THE BELL SYSTEM
TECHNICAL JOURNAL

VOLUME XLV NoveEMBER 1966 NUMBER 9

Copyright © 1966, American Telephone and Telegraph Company

Programming and Control Problems
Arising from Optimal Routing in
Telephone Networks*

By V. E. BENES

(Manuscript received June 10, 1966)

In many circumstances a telephone call can be completed through a con-
necting network in several ways. Henee, there naturally arise problems of
optimal routing, that is, of making the choices of routes so as to achieve
extrema of one or more measures of system performance, such as the loss
(probability of blocking) or the carried load.

As is customary in lraffic theory, a Markov process is used to describe
network operation with complete information. The controlled system is de-
scribed by linear differential equations with the control functions (expressing
the routing method being used) among the coefficients. Restricting attention
to asymplotic behavior leads to a problem of maximizing a bilinear form
subject lo a linear equality constraint whose matrix is ilself constrained to
lie in a given convex set. An allernative approach first shows that minimiz-
ing the loss, and maximizing the fraction of events that are successful at-
tempts to place a call, are equivalent. This fact permits a dynamic program-
ming formulation, which, in turn, leads lo a very large linear programming
problem. Two small examples are treated numerically by this method.

1t is particularly important lo try to verbalize, and then mechanize, the
optimal rouling strategies. In this endeavor, the linear programming formu-
lation 1s of Umited usefulness. Therefore, in the latter half of the work we
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have atlempted to use the special combinatorial structure imposed by the
telephonic origins of the problem to shed light on the character of the optimal
strategies. In particular, we show that for connecting networks with suttable
combinatorial properties, the optimal route choices can be very simply de-
scribed. Some of the resulls obtained were suggested by, and verify, conjec-
tures from the practical lore of telephone routing.

The problem of routing calls falls into two parts: Which attempted calls
should be accepted in which states? What route should an accepted call use?
The first problem is very hard, and only sample numerical answers for small
networks are obtained. We solve the second problem analytically for a large
class of cases by appeal lo combinatorial structure in the network. These
cases can be described roughly as those in which the relative merit of states
(as far as blocking is concerned) is consisient or continuous; i.e., if a state
x 15 “better’’ than another y, then the neighbors of = are in the same sense
“better”’ than the corresponding neighbors of y. An abundance of examples
indicates that these cases are numerous and so warrant attention. In a net-
work with this kind of combinatorial property, a policy which rejects no
unblocked calls and minimizes the number of additional calls that are blocked
by completing an attempted call differs from an optimal policy only in that
the latter may reject some calls.

I. INTRODUCTION

A telephone connecting network invariably provides many paths on
which a particular telephone call can be completed. One of the operational
problems faced by the control unit of a telephone system is then to as-
sign to each accepted and completable call a path and, in particular, to
choose these assigned paths in the best way. This is the problem of opti-
mal routing of telephone calls. Thus, in the theory of telephone traffic
there naturally arise mathematical problems of optimal routing, that is,
of making choices of routes in probabilistic models for operating net-
works so as to achieve extrema of well-defined measures of system per-
formance, such as the probability of blocking (loss).

Unfortunately, it is not unfair to state that the voluminous probabilis-
tic theory of telephone traffic, now some sixty years old, still has rather
little to say about how routes for calls should be chosen. We are speaking
here of the mathematical theory of traffic. Naturally, a wealth of useful
information about routing has aceumulated over the years from experi-
ence in the telephone field; recently it has been buttressed and extended
by many simulation studies. This information, nevertheless, still lies
largely outside the province of the existing theory of telephone traffic.

It is the aim of this work to formulate, study, and (in part) solve a
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general class of optimal routing problems for telephone networks. The
formulation of these problems is undertaken insofar as possible within
the classical dynamical theory of telephone traffic initiated by A. K.
Erlang, that is, in terms of Markov processes based on the assumptions
of (i) negative exponential distributions for mutually independent hold-
ing-times, and (#) randomly originating traffic. To these assumptions is
added a description of how attempted calls are accepted and assigned
routes.

We conclude this introduction with a brief summary of the entire
paper. A complete summary appears later (Section IX) after concepts
for formulating the problem have been discussed. As is customary in
telephone traffic theory, we use a Markov process to describe the opera-
tion of the connecting network under study. The Kolmogorov equations
for this process then constitute a set of linear differential equations de-
seribing the controlled system; in these the control functions expressing
the routing method being used appear among the coefficients. It is nat-
ural to restrict attention to asymptotic behavior; this leads to a problem
of maximizing a bilinear (or linear fractional) form subject to linear
constraints; this problem is equivalent to a linear programming problem.
An alternative approach first shows that minimizing the probability of
loss, and maximizing the fraction of events that are successful call at-
tempts, are equivalent. This fact permits a classical dynamic program-
ming approach. The remainder of the paper attempts to use this ap-
proach to establish relations between combinatorial properties of the
network and the policy(ies) optimal for given criteria of performance.
In particular, it is shown that for connecting networks having certain
“monotone” properties, optimal policies for minimizing loss correspond
closely to the heuristic advice, “Prefer those states in which as few calls
are blocked as possible”.

II. INFORMATION FOR ROUTING DECISIONS

The problem of choosing ‘‘good’ routes for information flow in a com-
munications network is vastly complicated by the difficult questions
surrounding the collection, updating, and relevance of information
(about the state of the system) on the basis of which routing decisions
are to be made. Thus, one of the items to be chosen in designing a rout-
ing scheme is the information on which the routing is to be based. In-
deed there is a whole spectrum of possible choices for this information,
from no information at all (except what is unwittingly discovered in
making call attempts), to full knowledge of the state of the connecting
network. Clearly, a practical compromise between total ignorance and a
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very expensive, complex scheme based on many data must usually be
made.

Our considerations in this work will be limited to the case of perfect
information, in which the microscopic state of the connecting network is
assumed known and available for making routing decisions. This case is,
of course, very far from realistic: few existing or envisaged systems utilize
even a small fraction of this possible information for routing. Indeed,
much of it is likely to be of very little relevance. Nevertheless, it is im-
portant to know what would be good routing if we could implement, it
and could afford it, so the full information case to be considered here
forms at worst a limiting situation for which some theory is available,
and a natural starting point for investigation.

III. ACCEPTANCE OR REJECTION OF UNBLOCKED CALLS

In the present discussion of the involved problem of routing calls, one
of the difficulties that arises deserves special mention. This difficulty is
the problem of deciding whether to accept or reject attempted calls
which are not blocked.

At first sight, it might seem that no unblocked call attempt should
ever be rejected. The natural argument for this view is that the whole
point of a telephone system is to complete calls, and that by rejecting
an attempt that could have been completed, the system only lowers its
performance. Sensible as this argument sounds, it is unacceptable be-
cause it turns out that whether rejection of an unblocked call improves
or lowers performance depends on the index of performance, on the dis-
tribution of traffic among the sources, on the “community of interest”
aspects of the system, ete. If the probability of blocking is used as an
index, the “bad” effect of adding a particular call in a given state of the
system may be so great and so lasting that it is better to reject the call,
and improve the chance of completing many later calls.

To put the matter another way, the problem of routing with full in-
formation seems at first to boil down to the question: “Which of the
paths available for call ¢ in state x should be used?” This form of the
problem overlooks the possibility that perhaps the best thing to do when
the state is x and ¢ is attempted is not to complete ¢ at all, but to reject
it! In other words, it assumes that, naturally, ¢ will be put up in state
x if it is attempted in x and is not blocked. This assumption has always
been made in previous applications of the model we use.!?

Conceivably, then, it is better to reject a call ¢ that is not blocked in a
state x. Thus the problem of routing should be phrased: “Should a call
¢, free and not blocked in state x, be completed, and if so, by which
route?”
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Tt turns out that answering the first part of the question, as to which
calls should be completed in which states, is often the hardest part of the
problem. Examples can be given in which it is fairly easy to solve the
route selection part of the problem, but for which the question of whether
a call should go in or not is not settled. That this question has substantial
practical import is apparent from the simulation studies carried out by
J. H. Weber,? which clearly show how in trunking networks prohibition
of circuitous routes (and thus rejection of certain unblocked calls) can
improve system performance.

J. H. Weber? has also remarked that the problem of deciding whether
an unblocked call should be refused is closely related to the distinetion
between trunking networks, used in toll systems to interconnect towns
and cities, and central office networks, used to interconnect trunks and
customers’ lines at a single location. An important combinatorial differ-
ence between the two types of networks depends on whether all calls
use the same number of links. This is usually the case in central office
networks, but rarely true in trunk networks. One result suggested by
this distinetion would be that a call should always be put up when all
calls use the same number of links, but that circuitous routes might be
profitably disallowed otherwise.

It appears then that network structure bears on the problem of what
calls to accept. However, examples can be given which show that even
when there is almost no network structure, other factors such as the dis-
tribution of traffic and the “community of interest” can make rejection
of some calls part of an optimal policy.

For example, if two lines calling at rates A1, A2, respectively, compete
for one trunk, the probability of blocking is

2MA2
M A+ 2]

if no unblocked call is rejected. If the calls of the line calling at rate \;
are always rejected, the probability of blocking (with rejected calls in-
cluded among the blocked) is

Mha + M
A A A

(We have assumed that all calls have unit mean holding-time.) It fol-
lows here that if

A > A4 A 4 A

then it is better to reject all A; calls than to put them all in! This exam-
ple, although somewhat unrealistic, illustrates how the distribution of
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traffic affects the rejection problem, even in the absence of network struc-
ture.

For an example involving the “community of interest”, consider two
disjoint sets of (n + 1) lines communicating over one trunk, with the
quirk that each set has a distinguished line which only attempts calls to
the distinguished line in the other set, while the other » lines of one set
only attempt calls to the n nondistinguished lines of the other set. Let
¢ be the call consisting of the two distinguished lines talking to each
other. If ¢ is always rejected, the probability of blocking is

14+ wmi(n — 1)°
n® 4+ Ani(n — 1)2°

where we have assumed that lines which call each other do so at rate A,
and holding-times have unit mean. If ¢ is always accepted when it is not
blocked, then the probability of blocking is

nn’ 4+ amin — 1)
2t 4+ 1 4+ n? 4+ Anri(n — 1)2°

From these formulas it follows that it is better to reject ¢ entirely if # is
large enough, or if A is large enough, while if A is small enough it is better
always to accept c.

1V. STATES, EVENTS, AND ASSIGNMENTS

The elements of the mathematical model to be used for our study of
routing separate naturally into combinatorial ones and probabilistic.
The former arise from the structure of the connecting network and from
the ways in which calls can be put up in it; the latter represent assump-
tions about the random traffic the network is to carry. The combinatorial
and structural aspects are discussed in this section; terminology and
notation for them are introduced. The probabilistic aspects are con-
sidered in a later section.

A connecting network v is a quadruple » = (G,1,2,8), where G is a
graph depicting network structure, I is the set of nodes of & which are
inlets, @ is the set of nodes of G that are ouilets, and S is the set of per-
mitted states. Variables z,y,z at the end of the alphabet denote states,
while 4 and » (respectively) denote a typical inlet and a typical outlet.
A state x can be thought of as a set of disjoint chains on @, each chain
joining I to Q. Not every such set of chains represents a state: sets with
wastefully circuitous chains may be excluded from S. It is possible that
I =, that T N Q = 8 = null set, or that some intermediate condition
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obtain, depending on the “community of interest” aspects of the net-
work ».

The set S of states is partially ordered by tnclusion =, where x = y
means that state @ can be obtained from state y by removing zero or
more calls. If z and y satisfy the same assignment of inlets to outlets,
i.e., are such that all and only those inlets w € I are connected in z
to outlets » € @ which are connected to the same » in ¥ (though possi-
bly by different routes), then we say that = and y are equivalent, written
T~ .

The set S of states determines another set & of events, either hangups
(terminations of calls), successes (successful call attempts), or blocked
or rejected calls (unsuccessful call attempts). The occurrence of an event
in a state may lead to a new state obtained by adding or removing a call
in progress, or it may, if it is a blocked call or one that is rejected, lead
to no change of state. Not every event can oceur in every state: naturally,
only those calls can hang up in a state which are in progress in that state,
and only those inlet-outlet pairs can ask for a connection between them
in a state that are idle in that state. The notation e is used for a (general)
event, h for a hangup, and ¢ for an attempted call. If e can occur in x we
write e € . A call ¢ € z is blocked in a state x if there isno y € § which
covers x in the sense of the partial ordering = and in which ¢ is in prog-
ress. For h € 2, * — h is the state obtained from x by performing the
hangup h.

We denote by A, the set of states that are immediately above x in the
partial ordering =<, and by B. the set of those that are immediately
below. Thus,

A, = {states accessible from z by adding a call}
B, = {states accessible from x by a hangup}.

