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It 1s a classic result of Shannon that binary digits can be communicated
with arbitrarily small error probability at any rate less than

W log, (1 + ]%) (bits/sec)

over a channel with bandwidth W and additive Gaussian notse of average
power N, using signals of average power at most P. However, in Shannon’s
proof it is assumed that the input to the recewer is the sum of a linear
combination of the bandlimited functions

A sin 20W(t — k/2W) —o << ®

‘Pﬂ(t - k/ZW) 2‘1’!‘W(t — k/Q-FV) ] k - 1,2, .

(which are of course of doubly infinite duration) and a sample function
from an exactly bandlimited Gaussian random process. The fact that
wo(k/2W) = 0 for all integers k #= 0 plays a key role in that it implies
the total absence of intersymbol interference.

As a result of these assumptions, there have been some objections to the
Shannon model in connection with the notion of rate, the fact that the re-
cetved signals are entire functions (which are predictable for all time from
a knowledge of their values on any interval of nonzero length) and the fact
that it s not clear whether the performance of the model is critically depend-
ent on the assumptions that lead to the absence of intersymbol interference.

Since Shannon’s model and his associated ingenious argumenls are
widely known and are of great interest, from the point of view of the system
theorist, it is tmportant to be able lo prove an “insensilivity theorem’ to the
effect that if the model is modified to the extent that: (i) ¢o(t) is replaced
by an approximating functwn ¢ (1) with the property that the signals are of
average power at most P where P is approximately P, and ¢ (1) = 0 for
t < t, for some negative number t,, and (i) the noise is approximalely

1475



1476 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

bandlimited with bandwidth W, then, subject to some reasonable qualifica-
tions, it is possible to transmit information, with arbitrarily high relia-
bility, at any rate less than

W log: (1 + %)

We prove such a theorem in this paper. In fact, we show that if the noise
has integrable power spectral density S (w) for which

0< if > S(w+ 4xWp)

02027 W p=—o

and

N A 2W  sup . S(w+ 47Wp) < o

(w27 W p=—20

(these are very weak assumptions), then any rate

R<WI 1 i3
< oga\ 1+ 7
is permissible if v € (0,1) such that [with the understanding that ¢ (0) = 1]

%
5 let/zm) | < (1= ) (ghe)

k;éO

where 8 is an important positive number that depends on R, (N/v), P,
and W.
Observe that if S (w) s the ideal spectral density defined by

S(w)=§%, |w| = 2eW
=0, |w| > 20eW

then N = N.

I. INTRODUCTION
It is a classic result! of Shannon that binary digits can be communi-

cated with arbitrarily small error probability at any rate less than

W log, (1 + %) (bits/sec) (1)

over a channel with bandwidth W and additive Gaussian noise of



SENSITIVITY OF CHANNEL CAPACITY 1477

average power N, using signals of average power at most P. There are,
however, some unrealistic assumptions in Shannon’s argument. In
particular, there have been some objections®#4 to the Shannon model
in connection with, for example, the notion of rate and the fact that the
received signals are entire functions (which are predictable for all time
from a knowledge of their values on any interval of nonzero length).

The purpose of this paper is to focus attention on Shannon’s assump-
tions! and show that they can be modified so that the end result is a
quite detailed and informative statement concerned with a much more
realistic model* of a communication system.

II. REVIEW OF SHANNON’S ARGUMENT

2.1 The Capacity of the Time-Discrete Gaussian Channel

Shannon’s result for the bandlimited time-continuous channel follows
directly from a result concerned with the following type of time-discrete
channel.

The channel receives one of M equally likely inputs (i.e., code words)

every T seconds. Each input is a real n-vector X a (T, T2y =+, Tn)
which satisfies

| X [P < poT

where | X | denotes the Euclidean norm of X and p is a positive con-
stant independent of X. It is assumed that there exists a positive con-
stant u, independent of T, such that n = 27T (with the understanding
that we consider only values of 7" for which 2,7 is an integer).

