion of the field in the apertured lens after traversing 250
lenses. Solid curve, P = 0.929. Dotted curve, P = 1.000.
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Fig. 10 — Field distortion after 400 lenses. Solid curve, P = 0.894. Dotted
curve, P = 1.000.

the simple lens of Fig. 1, as a comparison of Figs. 8 through 10 with
Figs. 13 through 15 indicates. However, even a lens with the charac-
teristics of those shown in Figs. 12(a) and 12(b) causes the field to break
up into the double-humped shape of Fig. 16 after traversing 295 lenses.

It is interesting to note the difference between the solid curve and the
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f

GAS FLOW —> <— GAS FLOW

!
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Fig. 11 — Two gas lenses operated back-to-back minimize principal plane dis-

tortion.
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Fig. 12— (a) Principal surface of gas lens of Fig. 11. (b) Focal length of gas
lens of Fig. 11.
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Fig. 13 — Field distortion after 120 lenses. Solid curve represents the lens
of Fig. 11, P = 0.9996. Dotted curve represents a fictitious plane lens with focal
length of Fig. 12(b), P = 1.0000.
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Fig. 14 — Field distortion after 250 lenses. Solid curve, P = 0.9992. Dotted
curve, P = 1.0000.

dotted eurve of Figs. 13 through 15. Both curves show field distortions.
Those of the solid curves are caused by the combined action of principal
plane and focal length distortions, while those of the dotted curves are
due to focal length aberration only. It appears that the two distorting
influences cancel out to some extent since the solid curves of Figs. 13(b),
14(a), and 15(a) show less distortion than the corresponding dotted
curves.

Figs. 14(b) and 15(a) show that even the plane lens with only focal
length aberration (dotted curve) has the tendency to distort the field
into a multiply-humped shape. Theoretical work by E. A. J. Marcatili
and further computer simulations have established a periodicity in this
behavior. Plane lenses with focal length distortion cause an off-axis
field to break up into a double-humped shape which becomes perfectly
symmetrical after some distance. After twice this distance the field re-
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Fig. 15 — Field distortion after 400 lenses. Solid curve, P = 0.9988. Dotted
curve, P = 1,0000.
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Fig. 16 — The field assumes a double-humped appearance after 295 lenses.
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turns to its original shape, ete. No such periodicity seems to exist for
distortions ecaused by a warped principal plane. The periodicity of field
distortions caused by focal length aberrations gives a clue to the problem
of why so little lens distortion can lead to such serious field distortions.
In principle, the field always breaks up into a perfectly symmetric double-
humped shape if it is allowed to travel far enough in the beam waveguide.
The required distance depends on the amount of focal length aberration
but the final field distortion does not. Similarly, it is possible that
arbitrarily small distortions of the principal plane may always lead to
serious field distortions if given enough length of waveguide. It is still
surprising, however, that the slight aberration shown in Fig. 12(a) and
12(b) causes the field to become double humped after only 295 lenses.
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