Tor an event e € x, the set A, is to consist of those states y = x to which
the network might pass upon the occurrence of e in x. Thus, if ¢ isa
blocked eall, A.. = {6}; also

U Ahz = B.‘I:
hecz
UAd. = A4..

cEx
¢ not blocked in =

The number of calls in progress in state x is denoted by [z |. The
number of call attempts ¢ € x which are not blocked in 2 is denoted by
s(x), for “successes in a.”” The functions | - | and s(-) defined on S play
important roles in the stochastie process to be used for studying routing.
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It can be seen, further, that the set S of states is not merely partially
ordered by =, but also forms a semilattice, or a partially ordered system
with intersections, with x N y defined to be the state consisting of those
calls and their respective routes which are common to both = and y.
(See G. Birkhoff,” p. 18, ex. 1 and footnote 6.)

An assignment is a specification of what inlets should be connected to
what outlets. The set A of assignments can be represented as the set of
all fixed-point-free correspondences from I to Q. The set A is partially
ordered by inclusion, and there is a natural map y(-): § — A4 which
takes each state x € S into the assignment it realizes; the map v (-) is
a semilattice homomorphism of S into A, since

x =y implies v(z) =1 (),
v Ny) = v@) Ny@).

V. ROUTING MATRICES

It will be assumed throughout this work that attempted calls to busy
terminals are rejected, and have no effect on the state of the network;
similarly, blocked attempts to call an idle terminal are refused, with no
change of state. Attempts to place a call are completed instantly with
some choice of route, or are rejected, in accordance with some policy of
routing,.

Two mathematical deseriptions of how routes are assigned to calls
will be used. The first, the routing matriz, is convenient for writing the
Kolmogorov equations for the Markov processes representing network
operation. The second, called a policy, affords a convenient notation for
the actual determination of optimal routing methods for various net-
works to be described in detail later. Either description is a rule or
doctrine for routing.

A routing matrix B = (ry),x,y € S, has the following properties: for
each x € 8, let II, be the partition of A, induced by the equivalence
relation ~ of “having the same calls up,” or satisfying the same assign-
ment of inlets to outlets; then for each Y € II,, r., for y € Y is a possi-
bly improper probability distribution over Y, (that is, it may not sum
to unity over Y),

Yoz = S(JT) - E Tzy ,
YEAdy
and rz; = 0 in all other cases.

The interpretation of the routing matrix R is to be this: any Y € II,
represents all the ways in which a particular call ¢ not blocked in



OPTIMAL ROUTING IN TELEPHONE NETWORKS 1381

(between an inlet idle in 2 and an outlet idle in &) eould be completed
when the network is in state a; for y € Y, r,, is the chance that if this
call ¢ is attempted in «, it will be completed by being routed through the
network so as to take the system to state y. That is, we assume that if
¢ is attempted in x, then with probability

1— 2 s (1)

VEAeg

it is rejected (even though it is not blocked), and with probability r.,
it is completed by being assigned the route which would change the
state x to y, for y € A, . The possibly improper distribution of proba-
bility {rzy , ¥ € ¥} indicates how the calling rate A due to ¢ is to be
spread over the possible ways of putting up the call ¢, while the improper
part (1) is just the chance that it is rejected outright.

This description of routing matrices is a generalization of that used
in Refs. 1 and 2 in that it permits, in the nonvanishing of (1), the rejec-
tion of unblocked calls forbidden in the cited references.

Thus, a routing matrix R is any funetion on §° with o, = 0, r,, = 0
unless ¥y € A, ory = x, and such that

Tzz = s(;r:) - Z Fay

vedg

and

2 i £ 1,
YEAcr
for all ¢ € x not blocked in x. A routing matrix corresponds to a fized
rule if r., = 0 or 1 for x # y; otherwise it corresponds to a randomized
rule. The convex set of all possible routing matrices is denoted by C.
A poliey is a funetion ¢: & X S — S such that ¢,k € x imply

QQ(C,.I') € A U {l]
o(hyr) = a — h.

It is apparent that a policy is equivalent to a fixed rule; the circumstance
that ¢ (-,z) is defined also for hangups £ is useful in the sequel. Varia-
bles ¢, are used to denote policies.

The routing rules and doetrines that might be considered here are of
course more numerous by far than those we have introduced above.
In particular, time-dependent rules and history-dependent rules are
natural generalizations. However, since we will be considering only time-
invariant traffic and ergodic Markov processes as representations of
operating networks, such generalizations add little of significance.
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An important point, however, is that the routing methods here con-
sidered are based on a complete knowledge of the state of the system,
i.e., we postulate that we are in the case of “perfect information.” This
postulate is grossly unrealistic for present day electromechanical tele-
phone systems; for an electronic system with a very large and very
cheap memory, it becomes realistic: the state of the network can ac-
tually be stored and the routing rule in use represented by a giant trans-
lator. Such a procedure overcomes the obvious impracticality of deter-
mining the state by examination of the actual network, and is actually
used in the Bell System’s No. 1 ESS (Electronic Switching System)."

The routing matrices R used in Refs. 1 and 2 had the property that
if a call is not blocked in a state, then it is completed in some way; only
blocked attempts or attempts to busy terminals are rejected. Thus none
of these rules for routing resembles the methods that are at present
likely to be used in practice. However, since ' contains rules that reject
certain calls in certain states, even though these calls are not blocked, it
turns out that a large class of routing rules which do mirror what might
happen in practice is included in C.

Some of the simplest routing rules are not based on any knowledge
about the current state of the network. Given a call ¢ that has been
attempted, they provide a list of routes to be tried in order; the first
route found available is used for the call. The list may include all possi-
ble routes for ¢, or only some of them. It is easy to construct a routing
matrix to represent such a rule. Let r1, 7., - - -, 7, be the routes to be
tried for a call ¢. For each state 2 in which ¢ can occur, let r;, = 1 if
use of the first »; that is available in x takes the system from z to y,
and let r, = O for all other y € A, . If no route for ¢ that is available
in x is among r1, - - - , r», then ¢ is rejected in x even though it may not
be blocked, simply because the “sieve” for finding routes is too coarse.

It was assumed in the previous paragraph that no information about
the state was used. If it is known, e.g., in which element A of a parti-
tion II of § the state currently is, a similar rule can be represented by a
class of lists (of routes to be tried in order), one for each A ¢ II. The
same kind of construction then yields the appropriate R. Here the A
such that z; € A is acting as the “information state.”

Thus, many R from C which reject certain calls in certain states de-
seribe a rule which closely resembles what is done in practice, e.g., in
the translator of the Bell System No. 4A crosshar switching system.

VI. PROBABILISTIC ASSUMPTIONS AND STOCHASTIC PROCESSES

A Markov stochastic process x, taking values on § is used as a mathe-
matical description of an operating connecting network subject to random
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traffic. It is assumed that this operation is in accordance with one of the
routing matrices R of Section V. The rest of the process x, is based on
two simple probabilistic assumptions:

(7) Holding-times of calls are mutually independent variates, each
with the negative exponential distribution of unit mean.

(#7) If w is an inlet idle in state 2, and v # u is any outlet, there is a
(conditional) probability

Mo+ o), A>0
that « attempt a call to v in (¢, + k) if 2, = x, as h — 0.

The choice of unit mean for the holding-times merely means that the
mean holding-time is being used as the unit of time, so that only the
traffic parameter A needs to be specified.

It is convenient to collect these assumptions and the chosen routing
matrix R into one transition rate matrix @ = (g.,) characteristic of z, :
this matrix is given by

1 if y € B:
€

A?'zy if Y Az

oy = - (2)
el = As(e) —rd iy = a
0 otherwise,

In terms of the transition rate matrix €, it is possible to define an ergodic
stationary Markov stochastic process {z,,{ real} taking values on S.
The matrix P (t) of transition probabilities

P, () = Prive =y |2 = 2}

satisfies the equations of Iolmogorov
TPy = QP() = PWQ, Q) =1,

and is given formally by the formula
P(t) = expiQ.

Since the zero state (the state with no calls in progress) is accessible
from any state in a finite number of steps with positive probability, the
process has only one ergodic class, and there exists a unique nonnega-
tive row-vector

p=1{p:,x € 8
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such that ast — «

and p satisfies the “statistical equilibrium” or stationarity condition
p'Q = 0, which can be written out in full in the simple form

(o] +As(2) = Medlpe = 20 o+ X 2 s, @ €S
v T VEB

It is possible that a confusion arises in the mind of the reader as to
whether we are talking about central office connecting networks or large
trunk networks such as the toll system. For in telephone traffic theory
these two areas of application are often described by different models:
a “finite-source” model like the present one, in which the conditions of
the inlets and outlets form a significant part of the state of the system,
is commonly used for the former; an “infinite source” model, with groups
of customer’s lines reduced to Poisson sources of traffic, is frequently
used for the latter. The reason for this difference is that it has simply
turned out to be sufficient, in the toll case, to restrict attention to the
trunking network as the object of principal interest, and to use the sim-
pler Poisson description of sources.

In principle, of course, the model to be used here serves to describe
either area listed above, although in the toll case it naturally demands
use of a very large number of states. Thus, in the sequel we make no at-
tempt to distinguish the toll case from the central office case. This view-
point is justified by the fact that the results to be obtained are robust
under passage from finite- to infinite-source models, or they can be re-
formulated and reproved in the infinite-source context.

VII. FORMULATION OF THE ROUTING PROBLEM

The most common figure of merit used by telephone traffic engineers
for evaluating connecting networks is the probability of blocking, the
fraction of call attempts that are blocked. It is natural, therefore, to use
this quantity as the objective function in our optimization problem of
routing. It has been shown? for the process z, to be studied here that if
no unblocked call is rejected the probability of blocking (in the mnemonic
form Pr{bl}) is given in terms of the stationary state probability vector

p by the formula
E pxﬁa: ’

Pripl) = P8
r{bl} sza:: Pa

ze8
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where
8. = number of idle inlet-outlet pairs that are blocked in state z,
a; = number of idle inlet-outlet pairs in state x.

By the same methods it follows that for a process x, defined in terms
of an R € C the fraction of attempted ecalls which are not completed
(are “lost””), be it because they were blocked or simply rejected, is
given by

p(B+ 1)
Y
where r = {r,,,x € S} is the diagonal of the routing matrix R.

We can now replace the informal problem of minimizing, by suitable
routing, the fraction of call attempts that are lost by a precise problem
of mathematical programming, as follows: Choose B € (' so as to achieve

!
min p_(ﬁ ,+ r)
P
subject to p'Q = 0, p'l = 1, and p = 0. (The ‘I’ in “p’1’ is the vector
with all components 1.) Of the constraints, the first is the equilibrium
condition on p, the second states that the components of p sum to one,
and the third says that p is nonnegative. It is understood, of course,
that @ is to be related to R by (2) or, what is the same, by

Q = H+ MR — diag (Jz | + As(z) + M) = Q(R),

where H = (hg,) is the “hangup matrix” such that h,, = 1 or 0 ac-
cording as y € B, or not.

Several authors have formulated routing problems for communica-
tions systems. Many of these problems have dealt with systems of the
store-and-forward type, in which information is alternately stored at
and transmitted from a node in the network without setting up a “con-
tinuous path” from source to destination. Such formulations are inap-
plicable to telephone systems. A possible exception, though, is that’
of R. Kalaba and M. Juncosa which, for a given amount of traffic be-
tween each specified source and destination, and a given network having
capacity constraints, attempts to find continuous routes that are best
in the sense of maximizing the delivered traffic by solving a linear pro-
gramming problem.

In its possible application to telephony, this model envisions a given
traffic pattern (i.e., a description of who wants to talk to whom) to be
satisfied at a particular moment, and tries to find a way of routing as
much of this traffic as possible through the network. In our terminology,
a traffic pattern is an assignment a (-), and satisfying it means finding

¥
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an € S such that v (x) = a. The amount of traffic carried is simply
the number | z | of calls in progress. Of course, it is not always possible
to satisfy an assignment. Thus, Kalaba’s and Juncosa’s formulation
translates into our setup as follows: Given an assignment a(-) either
find x € § with ¥(x) = a, or else if a(-) is unrealizable, find x € S
which realizes as much of a(-) as possible, i.e., such that v (r) = a and
| # | is a maximum. This can be rephrased as follows: If a(-) is given,
form the cone

K=K@ ={a: a = df,

and within v~ ' (K) pick a state ¥ that is maximal in that |2 | = |y |
foreach y € v ' (K).

It is to be emphasized that this problem is markedly different from
our form of the routing problem. The former is purely combinatorial in
character. There is no parameter such as the traffic A per inlet-outlet
pair, so the problem involves no probability, and can have nothing to
do with the “grade of service” as customarily employed by telephone
engineers. Furthermore, the whole formulation overlooks the fact that
in present systems call completions must be made without disturbing
calls already in progress.

VIII. PRINCIPLES OF ROUTING

It is important to distinguish methods of routing from principles of
routing. A method of routing is a specific way of accepting or rejecting
attempted calls and choosing routes in a particular system, e.g., that
implicit in the translator of the Bell System No. 4A crossbar switching
system. A principle of routing is a kind of general prescription of what
constitutes* “good” or “optimal” routing; it is the backbone of many
routing methods that might be based on it.