The channel output (i.e., the receiver input) corresponding to the in-
put X is the n-vector X 4+ Z, in which the components of the ‘noise
vector” Z are independent Gaussian random variables with mean zero
and variance 7. In its attempt to determine which of the M known code
words was transmitted, the receiver may make an error, and we shall
denote by p.. the probability that an error is made given that code word
7 is transmitted.

It is assumed that the channel is used to transmit information in the
following manner. Let a message source produce independent and equally
likely binary digits at the rate R digits per second. Every T' seconds,}
one of 27" possible sequences is produced. We set M = 2®* and we repre-
sent each of the binary sequences by a particular code word.

* Some different results concerning the significance of the Shannon bound (1)
are proved in Ref. 4. In particular, there, for certain models, converse proposi-

tions are established. .
1 We consider only values of T for which RT is an integer.
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We say that a rate R is permissible if for each ¢ > 0 there exists a T
and a corresponding code such that

mMax Pei = €
i

It has been proven that the channel capacity C, the least upper bound
of permissible rates, is given by

C = ulog (1 + L) (bits/sec).
2un

It has also been proven that for R < (' there exists a positive number
8 = B(n,p.u,R) such that for each 7' > 0 there exists a code with the

property that
max p.; = exp [—B8T + o(T)).

2.2 The Time-Continuous Bandlimited Channel

In order to use the ideas and results outlined above in his study of the
time-continuous bandlimited channel, Shannon considers the model
shown in Fig. 1, with the understanding that H represents an ideal
low-pass filter with cut-off frequency W, and z(-) denotes a sample
function of a bandlimited Gaussian random process with mean zero and
power spectral density

S(w) =2%, || < 20W

where N is a positive constant. Clearly the average power of z(-) is N.

As in the time-discrete case, the message source produces R binary
digits per second, so that every T seconds one of M = 2"" possible
sequences is produced. Consider the ith such sequence. The coder and
signal generator associates with this sequence a particular n-vector

T
|
|

CODER AND | u(-) v()
MESSAGE
SOURCE SIGNAL H i RECEIVER

GENERATOR | |
|
o]

Fig. 1 — Model of a Communication System.
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A . .
X = (x1,22, -+, an), where n = 2WT, and a corresponding signal

s~ sin2aW(t — k/2W)
wll) = 2o = )

te (—ow,x)

which is transmitted. This process is repeated every T seconds. It is
assumed that

| X [} < 2WPT

for each code word, so that, for each signal, as can readily be verified,
%,f u(t)’dt < P. (2)

Insofar as a physical interpretation of (2) is concerned, the object
on the left is the total energy of u(-) divided by the length of the
interval [(4W)~', (4W)™" + T] which, considering only the instants
t = k/2W, contains all of the samples of % (- ) that can be made nonzero.
If (2) holds, then Shannon says that (- ) has average power at most P.

The received signal due to the noise and only the ith sequence is
w(-) + 2(+), since the response of H to u(-) isu (- ). The value of this
signal at the instant ¢ = &/2W is

w + 2(k/2W) for k=1,2 ---,n

in which the z(k/2W) are independent™ Gaussian random variables
with mean zero and variance N. These sample values are the same as
those that would have been obtained if we had not ignored the effect
at the receiver of transmitted signals due to previous and subsequent
sequences, since the values of such signals at ¢{ = k/2W vanish for
k=1,2, - ,n

Thus, on the basis of the channel capacity result of the previous sec-
tion, we see that our continuous channel can process information, with
arbitrarily high reliability, at any rate less than the capacity of the time-
discrete channel with parameters p = W, p = 2WP, and n = N, that
is, at any rate R less than

2.3 Discussion

The argument of the last section is based on the assumptions that the
input to the receiver is the sum of a linear combination of the band-

* The autocorrelation function of the noise vanishes for » = k/2W, k # 0.
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limited functions

A sin 2zW (¢t — k/2W) —o <t < @
- 27|'W(t - k/ZW) ’ k = 1,2:- ..

(which are of course of doubly infinite duration) and a sample function
from an ezactly bandlimited Gaussian random process. The fact that
wo(k/2W) = O for all integers & # 0 plays a key role in that it implies
the total absence of intersymbol interference.

As a result of these assumptions, there have been some objections
to the Shannon model in connection with the notion of rate,* the fact
that the received signals are entire functions (which are predictable for
all time from a knowledge of their values on any interval on nonzero
length), and the fact that it is not clear whether or not the performance
of the model is critically dependent on the assumptions that lead to the
absence of intersymbol interference.

Since Shannon’s model and his associated ingenious arguments are
widely known and are of great interest, from the point of view of the
system theorist, it is important to be able to prove an “insensitivity
theorem” to the effect that if the model is modified to the extent that:
(3) @o(t) is replaced by an approximating function ¢() with the property
that the signals are of average power at most P where P is approximately
P, and ¢(f) = 0 for ¢ < {, for some negative number ¢, , and (77) the
noise is approximately bandlimited with bandwidth W, then, subject
to some reasonable qualifications, it is possible to transmit information,
with arbitrarily high reliability, at any rate less than

W loge (1 + %)

A quite explicit theorem of this type is stated in the next section.

et — k/2W)

III. THE MORE REALISTIC MODEL

We now consider the system of Fig. 1 to be an approximation to the
Shannon model described in Section 2.2.

Here we assume that z(-) is a sample function from a Gaussian ran-
dom process with zero mean and integrable power spectral density
S(w) with the property that

sup 2. S(w+ 47Wp)

0<w<2xW p=—u

* Shannon himself has indicated® that care must be taken in the physical in-
terpretation of the result of Section 2.2. However, he does not discuss the effect of
intersymbol interference or the effect of the departure of the noise spectrum
from the ideal spectrum.
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is finite. From the engineering viewpoint, this finiteness condition is a
very weak assumption; it is certainly satisfied if there exists a constant
K > 0 such that S(») £ K(1 + &)™ for all real w.

We again suppose that the message source produces one of M = 2°7
equally likely binary sequences every T' seconds. We assume that there
is a first such sequence and that the coder assigns the code word

(21,22, -++, x,) toit. After T seconds, the second sequence is assigned
the code word (2,41, Tag2, * -, T2), and so on. The integer n is equal
to 2WT.

The transmitted signal (i.e., the input to the channel) is assumed to
be given by

n 2n
u(t) = 2 ap(t = 1/2W) + X ae(t — k/2W) + ...

in which ¢ (-) is a real-valued function of ¢ defined on (— =, ) such
that there exists a negative constant ¢, with the property that ¢ (¢) = 0
for t < fy. It is evident that each of the signal components (i.e., each
sum) is associated with a particular code word, that is, with a particular
input sequence to the coder. We note that the first signal component
“begins” at ¢ = ty + (2W) 7", the second at t, + (2W)™* + T, and so on.
The operator H in Fig. 1 is assumed here to be causal, linear, and
time-invariant. Thus, the output of H is
2n

o(t) = 2 me(t — k/2W) + 2 mwe(t — B/2W) + ...
=1 =n
in which () is the response of H to ¢(-). Since H is causal, there
exists a negative constant ¢, such that ¢ (f) = 0 fort¢ < ¢,.
We assume that ¢(0) = 1 and that ¢ (-) belongs to L, (i.e., is square
integrable). We think of ¢ (¢) as being close to

() A sin 27Wt
e 27 Wi
in the sense that both ||¢ — @ || (|| - || denotes the L, norm) and

5 | ok/2W) — (/20 | = 3, [o(k/2W) |

k=—c0

k#0 k&0

are small. Of course this requires that —1, be sufficiently large.*

* We may certainly take the view that ¢(-) and H are approximations to the
ideal signal o and tge ideal bandlimiting filter, respectively. However, the spe-
cifie nature of these approximations is not pertinent to our development. Observe,
in fact, that it makes sense for us to assume here that H is an approximation to
the ideal bandlimiting filter, but that ¢ (-) is an impulse-like function. The re-
sponse ¢(-) of H to ¢(-) is what we wish to focus attention on.
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It is assumed also that

> (zisin)’ = 2WPT

k=1
forj = 0,1,2, ---, so that the “average power”
1
7 Z-’cwmfpt — (k + jn)/2W) '

of the jth component of »(-) is bounded from above by P + {;, in

which ¢;—0as|[¢ — | — 0.