A principle of routing is particularly useful if it has two properties:

(9) It is relatively simple and intuitive to state.
(iz) There is a substantial class of systems for which it deseribes
the (or part of the) optimal routing method.

In our mathematical setting a method of routing corresponds roughly
to arule R € €. We shall see that the “best” rule R ¢ C can be ob-
tained by solving a linear programming problem. Now if it should hap-
pen that for an interesting class of networks the solutions of these linear
programs had some common characteristic, some combinatorial property

* Or, more usually, of what someone’s intuition tells him constitutes.
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of the sets of states of the networks that served as an alternate deserip-
tion of the linear program solution, then this characteristic or property
could be abstracted into a genuine principle of routing.

Alternatively, one could formulate as conjectures some intuitive prin-
ciples of routing, and then try to determine for what classes of networks
(if any!) these principles did, in fact, describe the optimum routing
methods. This second approach will be followed in the present work; the
rest of this section is devoted to a discussion of some a priori reasonable
candidates for “good’” routing rules. All of these candidates are expres-
sions of one and the same idea, namely, that one routing rule is better
than another if it avoids more “bad” states, where a “bad” state z is
one for which g, is high. This idea is not just an attractive first approxi-
mation to “good” or even optimal routing; it leads at once to conjectures
for which our results later in the paper provide strong support in precise
ways.

In spite of the lack of general theoretical knowledge about routing,
traffic engineers have developed various conjectures and intuitive ideas
about what might constitute “good” methods for choosing routes. These
conjectures are a natural starting place for any rigorous approach to
routing, because the formulation of precise theoretical models in which
routing can be studied at once raises the question, “Which of these
methods, conjectured to be good, can be proved to be optimal in some
theoretical model?” Since many of these methods are relatively simple
to deseribe, and hence to mechanize, established answers to this question
would have immediate practical applications. Some of these conjectures
will now be discussed.

It is apparent that in a telephone system, putting up a new call can
only increase the number of idle pairs that are already blocked. Another
way of saying this is that in giving service, i.e., in realizing an attempted
call in a connecting network, one is possibly denying service to certain
inlets and outlets presently idle, who might attempt a call in the very
immediate future. This observation has given rise to a number of routing
rules (for systems with blocked attempts refused) of great intuitive
appeal, which can be described collectively by the admonition: To de-
crease (minimize?) the probability of blocking, put in new calls in such
a way as to minimize the additional congestion resulting from the new
calls.

It is illuminating to discuss particular forms of this advice. One form
is this: Route new calls through the most heavily loaded part of the net-
work that will accept them. Another is: Put in a given new call so as to
minimize the chance that the next attempt to place a call be blocked.
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Or: Avoid blocking states, that is, prefer states in which fewer idle
pairs are blocked.

For all the intuitive appeal possessed by these rules, rather little is
known about them. Nevertheless, they provide conjectures that will be
examined in the precise setting of our theoretical model to yield, we hope,
the beginnings of a mathematical theory of optimal routing. Let us see
what these rules enjoin in terms of our model. If we put up a call ¢ so as
to take the system to a state y, the chance that the next event is a blocked
call attempt is

By
| Yy | + Aay

Suppose that we just left state x, so that y € A,. . This probability will
be smallest if ¥ was chosen according to the “maximum s(-)” policy,
that is,
s(y) = max s(z),
zE€der
Le., if we prefer states in which fewer idle pairs are blecked. Thus, in our
model the second two forms of the above advice coincide.

Another conjecture arises out of consideration of gradings in which
calls overflowing certain primary routes are pooled and offered to over-
flow circuits. Here a natural expectation is that one should always ““fill
the holes in the multiple,” meaning by this that a primary route should
be used whenever possible, so that the overflow is left available to as
many lines as possible. It will be shown for certain examples that if calls
are accepted unless they are blocked, then this rule both describes the
optimum routing choices, and is equivalent to the “maximum s(-)”
policy of the previous paragraph.

IX. SUMMARY AND DISCUSSION

In Sections I to VII the problem of routing calls in a telephone net-
work has been formulated as a mathematical one within Erlang’s basic
traffic theory. Some routing rules which are intuitively reasonable can-
didates for “good” or even optimal routing were described in Section
VIII.

Since the expansion of {p,;,z € S} such that p'Q = 0, p > 0, is
known,'? it is natural to start in Section X with a consideration of
Pr{bl} for low traffic: A — 0. We have

[ =]

Pz=1}0|)\,c—|,?'z+0(7\u'), A—0,
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where r, 18 the number of strictly ascending (in <) paths from 0 to z
which are permitted by R. If x is a blocking state it contributes a term

pBe N7l
p'a Po |2]!p e

to Pr{dl} if no calls are rejected. It follows that for sufficiently low traffic
the policy that minimizes r, is optimal within the policies that reject no
calls. In a similar way, it can be shown that always refusing a call ¢
cannot be optimal for M sufficiently small, and that there is never any
point in rejecting a call attempt in a state x with

+ oM™, A—>0

|| <min}|yl|: y € 8,8, > 0},

for A small enough.

The nonlinear problem of choosing R to minimize Pr{bl} is reduced to
a linear programming problem in Section XI. This reduction substan-
tially facilitates obtaining numerical results, examples of which appear
later in this summary.

In an effort to identify optimal routing policies, attention now (Sec-
tion XITI) shifts away from the formal linear programming approach to
the underlying Markov process. It is shown that minimizing Pr{bi}, and
maximizing the fraction of events which are successful call attempts,
are equivalent; this fact leads to a direet dynamic programming ap-
proach, in which

min  Pr{bl}

kRecC
and

lim 7» ' max E{number of successful call attempts in n events)
(with the maximum in the second expression over all possible policies
forn events) are both achieved by essentially the same stationary policies.
The word ‘essentially’ hides the inherent nonuniqueness of optimal
policies due to symmetries in the network and to the possible presence
of transient states.

In Section XIII it is shown, following C. Derman, that minimum
blocking is achieved by a fixed rule.

The mathematical programming problems arising in this new approach
are again of the linear programming type, and are similar to those arising
in Section XI. Our principal interest, however, does not remain with
calculating numerical solutions, but shifts abruptly to the relationships
of these solutions to the combinatorial structure of the network. Thus,
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the second half of this paper consists less of suitable programming prob-
lems than of intuition and combinatorics applied to exhibit (in parte or
in toto) the solutions of these problems and their dependence on and origin
in network structure.

The attempt to discover and characterize optimal policies in a whole-
sale way by appeal to network combinatorics (rather than piecemeal by
numerical caleculation) begins in Sections XIV and XV with considera-
tion of some simple examples; these lead to the introduction of some
“monotone” properties (of connecting networks) which impose the con-
dition that (roughly) the relative merit (as far as blocking is concerned)
of states is consistent or continuous, i.e., that if a state x is “better”
than another y, then the neighbors of z are in the same sense “‘better”
than the corresponding neighbors of y.

Consideration of these properties is justified by the facts that ()
they appear in the examples, and (i7) they yield a series of closely knit
results (Theorems 7-15) that go far to bear out the heuristic guesses in
Section VIIT about the nature of good routing. In particular, in a net-
work with one of the monotone properties, a policy which rejects no
unblocked calls and minimizes the number of additional calls that are
blocked by completing an attempted call differs from an optimal policy
only in that the latter may reject some calls. In other words, the “max
s(+)” policy is optimal to within rejection of calls.

Each monotone property gives rise to a corresponding isotony theorem
which gives a numerical expression to the relative merits of routes for
calls that are implicit in the purely combinatorial monotone property.
The relevance of these isotony theorems to optimal routing is explained
heuristically in Section XVI. The theory culminates, in Section XVIII,
with two optimal routing theorems based on the monotone properties.
When one of these properties obtains, these results completely answer
the question: Which route should be used for an accepted call when there
is a choice of routes? Determining the extent to which these combina-
torial properties occur in networks of interest appears to be the next
major problem in any continuation of the present study.

It is to be stressed that the monotone properties we introduce serve
only to identify the route that a call should take if it is to be accepted;
they do not in any way help to decide which ealls should be accepted.
Except for the low-traffic results of Section X, and the (obvious and
easily proved) fact that in a nonblocking network no call should be re-
jected, the problem of acceptance or rejection of calls remains an enigma.
Some light on it is shed by the numerical results that immediately follow
this summary.
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The paper concludes in Appendix A with the remark that if the per-
formance index is modified so as to put greater emphasis on “early
blocked attempts”, i.e., ones occurring soon after the system is started,
then no calls should be rejected. The result is proved in detail for this
index: the expected number of events until the first blocked attempt.
Such a eriterion corresponds to trying to avoid the undesirable event, the
blocked call, as long as possible.

We turn now to numerical results obtained by solving the linear pro-
gramming formulation of Section XTI for two simple networks. The first
is the three-stage Clos network with 2 X 2 switches depicted in Figs. 1
and 2, and already considered as an illustration of routing in Refs. 1
and 2. The second is a 6-line to 4-trunk concentrator in which each line
has aceess to 2 trunks; it is shown in Figs. 3 and 4. In this second case,
the probabilistic model was modified to make A > 0 the calling-rate per
idle line, rather than that per idle inlet-outlet pair.

In each example, both the minimal probability of blocking, and the
probability of blocking under random routing, were calculated for several
values of A by use of the LI’30 program. To be more precise, two linear
programming problems were solved for each example; the first deter-
mined the optimal policy, the second determined the optimal policy
among those policies which assigned random routes to accepted calls.

Several important qualitative features of the optimal routing policy
were the same in both examples and are described together in the follow-
ing list:

(#) The optimal policy rejected no calls.
(72) The routes assigned by the optimal policy coineided with those
that keep s(-) as large as possible.
(727) The optimal policy was the same for all values of the traffic
parameter A examined.
() The improvement over random routing brought about by optimal
routing decreases as the traffic X increases.

= 2x 2 SWITCH

Fig. 1 —3-stage Clos network with 2 X 2 switches.
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DARAS

1

0 OO

Fig. 2 — States of 3-stage Clos network of Fig. 1.

Under the constraint that accepted calls be routed at random the op-
timal policy was again to accept all unblocked attempted calls.

Results for the Clos network are given in Fig. 5 and Table L. It is ap-
parent that for low A optimum routing gives a loss that is easily an order
of magnitude less than that due to random routing. At high values of
 the difference all but disappears. This behavior is explained in part by
the fact that there is no blocking in the “upper” states of Fig. 2; when
X is very large the system spends all its time in these states; when X is
low, however, the occasion for a choice between states 2 and 4 often
arises and a correct choice makes a significant difference. (At very low
values of A the difference will again decrease because only state 1 will
ever be visited with any frequency.)

Results for the concentrator are shown in Fig. 6 and Table II. They
include a numerical comparison with hand-ealculated loss figures from
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unpublished work of S. P. Lloyd dated circa 1953. At that time Lloyd
studied this particular concentrator model, correctly guessed the optimal
policy, proved its optimality for low A, and caleulated the loss for some
values of A. This example exhibits the behavior, conjectured in Ref. 2,
p. 275, that a good (here, optimal) policy make certain “bad” states
transient states. The state numbered 9 is such a transient state under the
optimal policy found numerically by the linear programming method.

The present study of routing in telephone networks has suggested a
number of conclusions and conjectures:

(1)

(i7)

(iii)

(w)

The problem of optimal routing of calls in telephone connecting
networks (with full information) can be formulated and solved
with Tirlang’s classical theory of traffic. In this endeavor, the
contrasting techniques of machine caleulation and combinatorial
analysis can be employed either as alternative methods or as
complementary approaches.

The problem separates into two parts, that of deciding which
calls to accept, and that of choosing routes for accepted calls.
Analytically, the first part appears to be much harder than the
second, which frequently has a simple intuitive solution closely
related to the structure of the network.

Posed within Erlang’s theory, the routing problem can be reduced
to a (usually very large) linear programming problem and at-
tacked numerically, or studied in terms of Markov decision proc-
esses and dynamic programming,.

In an apparently wide class of connecting networks, certain
natural monotone properties and some isotonies based on them

TRUNKS

LINES —

-

#(—

Fig. 3 —6-to-4, 2 access concentrator.
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—_———

EDGES = LINES
VERTICES = TRUNKS

—_— ARROW POINTS TO
TRUNK IN USE

/;\/\

Fig. 4 — States of 6-to-4, 2 access concentrator.

are the key to choosing optimal routes for accepted calls. The re-
sulting optimal policies are remarkably easy to describe and to
instrument; they agree fully with some of the conjectures de-
veloped over years of practical experience in telephony; they are
even robust under changes of performance index. Naturally,
each example studied here involves a very small network. Never-
theless, the fact that the monotone properties turned up in each
of a substantial number of small networks of diverse structure
suggests that they are also present in larger ones. Whether this is
so is a topic for future research. In any case, the examples we
offer indicate that the theory of routing here developed applies
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equally well to central office networks and to various gradings
and concentrators.

In the interesting area of low traffic, optimal routing can be as
much as an order of magnitude better than random routing;
with high traffic the advantage decreases rapidly. In all the ex-
amples studied, the optimal routing policy was independent of
the traffic A; this suggests that in most cases the optimal policy
is basically a combinatorial feature of the network alone, and is
probably optimal in many probabilistic models of network opera-
tion.