The receiver, which is assumed to be in possession of the code, samples
the signal »(-) + z(-) at the instants ¢t = k/2W, &k = 1,2, ---, to

obtain in succession the “received n-vectors”
Y, A
1 = (vlsvi'-:l :vn) + (21‘221 te lzﬂ)

Y,

(Un+1 sy Uny2, """, UEH) + (zn+l y Bng2, """

] zﬂn)

in which v = v(k/2W) and z = 2(k/2W). These vectors are used as
inputs to a minimum distance decoder. Thus, for example, if

\Yl—X;{<min{Y1—X,-|,
i

in which {X;] denotes the set of code words, then ¥ is decoded as
X,;. We denote by p.;; the maximum probability, over all possible
sequences of input code words with the jth code word X;, that ¥; is

not decoded as X;. We let
A
Pei = SUDP Peij -
7
Our result (which is proved in the next section) is

Theorem: Concerning the system described above, let

0< inf 2. Sle+ 4xWp)

ISw<2rW p=—%

and

N80 sp 3 S(w+ 4aWp).

ISw2xW p=
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Then any rate

¥P )
R < W log: (1 + ﬁ) (bats/sec)

1s permissible (in the sense of Section 2.1 with p.; as defined above) pro-
vided that v ¢ (0,1) such that

- 3 Ng
kéﬂQl?(k/zW” < (1 =49 (W)

where B = B[(N/v), 2WP, W, R] is the number introduced in Section 2.1.

Remarks: Observe that if S(w) is the ideal power spectral density de-
fined by

S(w) =2iVW, lo| < 20
=0, |w| > 2¢W

then N = N. The condition that

0 < inf E S(w + 47Wp)

0wy W p=—»

is certainly satisfied if S(w) is a reasonable approximation to the ideal

spectrum.
If S(w) is nonincreasing for w = 0, then forp = 1,2, ---,

4xWp
sup S(w + 47Wp) = —.f S(w)dw
w27 W 21I'W 4xWp—2xW
and
—47xW (p—1)
sup S(w — 47Wp) £ — S(w)de.
I<w<aW 20W J_sawpterw

Thus, for S (w) nonincreasing for w = 0, we have the bound

1 0
N=<2Ww sup 2 Slw+ 4zWp) + lf S(w)dw.
0gu<2sW p=—1 T Jazw

The exponent 8 has been estimated by Shannon.’

The basic idea of the proof of the theorem is, roughly speaking, to
(7) treat as an additional “noise source” the departure of the samples of
v(-) from the corresponding samples in the case of zero intersymbol-
interference (Sublemma 1 of Section IV provides an estimate of this
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departure), and (i) to obtain a lower bound on the channel capacity
of the more-realistic model by comparing its error probability per-
formance with that of a model possessing zero intersymbol-interference
and independent Gaussian noise samples (this is done in the proof of
Sublemma 2 of Section IV).

1V. PROOF OF THE THEOREM

4.1 The Discrete Channel

Consider first a discrete channel with memory that receives one of M
equally likely inputs (i.e., code words) every 7' seconds. As in Section
9.1, each input is a real n-vector X which satisfies | X [* = pT, n is
equal to 2u7T, and each input represents a particular sequence of RT
binary digits. Let (21,22, -+, ¥.) denote the first code word, (a1,
Tugz, ", T2,) the second code word, and so on.