There are situations in which attempted calls should be rejected
even though they are not blocked. Simple examples of this
phenomenon all seem to be rather unnatural; but J. H. Weber?
has discovered it numerically in trunking networks, and has sug-
gested! that it is associated with unequal lengths of paths for
calls. The examples we studied numerically in the present work
did not show it; but they had the property that all paths for calls
were of the same length. We conjecture that there is a large class
of “regular, well-behaved, normal, ete.” networks in which no
optimal policy rejects an unblocked call, and that in general oc-
casions on which such calls should be rejected are rare. Even if
they occur in practical central office networks, these occasions

- ] |

el AN
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[
0008 ——1—/A 1 —— i
|

I /OPTIMAI_
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01 |
0.005 0.01 002 005 0.1 02 05 1 2 5 10 20 50 100

Fig. 5 — Pr{bl} for Clos 3-stage network with 2 X 2 switches.
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TaBLE 1 — ProBasiLity oF Brocking For Cros 3-Stace 2 X 2
NeErwork ror OpTIMAL AND Ranpom Rouring

Pr(bl}
A
Optimal Random

0.01 0.00000181 0.00018319
0.05 0.00015926 0.00334468
0.1 0.00087324 0.00960844
0.2 0.00376107 0.02259477
0.5 0.01593861 0.04807122
1.0 0.03146853 0.06360424
2.0 0.04381783 0.06670098
3.0 0.04584041 0.06206897
5.0 0.04233249 0.05152606
10.0 0.03115608 0.03463135
30.0 0.01405820 0.01459520
50.0 0.00901346 0.00922144
100.0 0.00475109 0.00480733

0.3
0.2 /
v
/
008 - RANDOM /‘{
o 1/

/

04 /4‘
/ OPTIMAL
-

0.02

soost /.
/

0.006
d

0.005

0.004 L1l
0.1 02 03 04 06 081 2 3 4

A

Fig. 6 — Pr{bl} for 6-to-4, 2 access concentrator for random and optimal routing.
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TaBLE II — ProBaBILITY OF BLOCKING FOR 6-To-4, 2 AccEss
CoNCENTRATOR FOR OPTIMAL AND Ranpom Rourting

Optimal
A Random
(S.P. Lloyd) (Author)
0.1 0.0049 0.00536231 0.00864729
0.2 0.02093718 0.02972292
0.4 0.0716 0.07170622 0.08856109
0.7 0.1628
1.0 0.2478 0.23154056 0.24943320
2.0 0.4498 0.44971622 0.46141067

probably should be taken seriously (by a company committed to
giving service) only if they are demonstrably associated with
large amounts of congestion or a near-breakdown in operation.
Hence, finding optimal policies to within rejection of calls may be
considered a “practical” solution of the routing problem originally
posed.

X. SOME COMPARISON THEOREMS FOR LOW TRAFFIC

There are two ways in which a theoretical analysis can substantially
further progress in the problem of routing: (#) by means of local compari-
son theorems that establish that one method of routing is better than
another, and (¢7) by means of global optimality theorems that exhibit (in
part or overall) one or more optimal policies which actually achieve the
best possible value of the performance index in use. In this section, we
prove some comparison theorems which are valid asymptotically as the
traffic parameter approaches zero. At first, we restrict the analysis of the
present section to the casel:? in which no unblocked call is rejected if it is
attempted, so that we avoid the difficult question of deciding whether
an attempted call that is not blocked should be completed or rejected.

For a first glimmer of insight, we shall examine the formula

’
Pty = L2, @ = @R),  Ra fixed e
valid when no unblocked call is rejected, in the very common situation
in which there is an integer greater than zero, n say, such that there is
no blocking in states with fewer than » calls in progress, and there are
states with n calls in progress in which some calls are blocked. In this
case it is known'” that
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P8 = po X e+ o(\),
N |z|=n

(3)

n k k—

N "
pla= PGEEIJOOU-I‘O(?\ )

k=0

2
as A — 0, where'

Il

number of paths on S ascending from 0 to x and permitted by R

(Rlxl)ox
the 0,2 entry of the | z |-th power of R, “)

72

Il

and

a; = number of idle inlet-outlet pairs in a state having j calls in
progress.

(We recall that for the important cases of one- or two-sided networks
az = ajz = aj for all x with |z | = j.) It follows from (3) that for
small A the leading term is critical: the blocking will depend principally
on how easy it is to reach a blocking state from the zero state, with this
‘“eage’’ measured by the number

Z T.TBQ! = (RRB)U

lz|=n

= the number of ways in which a blocked call can arise with-
out having any hangups, starting at zero.

If the matrix R is not fixed, but allows some random choices of route,
then this quantity can still be viewed as the “expected number of ways
in which a blocked eall can arise without having any hangups, starting
at zero.” It is apparent that this number is given by f,, where the
numbers {f., | x| = n} are defined by the nonlinear recurrence

61 |$I=ﬂ

Jz = > min f, |z| < n
cEx VEAer
¢ not blocked in z

Indeed we have the result:

Lemma 1:

> mB.=fo for ReC

lz|=n

Proof: Let R be given and let
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d = 2 rad, x| < n. (5)

WEAL

We prove the stronger result that d, = f. . It is clear that

do= 2 r:Be, de=[: for |z|=n

lz|=n
Ifd, = f,for |y| =k + 1, thenfor |z | = k

d:c = Z T-rudu g Z 'AI.'.'Jrif

yedy vedg

I\

> min f, = fz.

cidlein z yedgy
¢ not blocked in z

We shall say that B € (' puts & € S on an ascending path to a state
zif and only if Ay, - - -,y with yo = 0, |y | = 7,y = 2, and ryy,,, =
lfori =0,--+,]z| — 1, and & > 0 is among y1, -+, ¥, - Let D
be the subset of all fixed rules R € C such that it |z| = n, and if R
puts z,y with ¥ € A, on an asecending path to z, then 7, = 1 only if,
with ¢ = y(y — z),

fy = min f,.

wedex

The numbers {f. , | # | = n} are the key to optimal routing for low values
of A, or to put it more picturesquely, they are the key to staying as far
away as possible from the blocking states in {x: |a | = n}, which are
the ones that provide the leading term in Pr{bl} as A — 0. We have

Theorem 1: Let R € D and R* € (' — D. Then for all X small enough
Priblir < Pribi}e«.

Proof: Let d.” be defined in terms of R* according to (5) used in Lemma
1. Since R* ¢ D, there exist 2,,¢, and ¢ > 0, such that

Yy € 113, ’Y(U' - .l‘) = 7‘211* =1

f, 2 min f. + &, (6)
z€dez
and a maximal chain 0 = wo, %1, ¥, -, Yz, Yz = 2 ascending

in £ such that
* =1, i=0,---,|x| = 1.

Twivis

Now, using d* = f,
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d:c* = Z "".'sz*dz*

z2CAx

I

> retdt + S,

Az~ (v}

f= + ¢

v

the last inequality a consequence of d* = f and the definition of f. Simi-

larly, if dy,,,* > fu.,,, then
d,,‘.* = Z ?'ysz*dz* + du.-H*
Ayi—(¥it1)
> fyi*'

Since o = 0, we have di* > fo.
Setting a = fy, a* = dy", and
n Ak—'n. k—1

=0 - §=0

we have the asymptotic forms

Pr{bl), = gi :
Pr{bljp = %:f_g

with £,8,¢*,6* all (1) as A — 0, and @ < a*. Since b increases as A — 0
(@ —a* + ¢ — )b < a*s — ad™ + £ — "
for all A small enough. This is equivalent to
ab + eb + ad* + &8 < a*b + £*b + a¥5 + £%5,

a+8<a*—|—e*
b+ & b+ 6*°

and proves the theorem.

Low traffic analyses of the kind just employed can also shed some
light on the problem of rejecting or accepting unblocked calls. For ex-
ample, if a call ¢ is always refused in every state, then

Tor = 1

and
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_p(B+r) 1498
pa  ~  pa

Pr{bl}

1
—— as A—0,
oy
However, if no unblocked call is rejected, then Pr{bl}] — 0 as A — 0.
Thus, always refusing ¢ cannot be optimal if A is sufficiently small.
For another example, suppose as before that

n = min{|y|: B, >0} >0,
vES

and let ¢ be a call which is refused by R in some state  with |2z | < n.
It is easy to see that for the rule R
A Izl
prioly z = T OO
ap + OO\)

On the other hand, if the rule R, refuses no unblocked calls,
K"’ L n
Pr(pl) = at g, " P o0
o + O()\)

where the superseript 1 indicates that Ry supplants £ in (4). For A
small enough, then

A A\ m

— Tz > — T B

[11:“ n! |y[z:'n v Y
and R, is better than R. Thus, there is never any point in refusing an
unblocked call attempt made in a state 2 whose norm or dimension is
less than the minimum norm achieved by the blocking states, if A is
small enough.

XI. REDUCTIONS TO LINEAR PROGRAMMING PROBLEMS

Our effort to choose, with full information about the state of the net-
work, routes for new calls so as to minimize the probability of blocking
has led, upon the assumption of a simple probabilistic description for the
traffic, to this problem of mathematical programming: To minimize

P (ﬁ ’+ "') (7)
pa
subject top = 0,p'1 = 1,pQ =0,Q = Q(R), R € C.
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It is relatively easy to see that this problem can be formulated as one
that has a bilinear (or linear fractional) objective function, and linear
constraints. We change variables to U = (u,) and u., defined by

Uzy = Pzlzy x,y € S, Yy - A.r
Uez = Pz — Euzy c € X, Aez?éa,

VEAcx

Uzz = Z

cEz
¢ not blocked in =

Uez -

Conversely, we introduce p in terms of U/ by setting

[l > U if s(z) =0,

‘Z‘I yEB,

Pe = Tun + D Um
t—_?é:e)—“’——' if s(x) > 0.

If ¢ is a call which can be completed in state z, then A,; # 8, and

hzuzy

VEAdeg

is the equilibrium rate at which e is completed in state 2, and

Miez = APz — A D Uz

yeAdss

is the equilibrium rate at which ¢ is rejected in state x.

The transformation of variables from p to { U,u..} necessitates adding
additional constraints if a sensible problem is to result. Evidently, for
¢ € 2 not blocked in @

Pz = Uex + Z Uzy .

yEAdex

The left-hand side does not depend on ¢. I'or different ¢ € & not blocked
in x all these formally different ways of calculating p, must agree, and
it 1s, therefore, necessary to impose the additional constraint that

e € y(Aew — ) =vly: y=2—2a for z€ A.} implies
'urz+ Z Uzy = Uerz + Z Uzy «

VEAx VEAcr

The condition p'Q = 0 then gives the condition, for s(z) > 0,

M (u.,, + > uzy) + ygz Uy = D (uyy + ;é, um)+ N2 Uy

3(;5) VEAz yEAz vEB;
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to be satisfied by U. Naturally, the condition U = 0 is imposed. We
define R in terms of U/ by

0 unless y € A, or y=ux,
o Uay .
Toy = 4 Uzz + Z Uyz if y € 4.,
zEAg
s(z) — Z Ty if y=uw
VEAg

The normalization condition p'l = 1, finally, amounts in terms of U to

D = Z Uy + Z (u“—l_ygz uzy)

g (x)=0 l.’UI wEB a(z)>0 3(3:)

In terms of U the objective function is
X2 B > Ut 2 P (uu + 2 ux,,) + Uz

a(m=0 |2 JEB. s (2750 8(T) VEAs

=T et % S(E) (u._.=+ 2 u;u)

s(z)=0 M VEBy s(z)>0

It is possible to describe linear programming problems which are
equivalent to our nonlinear pmblcm of optimal routing. Two ways of
reducing (7) to a linear programming problem w11[ now be discussed.
The first is due to A. Charnes and W. W. Cooper.” Let ¢ = tp, where
the sealar t = 0 is to be chosen so that ¢'a = a, with @ > 0 a specified
real number. Consider now the “‘adjoined” linear programming problem
of finding q,t,r minimizing ¢ (8 + ), subject to ¢t = 0, 1 —t=0,
qQ = 0,da=aQ=Q(R),r = 7(R) = {rez,x € S}, R € C. (The
argument just described shows that the constraints are linear.)

Theorem 2: For any a > 0, if ¢,t,r is a solution of the “adjoined” linear
problem, then p = ¢/t is a solution of (7).