At time { = (j — 1)7T, the receiver receives the n-vector

A

V;={yl+ (G— 1)nlyl2+ (G — Dal, -+, ylml)

in which
y(p) = k;:vw(p — k) +z2(p), p=12---

where here ¢ (-) is a function defined on the integers so that ¢(0) = 1
and

3 Jelk) | < o,

k=—00

and each z (p) is a Gaussian random variable with zero mean. For each j,
let,

(1>

Z;= el + (G— Un) 22 + (G — Dnl, -+, 2[jn]}

and

V;

Il

fosll + (7 — Dn}, o2 + (G — Dal, -, vljnl}.

where
o(p) = ;xw(p — k).

Then Y; = V; + Zj.
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We assume that the receiver attempts to determine the jth code
word V; by minimum distance decoding as in Section III. Let p,: denote
the error probability associated with the transmission of code word ¢,
as defined in Section IIT. In Section 4.3 we prove the following result,
which we shall exploit here, concerning this channel.

Lemma: Let Z;, as defined above, possess the property that [with & the
expectation operalor and (-,-) denoting the usual inner product of n-
vectors] there exist constants e and n such that for every real n-vector U of
unit length:

0<e=<s|(UZ) =
uniformly in j and n. Let v ¢ (0,1). Then any rale
R < logs (1 + XP
2un
is permassible (in the sense of Section 2.1) provided that
> leti) | < (1= ()
K= pY
k=0
where B = Bl(n/v), p, 1, B is the number introduced in Section 2.1.

4.2 Completion of the Proof of the Theorem

g | (U,Z;) l2 =8 ; UkULR (k+(G—1)n12[1+(—1n]

kZ; wwR[(l — &) /2W]
for any real n-vector U, in which
R(r) = —‘f S(w)e™“dr.
Thus,
e (UZ) | = él; kz:, Ul f_: S(w)e I gy

1 @ n " 2
— 1 2w

5_ 2 we

27 dew | k=1

S{w)dew

n

oo 2aW+HiTWop
| by
T p—

—2xWH4rWp | k=1
: [
27

2
—Twk/2W

S(w)dw

Ue

Z S(w + 47Wp)de.

p==°

n 2
—Jwk/2W
Zuke iwk/

k=1
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It follows at once that

n

2
—iwk /2
Euke iwk/2W

oo 2 W
8| WIS swp 3 S+ 4rWp) o [ da,
05 w27 W p=—"2 211' —2r W | k=1
and that
L] 1 27W | n . 2
el (WUZ) Pz inf > S(w+ 4xWp) —f 3 e Y do,
Iswl27 W p=—x 27|' —27 W | k=1
Since
_}__ fh-w Zu: uke—z’w.’c,IEW ﬂdw — ! U !2
4xW Lonw |51 } ’
we have
g1 (UZ)['s2W sup 3 S(w+ 4aWp)
Ifw<2r W p=—
el (UZ) Pz 2w inf Y S(w+ 4xWp)
Ifwl2rW p=—x
for | U | = 1, independent of j and n. Thus, we may view the time

continuous system of Section III as a discrete-time communication
system of the type described at the outset of this section with p = W,
p = 2WP,

e=2W inf Z S(w + 4xWp),

0sw2r W p=—wx

and

2W  sup Z S{w + 4«Wp).

w27 W p=

I

n

This proves the theorem.

4.3 Proof of the Lemma

With 2 as defined in Section 4.1, let

= A
Vi = {2usi-vn1s Tzvnmr s+ 5 Tk

Sublemma 1:

-] 2
|V, = V' = M(Z | o(k) i)
k;—oﬂu
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Proof:
_ Y in w 12
|V, = Vi = , > melp — k) —
p=1+(—1)n | k=1
in ] 2
= 2 up(p — k)
p=140-Dn [k=—w

inwhichz, = 0fork < 1,3(0) = 0, and (k) = ¢ (k) for k = 0. There-
fore,

] V‘i - Vj

2
’

9>

P

; T pin@(k)

and, by the Schwarz inequality,
REER TP ZA: | 2oy ] @(1) | ; | (k) |
= 5
2 leh) | 2 w20 [@k) |
r

k

IIA

Since

IA
o

2 7]
Z l Tip—k) = _.pf',
»
we have

V- T

lIA

207 (i P i)'

k=0

which is the assertion of Sublemma 1.
Therefore, with Y; and Z; as defined in Section 4.1, we have

Y,=V,+ Ei+ Z;
in which
| B [P = 20T (; qo(k))z.
This fact when combined with the following result® proves the lemma.