Proaf: Tt is necessary to show first that indeed { > 0. Suppoe,e 0,7 is a
solution. Then ¢'l = 0 and ¢ = 0 imply ¢ = 0, so that ¢a = 0; but
qa=a>0Hen('e t>0

If p'Q = 0 and @ = Q(R), we use 7, to mean the vector {rez, ¢ € S}
Now suppose that there is a solution p of (7) for which

:D(B+1 ) B+ _dB+1) (8)

pa qa a

Now p'a > 0, because for any R € (' the corresponding value of po
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(0 = zero state, with no calls up) is > 0, and ay > 0. Hence, there is a
8 > 0 such that p’a = 6a. Consider § = 6 'p, { = 6. Then
0'p'a = fa=a
and §,i satisfy ¢,f = 0, §{Q = 0, §1 — { = 0. But,
-1 _/

p'B+rm) 0P B+ _dB+r)_dB+r)

pa p'a - §a a
Hence, (8) implies §' (8 + r,) > ¢' (8 + r), because a > 0. This contra-
dicts the optimality of ¢,t,r for the “adjoined’ problem.
A cognate reduction to a linear programming problem can be ob-
tained from a lemma of C. Derman,’ included for completeness:

Lemma 2: The nonlinear function
!
cx
glx) = 'z
can be minimized subjecl to x = 0, Ax = b, by solving a linear program-
ming problem if (i) Av = 0,2 =Z 0implyxr = 0and (@) x = 0, Az = b
imply d'z > 0.

Proof: Conditions (7) and (i7) imply that the transformation

d'z
1
d'z

is one-to-one between {x = 0, Ax = b} and z satisfying z = 0, d'z = 1.
and Bz = 0, where

B = (Ab).

Under the transformation g(z) becomes a linear function. It can be
verified that (¢) and (#7) of Derman’s lemma apply to the routing prob-
lem (7).

XII. REFORMULATION AS A MARKOV DECISION PROCESS

In Section VII the problem of optimal routing was cast as that of
minimizing the probability of blocking, a bilinear or linear fractional
functional of the equilibrium probability vector p, subject to linear con-
straints. In Section XI it was shown how this problem could be reduced
to a linear programming problem which, however, is at best only sug-
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gestive in identifying optimal policies. We shall now state an elementary
probabilistic result which implies that minimizing the probability of
blocking, and maximizing the fraction of events that are successful at-
tempts, are equivalent. This fact permits a direct dynamic programming
approach through Markov decision processes, and again leads to a linear
programming problem, with the difference, though, that it actually
enables us to study optimal policies for many cases, to be described.

Theorem 3: Let p be an equilibrium probability veclor for a process &,
resulting from use of some rule R € C. Let

m = 2. |z |p. = average number of calls in progress
Xes

then both
1

1 — Pribl} = - ,
1+RP@:ﬂ

and

1
P ACEN
m

Fraction of events that =
are successful attempts

Proof: For the first formula with s = {s(x), € S}
Pribl} = p’(ﬁ + 7) P’(.B +r)

pa  pl—1) +pB+7)
and Ap’ (s — r) = m, since the average rate of successes must equal that
of hangups, in equilibrium, and « = 8 + s.

The second quantity is

average rate of successes _ Ap'(s — r) _ m
average rate of events m + Ap'a 2m + Ap' (B + 1)

An immediate consequence is:

Theorem 4: Maximizing the fraction of events that are suecessful attempts
1s equivalent to minimizing the probability of blocking.

The value of the preceding observations is that we can now reformu-
late the routing problem as an effort to maximize

lim 1 E{number of successful attempts in n events},

n-+w
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the asymptotic rate of successful attempts when time is counted dis-
cretely, by events.

Since only events are at issue, and the epochs at which they occur are
irrelevant, we can discard the continuous parameter Markov process
{2, t real} in favor of a Markov chain {z, , n an integer], with a transi-
tion matrix A = (a5 ) = A(R) given by

B + 1) T =1
1 Yy € B:,
[z | 4+ Nedasy, =
Arzy y € Az,
0 otherwise.

The stationary vector g satisfying ¢ = ¢'A is related to p by
— 9=
p:. = (constant) BETr
Then

n—1
E{number of successful attempts in n events} = >, A%
7=0
where A = A(R) and v = v(R) given by
) = As(@) — Mrao
‘ |z| + Aes '

= chance that first event to occur
starting in x is a successful call.

@)

Thus, the problem of optimal routing can be cast in the form of the
Markov decision processes studied by e.g., R. Bellman" and R. Howard:"
ForR € Cand A = A(R) = (az) given by

rh(ﬂ: + 72z) r =1
1 y € B,
(lz] + Aez)az = {
Arzy ye€ Az,
0 otherwise,

the minimum



OPTIMAL ROUTING IN TELEPHONE NETWORKS 1407

min Pr{bl} = min
REC ReC

B+
pla

subject to p'Q = 0, p = 0, p'l = 1 is achieved by the R which maxi-
mizes the scalar p such that

n—l1 .
ol = lim%E Ay v=0o(R), A=A(R), R€C
n-—+»w =0

with » given by (9).

The results of Bellman in Ref. 10 were derived under the strong posi-
tivity condition a;, = d > 0 on the matrices A; this condition is of
course not met in our routing problem, since many a., necessarily vanish.
However, since our matrices have only one ergodic set it is still possible
to obtain results like Bellman’s provided only that a little care is taken
with the transient states.

Lemma 3: Let p be the scalar defined by
—1
pl = max lim L > Ay, (10)
ReC n-w N j=0

let B achieve the mazimum in (10), and let g be the vector determined up
fo a multiple of (the vector) 1 by the equation

pl + g = v(RY) + A(RM)g.
Let R* achieve the maximum in

max {v(R) + A(R)g}

RecC

Let F be the transient set of stales relative to A (R*). Then the restriction
of g to 8 — F satisfies the nonlinear equation

p+ g = maz l:(R) + 20 an(R)g}, € S—F, (11)

and the right-hand side of (11) depends in fact only on
lgs,y € 8 — F}.

Further, there is a fized routing matriz R**, agreeing with R* on (S — F)?,
and a vector g* agreeing with g on S — F, such that R** achieves the maz-
imum in

pl + ¢* = maz lv(R) 4+ A(R)gY.

Proof: If the nonlinear equation given does not hold for somex € S — F\
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there exists a vector { with ¢ = 0, { = 0 such thaton § — F
p+ {z + g- = max {vx(R) + Z az'y(R)gu}:
¥

REC

= 0.(R*) 4+ X au(R¥)g, .

Let us restrict all vectors to the | 8 — F | components present in S — F,
and the matrix 4 (R*) to (S — F)*. Then, dropping dependence on R*

Pl +§¢+g=v+ Ag.
There exists an integer k such that A* > 0 strictly. Left-multiply by
A" and note that A1 = 1 to obtain
pl + A" (¢ 4+ ¢g) = A" 4+ A"
Since A® is a positive matrix, and ¢ # 0, { = 0, there exists a scalar ¢
such that A*¢ = ¢l, so that
(p 4 &)1 + A*g <= A" + A*Yg.

Iterating this inequality n times we obtain
k+n—1

n(p+ )1+ A%y = Z=)k A% + AMg,

For n large enough this contradicts the maximal character of p. To find
R** and g%, consider the equation

g.* = —p + max {0.(R) + 2 an(R)g,* + 2. ax(R)g), x € F.
ReC yeF yeS—F

This represents the expected best possible fortune of a gambler who
starts broke in state x € F, plays by choosing a matrix B paying an
amount p to play, receiving v, (R) if he plays R in state z, and ending
the game with a final payoff of g, if the system leaves F for the first time
by going into ¥y € S — F;i.e., if he passes through a2, - - - @,y playing
RiR: - -+ R, (with R; in 2;), going out toy € S — F from x, , then he
receives (or owes)

—Mnp + ;ﬂz‘-(Ri) + Ty -

It is apparent that {g.*, € F) exist; R** on F* U (F X 8 — F) is de-
termined by the property that it achieves the maximum above, and on
(8 — F) X F it is zero.

Lemma 4: Let p be the scalar defined by the condition
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l n—1 .
pl = max lim = 2, A%, (12)
ReC n-ow N j=0

and let the vector g be a solution of the nonlinear tnequality
pl + g = max w(R) + A(R)g}. (13)
If R* € C achieves the maximum on the right of (13), then it also achieves
that on the right of (12).
Proof: R* and g are related by
pl + g < »(R*) + A(R)y,

whence, left-multiplying by 4’ = 47(R*) and summing on j from 0 to
(n — 1),

n—1 n—l n

nol + 3 A'g Zﬂ A + X‘;Ajg
i=0 i= i=

A

n—1
Pl sX A S o(l) A= ARY), =R,

i=0

This implies that R* achieves the maximum in (12).

XIII. OPTIMALITY OF FIXED RULES

If a routing matrix has any entries other than integers, its use intro-
duces a certain amount of additional randomness into the operation of
the network, over and above that due to the random traffic, and may be
said to represent a ‘“mixed” strategy. It is a natural intuition that since
minimizing the probability of loss is a game played against nature, rather
than against an intelligent adversary, there can be no real gain from this
additional randomization, i.e., that a fixed rule can be found that is as
good as any “mixed strategy”. To this effect we formulate

Theorem &: A fived rule R achieves
p'(B+ 1)
pa
subjectto R € C,p'Q = 0,91 =1,p 2 0,Q = Q(R).
This theorem is a consequence of the next two results, which, though

they are adapted from work of C. Derman,’ are included here for com-
pleteness.

Lemma 6: Let £(-): ¢ — E'"' be an affine map of C into | S| - dimen-

min
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sional Euclidean space, i.e., one such that for real scalars a1, as = 0 with
a + =1, and By, Re € C,

£(aRy + asRs) = mE(R1) + asf (Re),
and let & be continuous. Then,
min q'¢
subjectto g = 0,¢1 = 1,¢dA = q, A = A(R), £ = £(R) s achieved by
a fixed rule R.
Proof: TorR € Cand A = A(R), £ = £(R) set

n—l1
»(R) = lim1 > A'E
n=o0 N j=0
By a known Markov chain limit theorem,” »(R) is well-defined. For
uw € (0,1) let

VI{Ru) = ; (nd)’E

It is clear that for each u € (0,1), and each starting state x, there exists
an R,. € C
ViR, p) = min V. (R,u).
ke

Then
Va(Rye, ) = min {£(R) + p 2 an( RV (Ruz, 1) }-
REC yES
The right-hand side is an affine functional of R and so assumes a mini-
mum at an extreme point of (', i.e., at a fixed rule R. Thus, we can con-

sider that R,. is a fixed rule. Since the fixed rules form a finite class,
there exists a sequence g, — 1 and a fixed rule B* such that

RFnzzR* n:IJQJ"'-
By a well-known Abelian theorem,” for R €
lim (1 — p)V(Ru) =v(R)

g1
and also
'U(R) = lim (1 - #R)V(Rnun)
= lim (1 — w)V (R u)
= »(R¥).

Thus, R* is optimal.
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Theorem 6: Let t,n: C — E'' be affine maps of C into | S | - dimensional
Euclidean space, and let £ and n be continuous, with n(R) > 0 for B € C.
Then

b= 1firw".r1,q—,r

qn
subjectto g 2 0,4 A = ¢,¢1 = 1,4 = A(R), § = £(R), and n = n(R)
1s achieved by a fizved rule.

Proof: Let b(R) be the value of ¢'£/¢'n for a given choice R, with ¢
determined by the constraints ¢ = 0, ¢A = ¢, ¢1 = 1. There exist
Ry, Ry, --+ € C such that

lim b(R,) = b.

For n fixed, let #(-) in Lemma 5 be given by
E=¢— b(Rn)"J

Then in the notation of Lemma 5, v (R,) = 0. By Lemma 5 there exists
a fixed rule R, such that

v (Rn*) = v(R,)
0,

1A

that is, since ¢'n # 0,
b(R.Y) = b(R.).

Since there is a finite number of fixed rules, there is a subsequence
m,Na, - - and a fixed rule R* such that R,.,.* =R i=12- ..
Then R* is optimal.

XIV. TRYING TO GET CLOSER TO THE OPTIMAL ROUTING RULES

It is particularly important to try to verbalize, and eventually to
mechanize, routing strategies that are optimal, near-optimal, or by some
yardstick just “good”. In this endeavor, the fact that the original routing
problem (7) can be formulated and solved numerically as a linear pro-
gramming problem, while interesting theoretically and perhaps reassur-
ing, is nevertheless of limited usefulness. For this reason we have
attempted to take advantage of some of the special properties of the
problem that are due to its telephonic origins, and to describe at least
parts of optimal policies in terms of the combinatorial properties of the
connecting network upon which they ultimately depend.
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In the second half of this paper we introduce some additional notions
and assumptions of a combinatorial nature. With their aid we are able to
exhibit parts of some actual optimal routing rules. The problem of finding
out something concrete about optimal policies has been so difficult that
we have quite frankly started with (and so far restricted attention to)
cases which can be treated by what T. M. Burford has called “domina-
tion” arguments, which depend on or establish isotony® properties for
certain networks having suitable monotone structures. The word ‘mono-
tone’ is used loosely here: more specifically, the networks are to have the
property that the relative merit of states is consistent or continuous, i.e.,
that if one state  is “‘better’” than an equivalent state y, then the neigh-
bors of x are in the same sense ‘“‘better” than the corresponding neigh-
bors of y.

Although some of the combinatorial properties (on which the results
to be given are based) are strong, we believe that these properties and
the optimal policies (or partial policies) they lead to have a definite
relevance to the practical aspects of optimal routing, if only because
they bear out some of the intuitive conjectures offered in Section VIII.
Our results show not only that these conjectures are ““in the right ball-
park,” but also thet in many instances they describe optimal policies.

We start our discussion with four simple examples; once the ideas in-
volved are understood, the principles behind them can be abstracted,
and general theorems proved.

It has been shown (Section XII) that minimizing the probability of
blocking is equivalent to maximizing the fraction of events that are
successful attempts, where an event is either a hangup, a blocked at-
tempt, or a suceessful one. This maximal fraction is the limit, as n be-
comes large, of

1E5.(n),
n

where
E.(n) = expected number of successful calls in n events, if the net-
work starts in state z and an optimal policy is followed. t
We shall base our approach on the vectors E(n).

First example: Consider the overflow system or grading shown in Figs. 7
and 8. There are two groups of lines, each of two lines; the first has ac-
cess to both trunks to the destination, but the second has access to the
second trunk only. The possible states of this system (reduced under the

T Here an optimal policy is one for which the expected number of successful
calls in n steps 1s 2 maximum.
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TRUNKS
1 2

LINE GROUP I {

‘

|
LINE GROUP 21

= CROSSPOINT

Fig. 7— Asymmetric grading.

equivalence relation induced by permuting lines within a line group)
form the partially ordered system of Fig. 8. There is only one situation
which demands a choice between alternative routes for a call; it arises
when a call from line group 1 is accepted with no calls in progress. The
two alternatives are indicated in Fig. 8 by the notation ‘“‘ch”: one is to
put the call on trunk 1, leaving no lines blocked, the other is to put it on
trunk 2, leaving 2 lines blocked.

What circumstances make one choice of a route better than another?
In the present instance it is clear that use of trunk 1 for a group 1 call in
state 0 leaves the “high access” trunk 2 free to serve group 2. Thus, at
first glance a route whose use blocked the smallest possible number of
additional calls (over and above those that are already blocked) seems to
be best. It is natural to expect that in state 0 a new call from group 1
should be routed on trunk 1 and not on trunk 2. Indeed, it can be shown
that if such a call should be accepted then it should be placed on trunk 1.
(For small X it should always be accepted, as was proved in Section X.)
Thus, a policy which routes a group 1 call on trunk 1 in state 0 can differ

(t1-n(1-2) (1-1)(2-2)
THIS NOTATION INDICATES A
CH CHOISE IS POSSIBLE BETWEEN
TWO DIFFERENT WAYS OF PUTTING
(=1 (1-2) (2-2) UP A PARTICULAR CALL

(1-2): A CALL FROM GROUP 1 IS ON

TRUNK 2
CH

Fig. 8 — States of the grading of Fig. 7.
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from an optimal policy only in that it might accept some calls which the
other rejected, and vice versa.

Rather than proving the result stated above, we shall discuss other
examples, involving different kinds of network: it will turn out that
similar circumstances arise. Indeed, we shall claim that the particular
circumstance on which the result is based is no isolated happenstance,
but a phenomenon common enough to be relevant to the theory of rout-
ing. All examples discussed here, as well as many others, will be covered
by a general result (Theorem 14) proved later.

Second example: Referring to Fig. 2, which shows the reduced state di-
agram of the three-stage Clos network of Fig. 1, we observe that only in
the state numered 4 are there any blocked calls. State 4 realizes the same
assignment of inlets to outlets as state 2, which has no blocked calls. The
difference between the two is that in state 2 all the traffic passes through
one middle switch, leaving the other entirely free for any call that may
arise. This difference illustrates the intuitive rule that one should always
put a call through the most heavily loaded part of the network that will
still aceept it. This example was discussed in Refs. 1, 2 where it was shown
(rather laboriously) that if no calls are rejected, then preferring state 2
to state 4 in state 1 is optimal. This result will be an instance of Theorem

14.

Third example: It is to be expected that in some instances a choice of
route for a call is immaterial. The concentrating switch depicted in Figs.
9 and 10 is a simple example of this phenomenon. It is intuitively ob-
vious that, because of the symmetries of the network, it makes no differ-
ence which of the two trunks a call could use when the system is empty
is assigned to it. This insensitivity of performance to routing choices
can actually be deduced from Theorem 7.

LINE GROUPI—[
LINE GROUPZ-{

Fig. 9 — Symmetric grading.

TRUNKS

1 2 3
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(1-1(1-3)(2-2) (1-1)(2-2)(2-3)

(1-1)(2-3) (1-1)(1-3) (1-3)(2-2) (2-2)(2-3) (1-1)(2-2)

CH CH

0
Fig. 10 — States of the grading of Fig. 9.

Fourth example: Figs. 11 and 12 show the structure and (reduced) state
diagram for another simple Clos network made of 3 X 3 inlet and outlet
switches, and 2 X 2 middle switches. Again, from scrutiny of the state
diagram we guess that optimal routing will result if no empty middle
switches are used when partially filled ones are available. The notations
‘B’ in Fig. 12, intended to suggest that the states to the left of the B’s
are “better” than those on the right, censtitute an expression of the cor-
responding policy, and are explained in the next paragraphs.

2x2

3Ix3 3x3

[11
I

L1
[l

N

Fig. 11 — 3-stage Clos network with 3 X 3 outer switches.
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Fig. 12 — States of 3-stage Clos network of Fig. 11.

To abstract the essential features of the preceding examples into a
general theorem, we start with the observation that in choosing to enter
a state x rather than another y in putting up a call we have always to
choose between equivalent states (z ~ ¥, in the sense of Section III), in
which the same events e can occur. In particular, the same new calls ¢
can arise. If it now happens that every new call blocked in z is also blocked
in 7, let us regard this as prima facie evidence that x is somehow “better’’
than v, and define a relation B € S* by the condition

xBy if and only if z ~ y and

¢ € z, ¢ blocked in z imply ¢ blocked in .

The relation B is a partial ordering.
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In the first example considered above, (1-1)B(1-2), and B obtains
between no other distinct states; in the second, 2B4, and again B ob-
tains between no other distinet states.

Let us now suppose (for a general network with state set S) that the
network is run according to a policy ¢, and ask what happens to B under
¢. That is, more specifically, we look at states z,y such that 2By, and we
consider, for events e that are either hangups or new calls blocked in
neither 2 nor y, whether or not

¢ (e,x)Be(e,y).

If e occurs and ¢ is used for decisions, then the system moves from z
to ¢(e,2) and from y to ¢(e,y). If ¢(e,x)Be(ey) for all e € = that are
either hangups or new calls blocked in neither » nor y, whenever xBy,
we say that ¢ preserves B. Formally,
o preserves B if and only if xBy implies ¢ (e,2)Bey(e,y) for
e € zx which are either hangups or new calls
blocked in neither x nor y.

In the first example (Fig. 8) there are no new calls ¢ which can be
put up in both (1-1) and (1-2), and there is one hangup (say h) which
can occur in both. Thus, the set of events to be considered is just {A}.
Clearly, o(h,1-1) = ¢(h,1-2) = 0 state for any ¢. Since B is reflexive,
we conclude that in this case every ¢ preserves B,

In the second example, a similar situation arises. There are two
events to be considered: one is a new call completable in both 2 and 4
leading to state 6, the other is a hangup leading to 1. Again

e(e2) = ¢led)

for all ¢ and both events e to be considered, and again any ¢ preserves
B.

As noted, routing has no effect in the third example. However, the
relation B is defined. It can be verified that any ¢ preserves B, and that
in this case B is a symmetric relation, as it should be, since if routing
is to have no effect, then 2 can only be “just as good” as y if y is “just
as good” as x. These facts can be used to prove that routing has no
effect in this example.

The fourth example, finally, shows the relation B in action. The
notations

xr——B-—-1y uay states

in Fig. 12 show the irreflexive part of B. (Obviously 2Bz for all z € S,
and this part of B is not shown in Fig. 12.) The reader is invited to
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verify that the policy ¢ of using a partly-filled middle switch whenever
possible does indeed preserve B in this example.

The property of a policy ¢, that it preserves B, is to be viewed as a
kind of isetony of ¢:

rBy implies ¢ (e,x)Byp(ey), for suitable e.

(See Gi. Birkhoff,” p. 3.) Tt can also be viewed as a kind of continuity,
for after all if we think of the set of neighbors N, of y as the states in

N,=A4,UB,,
then the property says that if xBy then also zBw where z is a neighbor

of @ and w a neighbor of y such that z ~ w. In other words it states
that it 2By then also

(N: X N,) N (~) © B,

i.e., if it holds between z and y then it also holds between equivalent

neighbors of & and y.
Note that if ¢ preserves B, By, and ¢ rejects in 2 a call ¢ not blocked
in ¥, then it also rejects it in y.
Tor ¢ a poliey, let
I, (n) = expected number of successful attempts in n events,
if the network starts in state x and policy ¢ is
followed.
The isotonic property that ¢ preserve B has the useful feature that it
implies an isotony among the numbers

{E.(ng), n=1 a¢€ 8.
This is the content of the next result.
Theorem 7: (First Isotony Thearem): If ¢ preserves B, then xBy implies
E.(ne) 2 E,(np), n=12 ---.

Proof: xBy, ¢ € a, ¢(c,y) # y imply ¢(c,x) # 2. Hence,

2 1= 2,
cET cEy
¢(e,x)=z e (e, )=y
and F.(l,¢) = E, (1,¢). As a hypothesis of induction assume that xBy
implies
Ea:(n:ﬁa) = Ey (niﬁo)

for some n = 1. We have
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S _ A
L,(n + l,tp) = ;:, |1| T e {1 + qu(:.:t)(“:?’)]
v (c,z)#z
E.(n, E.x(n,
CED |+A (ne) Eﬁ T |+Aa,hze= ).
e (c,x)=z

Since ¢ preserves B, it must be true that 2By implies

¢ (c,x)Be (e,y)
(x — B)B(y — h),

whence
Eotery (,0) Z Eyean (nye)
Er—h ('n)‘xo) g y—h(n,(P)-
Therefore,
A
E, = —_ E, . ,
(n+1)e) 2 wa EESYS {14 Epen(ne)l
¢ (cy)#r
FE,(n, 1
MR |+ N Pome) 2
¢ (cy)=y
l | + Aﬂ:’y E E!th(nyﬁo)
= Eﬂ(n + 1199)-

The power and utility of the relation B are further illustrated by the
following comparison theorem for policies. The partial ordering B on S
induces a natural partial ordering B of the policies according to the
definition

eBy=e € x,2 ¢ S imply e¢(ez)By(ex)

for e a hangup or a call not blocked in 2. We note that ¢By implies that
o and ¥ embody the same rejection policy.

Theorem 8: If ¢By, and one of ¢, preserves B, then xBy implies
E:(ﬂ,¢) .% Ei(n:‘!’/)J n = 1; 27 Tt

Proof: ¢ and ¢ have the same rejection policy, so K (l,e) = E(1,¥),
and the theorem holds for n = 1. Assume as a hypothesis of induction
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that 2By implies E.(n,p) = E,(ny) for a given value of n = 1. We
have, with p.. = Pr{e occurs in x},

Eﬂ(n <+ 1,99) = Ey(lyfp) + ; peyE\o(e.y)(n;W)-
ecy
But e € y implies ¢ (e,y)By (e,y), and so by the induction hypothesis
Eyoy () Z By (n¥).

However,

En+ 1y) = Eu(];‘:l’) + ZE: ngE.,{.(e,y)(n,U'f)

A

E,(n+ 1,p).

Let now By, and suppose that ¢ preserves B. The isotony theorem
then implies

E.(n + 1, ﬂa) = Ey(n + 1, 0)
E,(n + 1, ¢).

v

If, instead, ¢ preserves B, then
E:(n+1,¢) 2 Ey(n + 1, ¢)

and a repetition of the first part of the argument above with x instead of
Yy gives

E.(n+1,¢) 2 E;(n + 1,¢)
z B,(n + 1,¢).

XV. SECOND INTUITIVE APPROACH

In an effort to develop a more general theory than the one that was
begun in the previous two sections, we now make a fresh start at under-
standing the structure of “good” routing; again, we begin with a special
case:

Fifth example: We choose the overflow system or grading depicted in
Fig. 13. There are two groups of lines, one of two lines, the other of three
lines. Each has access to one primary trunk to which the other does not
have access, and they share a single common overflow trunk. The possible
states of this system form the partially ordered system shown in Fig. 14.
Alternative ways of putting up particular calls are marked with “ch”,
for ““choice”.

After inspecting the system and its state diagram, intuition tells us
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TRUNKS

| 2 3

LINE GROUP 1 —

LINE GROUP 2

—f!—.—
Fig. 13 — Second asymmetric grading.

that, as a first guess, calls should use the primary trunks whenever they
can, so as to leave the overflow open as much as possible. Let us, on this
basis, formulate some preferences for certain routes.

Clearly, in state 0 a call from group 1 should go on trunk 1, so in state
0 we prefer state (1-1) to (1-3); similarly we prefer (2-2) to (2-3). The
same principle should apply if certain calls are already in progress.
Thus, in state (2-2) we prefer (1-1) (2-2) over (1-3) (2-2), and in state
(1-1) we prefer (1-1) (2-2) to (1-1) (2-3).