Sublemma 2: Consider a time-diserete channel of the type described in
Seetion 2.1. Replace Z by the n-vector (£ 4 Q) in which E 1s a fixved veclor
and the components of Q are Gaussian random variables with zero mean
with the property that there exist constants e and n such that for every real
n-vector U of unit length:

0<e=&|(UAf =n
* See Ref. 3, Appendix D, for a result related to Sublemma 2.



1488 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966
uniformly in n. Let v € (0,1). Then any rale
R <y logg(l + H)
2un
18 permissible (in the sense of Section 2.1) provided that

|E [ < 9T
for all T > 0, in which

a<ﬂ1—fﬁ?

where 8 = B(n/v, p, u, B) is the number introduced in Section 2.1.

Proof: Let Ty £ (0, ). Consider the time-discrete channel of Section 2.1
with noise vector Z, but with 5 replaced with (1/v)%. Here for

R < ”10g2(1+ E)
2uy

and T' = T, there exists a code { X} such that X; = X, for i = j,
and the error probability (using minimum distance decoding) given
that the ith code word was transmitted

pu 2 PrU (IX+ 2 - X;| 5| 2]
1=

is at most exp [— BT + 6(T)] independent of ¢, where
B = Bl(n/v), o, 1, R]

and 6(T)/T — 0 as T'— «. For this code, the error probability (using
minimum distance decoding) for the channel described in Sublemma 2 is

P S PrU(IXi+E+Q - X;| S |E+Ql.
Let ci; 4 | X; — X;|, and let U;; denote the unit-length vector
(X: — X;)/ci; . Then it can easily be shown that
| Xi+E+Q—-X,;|=|E+ Q|
if and only if
(Ui, @) = — 3ci; — (Ui, E),
in which (-,-) denotes the usual inner product of n-vectors. Thus,

Pei = Pr ,g'_ {(Ui;, Q) £ — 3¢i; — (Uiz, E)}
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and similarly,

Dei = Pr _g_{(Uu'; Z) = — jcij}. (3)
17
Consider (3). Let the n-vector P A (1, P2, -+ » Pa) Tepresent a

general point in Euclidean n-space &,, and let ®:; denote the closed
half-space of &, throughout which (Us;, P) £ —3ci; . Let G = U a;.

i
Then

. —a2 (7 i 1y < 2
Pei = (2m) ” m_exp —i-n-__lzk dzy -+ dza.

Similarly, let S:; denote the closed half-space throughout which
(Ui, P) = —lew, + (Uss, B
and let

S 4 U s;;.
7#Fi

Then, since

pei = Pr U [(Uy, Q) £ —leis + (Ui, B)W Y,

i

we have, with A the covariance matrix of the random variables {q;y'b},
Pes = (2m) 7" (det A)f%f exp [—3Q'A7'Qldg: - - - dga.
8i
Let us assume that

ey + (Ui, E)h™ 2 3eus )

for all j 5 4. Then 8;; © ®;, 8; © ®;, and hence
pei < (20)7"* (det A) f exp [—1Q'AT'Qldgs - - - dga.
@

Let @ = EY, where = is the orthogonal matrix such that AR
= diag O\ L A, -, A '), with the understanding that A; and X,
denote the smallest and largest eigenvalues of A, respectively. Then

. _ 1
P < (2m) 7 (Ne - M) *fm_, exp [— 3 2 M 1yk2] dys -+ dya

k=1

in which ®; denotes the inverse image of ®; under the transformation
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represented by E. Similarly,

—n/f2 n
. —n 1
pam 1@ [ on [ 3 S

=1
Since, by assumption,
e E[(UQNI =1

for every real n-vector U/ of unit length and every positive integer n,
it follows that A; = ey ' and A, < v . We note that for0 < A; < my

- 1, - - 1
Nt exp [— 5N ly;'z:| = (%) exp [— '2-%%'2]

provided that y;* = 5/v. Thus,

. i, 1 n B
(2m) g - AT -/;m-’fe) exp [— 3N 1yk2] dipy -+ - dy,

—nf2 n
s (D)7 [ ew| 315w
¥ (®;'—e) 29 i3

é ﬁei,

in which € denotes the hypercube in &, defined by the inequalities:
pjz = 71/’Yf01'j = 1:25 T, N
Therefore,

Dei éf éf +[
®:” (®:i'—¢)

e

}; Ak—lyf] dys -+ - dy,.

Lo =

= P+ (20) 7O - N fexp[—‘
e
However,

—nf? -1 1 -
(20) 7 (Ahe - - M) f exp [— 5 > lyk2:| dy, -+ dy,
e 2

i —1 — iy —1n; — 142
H (211_) nhk ] f e ? k¥ dy
k=1 —nly

in which
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Thus,
Dot < Pui + 1" < exp [—BT + 0(T)] + ™7 (5)

Since r < 1, the right-side of (5) approaches zero as T'— =. Therefore,

to complete the proof of Sublemma 2, it suffices to show that there

exist values of T such that (4) is satisfied (for allj = 7) forall T = T, .
We note first that (4) is satisfied if

— (U, B) £ 31 = v)ess ©)
for all j # 4. Since — (U;;, E) < | E|, (6) is satisfied if
|E| <30 —+')ess (7)

for all j # 1.
We now estimate the numbers ¢;; . We have," with a 4 2¢i; ('y/-q)i,

exp [— BT + 6(T)] = poi = Pr{(Ui,Z) = —3cis}
= (211')_! f_ﬂ Eiiz!dz,

for any ¢ and any j # 1, since the variance of (Ui;, Z) is n/y. There-
fore,

o0

exp [—BT + 6(T)] = (2m)"° f:a e dr = (%)‘*f

al/2
¢ "(2y) Mdy. (8)

Let § > O be a constant, and let a(5) denote the smallest nonnegative
number such that

%

@)tz ™ forall y = a(s).

Then

exp (=67 + 0(1)] 2 (20 [ exp [~ (1 + day

v

@m)7H1 4+ 8) " exp [—3( + 8)a’]
for @’ = 2a(8), from which it follows at once that
@z 201+ 8)7BT — 2(1 + &) {In [(2r)' (1 + 8)] + 6(T)}

for a* = 2a(8). Since exp [—8T + 0(T')] — 0 as T — =, we see from
(8) that for each «(8) > 0, there exists a constant T'; > 0 such that
a* > 2a(s) forall T = T'; . Thus, for each § > 0 there exists a T's ¢ (0,0)
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such that
cii = 8(1 4 &) 'y 98T
— 8(1 + )7y niln [@r) (1 + 8)] + 6(T))

foral T = T
Inequality (7) is therefore satisfied for all T = T, if Ty > T, and

|E[ =201 =)' + )"y 8T
—2(1 = 7)1 + )Ty nlln [@n)* (1 + 8)] 4 6(T))
for all T = 7, . By assumption: | E |* £ #T for all T > 0, in which
9 < 2(1 — )y 98
Choose 6 > 0 so that
g < 2(1 =)' + 8) 7y B,
and then let T ¢ [T's, ) be so large that
9 =201 — ')A + 87 '8
= 2(1 =) A+ &) T {In [@m) (A + 8)] + 6(T))

for all T = T, . Then (10) is satisfied for all T = T, . This completes
the proof of Sublemma 2.

(10)

V. FINAL REMAREKS

The writer is indebted to 1. Hamming and L. A. Shepp for discus-
sions econcerning this work, and to J. Savage, D. Slepian, and A. Wyner
for commenting on the draft.
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