If taken seriously and followed, the preferences listed above define a

TWO CALLS
BLOCKED

(-1)(1-3)(2-2)<~"/ “=a(1-1)(2-2)(2-3)

ONE CALL
~7 BLOCKED

¥ r ¥
(1-1(1-3) (1-3)(2-2) (1=-1)(2-2) (1-1)(2-3) (2-2)(2-3)

(1-1 (1-3) (2—-2) (2-3)
CH CH
Y ALL OTHER STATES HAVE

NO CALLS BLOCKED

Fig. 14 — States of the grading of Fig. 13.
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policy for putting in calls. We shall show that this policy differs from the
optimal policy only in that the latter may reject some ecalls, while the
former accepts all unblocked calls. To do this write zPy if state z is
preferred to state . Thus, the relation P is defined by the conditions

(1-1) P (1-3)
(2-2) P (2-3)
(1-1) (2-2) P (1-3) (2-2)
(1-1) (2-2) P (1-1) (2-3).

We let
E.(n) = expected number of successful call attempts in n

events, if the system starts in state  and an optimal
policy is used.
It must be explained here that by “use of an optimal policy” over n
steps we mean simply that we use a policy which will maximize the
average number of successful attempts among those n events; the policies
that achieve this may, for all we know at this point, be different for

different n.
A slight departure from the probabilistic model of Section VI is

necessary here: we assume that an idle line generates calls to the trunk
destination at a rate A > 0, instead of assuming that an idle inlet-outlet
pair generates calls at \. Also, we let a, be the number of idle lines in
x, rather that than that of idle inlet-outlet pairs, and s(x) that of
idle lines that are not blocked.

Theorem 9: If xPy, then
E.(n) = E,(n) n=123,---.

Proof:

As(z)

Ez(]-) = M‘s

and aPy implies s(z) = s(y), so the theorem is true for n = 1. Assume
that the theorem holds for some n = 1. There are four cases, correspond-
ing to the four conditions defining P. We shall give the argument for

the case where

I

(1-1)(2-2)
y = (1-3)(2-2),
and (as we know) xPy; the others are similar.

x
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Now apparently

Fapen(n+1)= ST + Ty {Epa(n) + Eqyn(n)}

-+ max {Eanen(n), 14+ Eqpanes(n)l

A
2+ 3\

+2—|—3)\

max {Eapes(n), 1 + Eqpenes(n))

and

Eu-a)(z-z:(?l +1) = X {Faayin) + Eu-a)(?l)f

2+
+ — Sy + gy, Max {Eq-pen(n), 1 + Eqnanen(n))

2\
+ 5= 3 aa Eapen(n).

By the induction hypothesis,
Eay(n) =2 Eas(n)

Eayen ) = Ea ne (n);
hence,

E:(n+1) 2z E,(n + 1)

for the given x and y.

The point is that each event that can occur leads to a “worse” state
in y than it does in x. Thus, the hangup of the group 1 call leads both
to the state 2-2, a standoff; hangup of the group 2 call takes x into (1-1)
and y into (1-3), and (1-1)P(1-3); one of the possible new calls leads
both x and y to the state (1-1)(1-3)(2-2), another standoff; the other
two possible new calls are blocked in ¥ but not in x, so that by the
induction hypothesis, rejecting one of them and staying in x is at least
as good as having one of these blocked calls make an attempt in y.

We conclude from Theorem 9 that in an optimal policy the calls
which are not rejected are put on the primary trunks if these are avail-
able, and on the overflow only if the primary trunk appropriate to the
call is already busy. This result is entirely in agreement with our original
intuition.

Another example of the same kind is shown in Figs. 15 and 16: the
intuitive preferences shown in IYig. 16 by ‘P’ are optimal to within
rejection of unblocked calls.
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TRUNHKS
| 2 3

|
LINESH 2

3

Fig. 15 — Third asymmetric grading.

We now formalize the principles behind the intuitions that led to
Theorem 9.

Let P be a relation on S, i.e., a subset of S°. We may as well put our
cards on the table and indicate that P is to be interpreted as a relation
of “preference”’, with xPy meaning “z is preferred to 3. If u is a func-
tion, and X,Y are sets, the (customary) notation

uw Xe¥Y
means that p takes X into ¥ in a one-one manner, while
uw X—-VY

means that the u-image of X is contained in y.
We say that P has the strong monotone property if xPy implies
@) [x] =1yl
(i) 3u: B, <> B, such that z € B, implies z2Puz
(4#¢) Av: A, — A, such that

V(Acy) gAc.r for ¢ S Y,
N (14)
z € A, implies »zPz.
Let us denote by F. the set of all calls which are free or idle in x, i.e.
F,=1{¢: cisidleina} = {y(y — 2): v € A
={e: ¢ = {(up)] €I X Qwith u,p both idle in z}.

We say that a relation P on S has the weak monotone property if xPy
implies
@) x| =yl
(%) 3u: B, <> By and z € B, implies 2Ppz
(ti) Av: Fy > F.andec € F,,z € Ay

imply 3w € Ay, with wPz. (15)
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To get the weak monotone property from the strong, define » on
Fy by

wE—y) =y —2x), z€A,;
then z € A, implies vz € A, , and
ve = v(vz — x);
thus,

vz € Ape: and vzPz.

Keeping in mind the interpretation that ‘zPy’ means that x is in
some sense better than y, we see that: condition (7) restricts P to hold
only between states of the same norm or dimension, because we are
interested only in choosing between states with the same number of
calls in progress; condition (77) says roughly that to every hangup lead-
ing out of state y there corresponds a hangup in z leading to a state
which is at least as ‘“‘good” (as the one reached by the hangup in y);
condition (#7) says that for any way of completing a new call ¢ in y
there is a way of completing the same call ¢ in x which leads to at last
as “‘good” a state (as the one reached by completing that call in ¢).

It is easily seen that P has one of the monotone properties if and only
if Py implies that P holds between ‘‘corresponding respective’” neigh-

(1-1(2-2)(3-3)

(1-1) B_(1=1) B (1-2) B [(1-3) (t-1 B_(1-2) (2-2)
(2-2) (2-3) (2-3) (2-2) (3-3) (3-3) (3-3)

(-1 —Bw (1-2) B (1-3) (2-2) B o (2-3) (3-3)

CH CH

c

Fig. 16 — States of the grading of Fig. 15.
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bors of z and y. Thus, the monotone properties are similar to the prop-
erty of a policy ¢ that it preserve B. The principal differences are that
here no policy is at issue, and that the meaning of “corresponding neigh-
bor” is weaker than in the definition of preservation. The relationships
to the relation B are further clarified in the following remarks.

If P has the weak monotone property, then 2Py implies s(z) = s(y).
If P has the strong monotone property, then xPy implies that every
¢ € z blocked in z is blocked in y. Further, since we are primarily inter-
ested in comparing equivalent states (i.e., « and y such that & ~ y), it is
natural to restrict attention to preference relations P which are subsets
of ~, P € ~. It can then be verified that if P has either monotone
property, and holds only between equivalent states (P € ~), then
P CB.

A “preference” relation should impose at least a partial ordering
among the objects for which it is defined, and so it is by nature transi-
tive. The question then arises whether the relations P that have the
(strong or weak) monotone property are reflexive and transitive. It is
obvious that if P has the monotone property then so does I U P where
1 is the identity relation. Now, as is known, every relation P can be ex-
tended uniquely to its transitive closure P, the smallest transitive rela-
tion containing P. We shall now prove:

Theorem 10: If P < S° has the weak monotone property, then so does 1ils
transitive closure P.

Proof: Clearly P = P U P* U P*U ..., where the powers represent
relative, not Cartesian, products. It is obvious that xPy implies |z | =
|y, so P has property (i) of (14). Next let aPy, so that there exist
Z21,2, 2 € Ssuchthatz = z,2, = yand

2iPziyy  i=1,---,n— 1

Thus, there exist maps w1, g2, -+ , pa— With u; 2 B, <> B., such that
z € B, implies

2Pu;z.
Hence, z € B, implies
zPuz

wzPuouz

Un—oin—g - p12Pun_qpn_s -z,
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1.e.,
_ n—1
2P (H u,-)z.
i=1

Thus,
n—l1
=1 s
i=

has the property that u: B, <> B, and z € B, implies zPuz. Hence, P
has property (¢7). Finally, there exist maps », -+, vam with v
F..,, — F. such that ¢ € F.. ,, 2 € A, implies w € Au0z4,

Zi41
with wPz. Let
n—1
y = v
=1
Hence, for each ¢ € F,,, w, € A, there exist w,—, -+, w, € 8§ and
Cp—a1 """ c,,_lsuch that
Ci = vitiy1, Wi € Aoy, wiPw; 1 i1=1-,n—1

It is apparent that ¢, = ve, wy € A (). and w; Pw, , so that P has property
(d77).

The following result is now immediate:
Theorem 11: If P has the weak monotone property, and I is the identily
relation, then

zUP)

is a partial ordering relation with the weak monotone property.

Any relation with the weak monotone property can be extended to be
a partial ordering P that has the weak monotone property. Since ~ is an
equivalence relation between states, and P is a partial ordering, it fol-
lows that P M ~ is also a partial ordering.

Theorem 12: (Second Isotony Theorem): If P  S* has the weak mono-
tone property, then

zPy implies E.(n) = E,(n), n=12---.
Proof: Property (15) (#2) implies that s(z) = s(y) whenever zPy.
Now

As(2)

B = e
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Since it is assumed that a. = ) we have, by (15) (3),
zPy implies E.(1) = E,(1).

As an hypothesis of induction assume that zPy implies E.(n) = E,(n).
We have

Eln+1) = - max {E.(n), g(c,z) + max E.(n)}
|$% + Aa; cExT zEAgz
| | + A, ’% E:—h(n)
and a similar expression for E,(n + 1). If now 2Py, then [z | = |y |

by (15) (z), and also
E.v(n) Z By (n)
by (15) (#%) and the hypothesis of induction. Similarly,
My ABy
lxl‘i‘}\ s a:( ) I l_i_A o, U(n)

For ¢ not blocked in y, and z € A.,, xPy implies that there exists w €
A . with wPz, by (15) (#2). By the hypothesis of induction, this
implies that

E,(n) = E.(n).
Since z € A., was arbitrary, we find
g(vex) + max E,(n) = gley) + max E.(n).

wEA(y)®

It follows that Py implies BE.(n + 1) = E,(n + 1)

XVI. RELEVANCE OF THE ISOTONY THEOREMS TO OPTIMAL POLICIES

Let ¢ € x be a call that is not blocked in state x, so that A, # 6.If
the hypotheses of one of the isotony theorems obtain, then it may be pos-
sible to single out some of the states y € A.. as providing ways of complet-
ing ¢ in = which are at least as good as certain others. Specifically, the
sort of comparison we can make is this: If 4,2 € A, and yBz or yPz, then
y is at least as good as z in the sense that

E,(n) 2 E.(n), n=12---.

Suppose now that there is at least one y € A.. such that yBz for all
2 € A, . It then follows that such a y is always at least as good a choice
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as any other state of A.;, in the above sense. A similar result follows if
thereisay € A, with yPz for all z € A, . In such situations a policy that
routes ¢ so as to take the system from 2 to y can differ (so far as x and ¢
are concerned) from an optimal policy only in the respect that an optimal
policy might reject ¢ in x. This is the sense in which the isotony theorems
can provide the part of the solution of the routing problem which has to
do with choosing routes for accepted calls. Two theorems to this effect
appear in Section XVIII after an aside about equivalence of decisions
and nonuniqueness of optimal policies.

XVII. EQUIVALENCE OF DECISIONS AND NONUNIQUENESS OF OPTIMAL
POLICIES

It is natural to expect that there are often several optimal policies, in
the sense that, for some ¢ and x with ¢ € x and A, # 6, there are two
choices of a route for ¢ in x which are in some sense distinet routes and
yet are both equally “good”. TFor example, in most traffic models for a
graded or progressive multiple it often does not make any difference
which trunk in a group is used for a call: the possible states resulting
from use of one of the trunks in the group are all distinet, yet all are
equally “good”, being “‘equivalent” under permutations of trunks within
the group. It is intuitively clear that such a nonuniqueness of optimal
policies is due in large part to symmetries in the network under study,
or more generally, to the presence of various equivalences of states (and
hence of routing decisions) under certain groups of permutations of
terminals.{ Since some of these equivalences appear in a later proof, we
digress a little for an account of them, first heuristic, then formal.

As we have seen, one of the principal tools in the deseription of optimal
policies is a combinatorial partial ordering, such as B or P, which implies
an ordering in terms of performance. The discussion to follow is based on
a general partial ordering R, which the reader can assume is contained
in

U 4.
cET
and which he can interpret as B or P, if he wishes.}

Let then R be a partial ordering of S and let ¥ be a subset of S. Cued
by the remarks of Section XVI, we want to use R to compare states; in

T It should be noted that the word ‘group’ is used in this paragraph in two tech-
nical senses, the first from traffic theory, referring to a set of trunks, the second
from the theory of groups.

1 This use of ‘R’ is peculiar to this section, and should not be confused with R
as a routing matrix.
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particular we wish to talk about elements y € Y such that yRz for all
2 € Y. It would be satisfyingly simple if at this point we could introduce
the notation

sup ¥
R

for that element of ¥ which bears R to every other element of ¥. Un-
fortunately this is usually impossible, because there may be several or
many such “suprema” of Y. In this situation the usual mathematical
trick to use is to pass to suitable equivalence classes. Use of this pro-
cedure is further justified by the fortunate fact that, in the case of several
interesting choices of R and Y, there are several senses in which these
maximal elements turn out to be equivalent. What is more, there is a
natural equivalence based only on R, such that sup Y can, if it exists, be

defined in the “quotient” set of the equivalence, i.e., in the image of the
semilattice homomorphism that takes each state into the equivalence
class to which it belongs.

If R = P and P has the monotone property, then all the P-suprema of
A.. are equivalent in this very important sense: If %1, -+, yn is an
enumeration of all the y € A, that are best in the sense that yPz for all
z € A, then

yiPy;, 1=tj=m
and the second isotony theorem gives
E,.(n) = Ey;(n) n=12 +-, (16)
so that as far as performance is concerned, y1, - - - , Ym are all “equiva-

lent”. In many cases, this fact is based on an underlying equivalence of a
combinatorial nature, much stronger than (16): e.g., in a trunk group
the different states attainable by different choices of a trunk for a call are
equivalent in the sense that given any two there is a renaming or per-
mutation of the trunks which carries one into the other.

The isotony theorems provide ways of translating a combinatorial
comparison of states such as

2By, or zPy

into a numerical comparison of the relative merit or value of starting in
each state, z or 3. In such a setting it is natural to call » and y “equiva-
lent” if the comparison holds both ways, i.e., if, when interpreting
‘wBy’ as a (rather strong) precise form of ‘z is better than y’, we have
both
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2By and yBz.
Lemma 6: Given two stales 1,z there exists at most one pair e,v such that both
1z € Aep .

Proof: If 3,2 € A., thenx = y M zin the sense of the semi-lattice of states.
Thus, x is unique. If now

1,2 € Acx n Ac’z

thene =y —a),¢ =v(y —a),s0c=c.

The foregoing observations are the motivation for the ensuing de-
velopment. With the partial ordering R we associate the natural equiva-
lence relation =, defined by

z=py ifandonly 2Ry and yRz and JA. yzecAd..

The subseript R will usually be dropped as long as it is contextually
clear what R is being used to define =. Along with = we introduce the
semilattice homomorphism

r(-): S — {equivalence classes of =} = §/=

defined by r(z) = {z: z==2a}.

The image 7 (S), i.e., the “quotient” set S/=, is partially ordered by the
relation R defined by

r(x)Rr(y) if and only wup % € 7(z) and v € 7(y) and wuRw.

This is the natural homomorphic “contraction’ of R to S/=. It can be
verified that if 7 (z)Rr(y) and 7 (y)R7(z), then 7(x) = r(y) strictly.

If now Y contained in S is such that there exists a y€ Y with yRz for
every z € Y, we use the notation

sup ¥ (17

for 7 (y). It is clear that in the “quotient” space, an element maximal
with respect to R is unique if it exists at all. Strictly speaking the notation

sup 7Y
TR

would be better, since it indicates that the supremum operation only
makes sense after the homomorphism. However, (17) will be used, with
the reminder that it is a set, not a state, and the convention that use
of (17) implies the assumed existence of maximal elements.

With the notation (17) we can prove the following natural relation-
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ship between the strong monotone property and the notion of preserva-
tion of B.

Theorem 13: Let

€ sup Aex for e=c¢
¢ (e,x) g
h

=x—h for e
and suppose that ¢ preserves B. Then B has the strong monolone property.

Proof: xBy implies x ~ y and hence | x | = | y |, so B has property (14),
(7). If 2By, define forz € B,

pz = oly(@ — 2),4).
Then, since ¢ preserves B
ely(@ — 2),8)Be(y (@ — 2),y),
zBuz,
and B has property (14) (i7). With «By still, let
v: Ay, — A,
be given by vz = ¢(c,x) for z € A.,. Then, since ¢ (c,y)Bw for w € Ay,
@ (c,x) By (c,y)
Bz,
so that B has property (14) (¢z2).

XVIII. OPTIMAL ROUTING THEOREMS

This final section contains precise statements showing just how the
combinatorial properties introduced in Sections XIV and XV answer
the question: ““Which route should an accepted call use? ”’

Two policies ¢ and ¢ will be termed equivalent with respect to rejections,
written ¢ ~ ¢, if they both reject the same calls in the same states, i.e.,
if ¢ (c,x) = x when and only when ¢ (¢,x) = z forc € z.

Theorem 14: If o preserves B, and if ¢ € x smplies
e(c,z) € sup Aex
B

whenever ¢ (c,x) # x, then
Ez(nr¢) = EJ:("’!'P) n = 1, 2.‘ e,
for any ¢ ~ .
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Proof: E.(lp) = E.(1,¢) by direct calculation. Assume as a hypothesis
of induction that E, (n,e) = E.(ny) forxz € S. We have

A
E:(n + 1:‘{’) = an‘-; m {1 + E.p(n.:)(’n,w)}
¢ (c,z)#z
1

+ — Eo(n,

2T+ e ; (ny0)

¢ (c,z)=z
I 'L——_l + ?\a, Ierz E:—r'l(n,(a)

and a similar expression for E.(n + 1,4). If now ¢(c,x) # x, then
¢ (e,x)By for every y € A, ; in particular, ¢ (z,x) # x because ¢ ~ ,
and so ¢ (¢,x) € A., whence

¢ (c,x) By (c,x).
The first isotony theorem and the induetion hypothesis now give
Eoen) (ne) Z By (nye)
By (ny).

v

It follows that
E:(n + L) 2 E:(n + 1y).
Corollary: If ¢ preserves B, and
ple) € sup Ae
B
for ¢ € x not blocked in x, then ¢ is optimal within the class of policies that
reject no unblocked calls.
Theorem 15: If P has the weak monotone property, and
sup Aes
P
exists for each ¢ € x not blocked in x, then there exists an optimal policy R
such that ¢ € x,y € A imply either x is R-transient or else

Ty = 0 wunless y € sup Aez .
P
Proof: Let p be the scalar such that

pl = max lim = Z Ay

ReC n-w M j=

{v = A(R),
A = A(R).



1434 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966
We first use an argument of R. Bellman' to show that the vector se-
quence
E(n) — npl = g(n)
is bounded in n.
By Lemma 3, there is a vector ¢* which satisfies

g* + ol = max {v(R) + A(R)g"} .

Choose K >0 so that
g* — K1 =g(1) = g¢*+ KL
Assume, as an induction hypothesis, that
g" — Kl = g(n) < ¢" + K1
We have
gln + 1) = —pl + max [v(R) + A(R)g(n)} .

Hence,

—pl — K1 + mnax (w(R) + AR)g*) < gn+ 1)

A

— ol + K1 + max {o(R) + A(R)g*)

gF — Kl =gn+1)

1A

g* + K1.
Let now

g = lim sup g (n),

n—+90
taken componentwise. Let R, achieve the maximum in

max {v(R) + A(R)g(n)} .

ReC
Given ¢ > 0, there exists np such that n > np implies
g:(n) < g + ¢
for all x € 8. Thus,
v(Ra) + A (Ra)g(n)

I

< v(R.) + A(Rn)g + ¢
max {p(R) + AR)g} + &

1A
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Hence, since ¢ > 0 was arbitrary,
g+ el = max {v(R) + A(R)g} . (18)
€
Let R* achieve the maximum on the right above. By Lemma 3, R* is
optimal. Let F be the set of transient states relative to R*. The argu-

ment used in Lemma 4 shows that equality must obtain in (18) on
S — F,ie,

g: + p = géaéx{v,(R) + EZF aW(R)g,} , =zES—F.

This is equivalent to

A
e+ p = —-—-max{ = 1 + max ,}
g="T 7 cez;- [z] + Az b +=edug
¢ not blocked in z

AB:g- 1 ~
+|$|+)\a=+|xl+)‘a:hzezgz—h, €S F.

Now the second isotony theorem implies that if 2Py, then
E.(n) =2 E,(n), nzl
g:(n) 2 gy(n), nz1l
gz = Ju -

Thus, if ¢ € x is not blocked in x

v

max g
2EAcy

is achieved by each and any y € sup A .
P
Let R be any routing matrix such that fory € A..
0 if ye S—F,

Tzy =

1 onlyif 14+ g, =g¢g. and y € sup A...
P

Then R achieves the maximum in (18), and so is optimal; it is clear that
it also has the property claimed in the theorem.
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APPENDIX

Expected Number of Events to the First Blocked Call

The purpose of this appendix is to demonstrate that if the index of
performance is changed to one which attaches greater importance (than
does Pr{bl}) to blocked calls occurring soon after the system is started,
then no unblocked call should ever be rejected. This result can be ob-
tained for various indices of performance; we obtain it for the expected
number of events occurring until the first blocked call. This choice of
index of performance has a natural heuristic justification: it corresponds
to trying to put off the undesirable event (a blocked call) as long as possible.
(Time is being measured here in discrete units, by counting events.)

As before we use ¢ and ¢ for policies, but here we limit them to rejection
policies, or policies for the acceptance or rejection of unblocked calls.
We may think of ¢ as a binary function of ¢,x with ¢ € 2 and ¢ not
blocked in x, and interpret ¢(c,z) = 1 as acceptance, and ¢(c,x) = 0 as
rejection. A general routing policy, such as described by a fixed routing
matrix R, will be said to be within ¢ if it accepts and/or rejects the same
calls in the same states.

We first introduce the quantities

E.(p) = Expected number of events until the first blocked or
rejected call under a routing policy optimal within the
rejection policy ¢, starting in .1

These satisfy the equations

+ as(z) A

L'()—|I| + max F,(p)

i I + Aaz |-T | + Ra: ¢ not bi%mdinz V6o e
e(c,z) =1

lr|+ha,zﬂ_h(¢)

Our object will be to pick the best rejection policy, i.e., to choose ¢ so
as to achieve
max . (o).
@

We next define, for each fixed routing matrix R
E.(R) = Expected number of events until the first blocked or
rejected call, starting in & and using the policy E.

F The word ‘optimal’ here refers, naturally, to the fact that the (not necessarily
stationary) policy followed makes ‘the expected number of events to the first call
(rather than Pr{bl}, or some other index) a maximum.
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For fixed ¢, let B* = R*(¢) = (rz,") be a routing matrix with the prop-
erty

1 if ¢€a suchthat y € A, ele,x) = 1,
and F,(p) = max E,(p),

= z€dez

0 otherwise.

It is clear that at least one such R exists, that it is within ¢, and that it
defines a stationary policy for which

E(RY) = Elp).
We now partially order all rejection policies thus:
¢ =y ifandonlyif e(cz) = ¢(c,x) for ¢ € x notblockedin z.

Let & be the set of rejection policies. The principal result is that £ (-) is
isotome on the partial ordering = of ®, expressed in

Theorem 16: ¢ =  implies E(p) = E(¥).

Proof: For | S |-vectors v define the transformations Ty, ¢ € ® by

A 1
Tw)y = ————— max v, _ Vet .
( P) |;L‘.i—|—)\cv, 445237 VEAcg y+‘$|+kaxhcz h
c nutwls;'u::}::c: inz
With
b — |1,\ + Ars(z)
* [z| 4+ ez’

the equation for E (¢) becomes

E(e) = b+ T,E(p).
It is evident that if v = 0 and ¢ = ¢, then

Tw =z Ty.
Furthermore, each T, , ¢ € ®, is & monotone transformation in that
v =2 w implies T = Taw.

Hence, v = w = 0, ¢ = ¢ imply

b+ Tapz=zb+ Tyw.
For ¢ = ¥, then, consider the rectangular parallelopiped

®={: 0=v=E@)l.
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For v € @ we have
E() =b+TE() 2b+ Tw,

so that Ty : ® — @. It is obvious that @ is closed and that Ty is continu-
ous. Hence, by Brouwer’s fixed point theorem there is a v € @® satisfying

v =00+ Tw.
We next show that » is actually the unique solution of this equation,
so that » = E(¢) = E(p). Introduce the norm || » || = max »,. The
€8

case in which the network under study s nonblocking and ¢ rejects no
calls is trivial. Assume then that there exists a state x and a call ¢ € x
such that either ¢ is blocked in x or ¢ is not blocked in z and is rejected
by . This implies that the “matrix” part of Ty is strictly substochastic,
and hence that for some n

7" || < 1.

Thus, v = E@).
Tt is an immediate consequence of Theorem 16 that if ¢* (c,z) = 1 for

¢ € z not blocked in z, then
E(¢*) = max E(g).
ecd
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