Bounds for Certain
Multiprocessing Anomalies

By R. L. GRAHAM
(Manuseript received July 11, 1966)

It is known that in multiprocessing systems composed of many identical
processing wunils operating in parallel, certain timing anomalies may
occur; e.g., an increase in the number of processing unils can cause an
increase in the lotal length of time needed to process a fized set of tasks.
In this paper, precise bounds are derived for several anomalies of this type.

I. INTRODUCTION

In recent years there has been increased interest in the study of the
potential advantages afforded by the use of a computer with many
processors in parallel. While it is generally true that a set of tasks may
be processed in less time by this type of multiprocessing, it has been
pointed out that certain anomalies'* may occur, even though the proces-
sors are used in a very ‘“natural” way (e.g., it can happen that increasing
the number of processors can increase the time required to complete a
given set of tasks).

It is the purpose of this paper to derive precise bounds on the extent
to which these anomalies can affect the time required to process a set
of tasks, given certain rather natural rules for the operation of the
multiprocessing system.

1.1 Description of the System

Let us suppose that we are given n identical processing units P, ,
1 =17 = n,and a set of tasks 1" = {T1, -+, T} to be processed by
the P;. We are also given a partial-order* < on T and a function u:
T — [0,»). Once a processor P; begins a task T;, it works without
interruption on 7; until completion of that task, taking altogether
p(T;) units of time. It is also required that if 7'; < 7'; then T cannot

* See Ref. 2.
1563

1564 7THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

be started until 7; is completed. The P; execute the T'; in the following
way: We are given a linear ordering L: (T%,, -+, T%,) of T called a
task list (or priority list). In general, at any time ¢ a P; completes a
task, it immediately (and instantaneously) scans the list L (starting
from the beginning) until it comes to the first task T'; which has not
yet begun to be executed. If all the predecessors of T'; (i.e., those T < T7)
have been completed by time ¢ then P; begins working on T'; . Otherwise
P; proceeds to the next task T, in L which has not yet begun to be
executed, etc. If P; proceeds through the entire list L without finding
a task to execute then P; becomes zdle (we shall also say that P; is
working on an empty task). P; remains idle until some other P; com-
pletes a task at which time P; (and of course P;) immediately scans the
list L as before for possible tasks to execute. If two processors P; and
P;, i < j, simultaneously attempt to begin the same task T, it will be
our convention to assign T to P;, the processor with the smaller index.
The processors all start scanning L at time ¢ = 0 and proceed in the
above-mentioned fashion until some time w, the least time for which
all the tasks have been completed.

It will be helpful here to consider several examples. We shall indicate
the partial-order < on T and the function u by a directed graph G(<,u).
In G(<,u), the vertices will correspond to the T'; and a directed edge
from T, to T, will indicate that 7'; < 7';. Each vertex of G(<,u) will
actually be labelled with the symbol T';/u(7';), the u(7';) indicating the
time necessary to execute T;. The activity of each P; is conveniently
represented by a timing diagram G (also known as a Gantt diagram;
see Ref. 1). g will consist of n horizontal half-lines (labelled by the P;)
in which each line is subdivided into segments* and labelled according
to the state of the corresponding processor.

Example1: n = 3, L: (T3, T1, T2, Ta, Ts, Ts, T7, T%)

T,/4 Ts/3

Ts/5 : Ts/1 /3
G(<,p): - >

Te/2 7:/2 74/3

r—y
- >

* We always consider the segments as being closed on the left and open on the
right.

MULTIPROCESSING ANOMALIES 1565

P Tl | T.’ ; ©1 }
1 4 i 2
c: P Ty Ls Ts |
dJd 2 5 1 3
T T Ty @
Ps 2 R T

The symbol ¢; indicates a processor is idle (i.e., working on the empty
task ¢,) but not all the T'; have been completed. The indexing of the ¢;
is arbitrary. Thus, for G we have v = 9.
Example 2: n =4, L: (T1, T2, Ts, Ta, T5)

T2/5

G(<,u): T./4 /1:/1\~ Ts/4

P, o, T : T,

4 5 4
P ¥1 , T:s, Y5 L Y1 L10 |
¢ 4 T te T2 4 '

Gg:

p. @ . T, [s Pu :

! 4 3 2 4
P 2} Py, Pe L ©12)
! 4 T2 T2 4 '

Here, w = 13. Note that in this example, w is independent of L. We
should also point out here that we are using the convention that when-
ever any T; is completed, then ell current empty tasks ¢; are also termi-
nated. Processors still idle are then given “new” empty tasks to com-
plete (e.g., P; in Example 2).

1566 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

Ezample 3:n = 3, L: (T1, TQ, Ta, T4, Tﬁ, Tﬁ, T7)

/1 .
Tg/l . . Tﬁ/l
G(<,m):
Ts/1 . . Te/1
Tg/l . . T7/3
o, Ty Ty \
P1 1 T 1 1 3 1
Tg Ts @1
.) 1 1] —
9. 12 1 T 1 t 3 t w =25
Ta 1 T“ 1 P2 '
P3 1 T 1 T 3 T

Suppose we use a different list L' given by L': (Tv, Ts, 17, Ts,
T4, T:,, Tﬂ) We then have

T, Ty Ty
P TR
T, Ty Ty
r, } + } P —
g: P 1 1 1 w'=3
Ty ,
Py 3 '

Hence, by simply using a different list L', we have shortened w by nearly
a factor of two. The significance of this and similar examples will be
brought out in the next section.

MULTIPROCESSING ANOMALIES 1567

We see that, in general, » is a function of the task list L, the ‘“time”
funetion p, the partial-order <, and the number of processors n (in
addition to the rules under which the P; operate). In this note, we
investigate the factor by which w ean increase if we simultaneously :

(7) Change* the task list L;
(#7) Decrease the function g;

(777) Relax the partial-order <;

(7v) Change the number of processors from n to n'.

While it might first be expected that (i7), (#%7), or (i) (with #’ > n)
would cause a decrease in w, easy counterexamplesi show that is not
always the case. In the next section we obtain an upper bound on the
factor by which « can increase because of (7), (i), (¢iz), and (i) (cf.
Theorem, p. 1571). This bound is just the expression 1 +n — 1/n’. We
also show that this bound is the best possible in the sense that it cannot
be replaced by any smaller function of » and =’.

II. THE MAIN RESULTS

We begin this section by considering a special case of the general
problem. We include this here in order to acquaint the reader with the
basic ideas which will be used later. Suppose we are given a set of tasks
T = {T1, -+, Tw} and a directed graph G(< ,u) giving a partial-order
< and a time function p on 7. We execute these tasks twice, each time
using two identical processors P, and P, . The first time the tasks are
executed we use a task list L while the second time the tasks are exe-
cuted we use another task list L’. Suppose the corresponding finishing
times are » and «’. The question we consider now is this: How much
can the ratio «’/w vary? This is answered by the following

’

Proposition: § = % = 3.

Proof: By the symmetry of » and o’ it suffices to show that o'/w = 3.
The basic idea we shall use is a simple one. Consider the timing diagram
G obtained when the tasks are executed using the list L. We want to
show that there is a chaini of tasks 7., < T.,, < --- < T, which
has the property that whenever a processor is idle (i.e., executing an
empty task ¢;) then the other processor is executing one of the T., .

* By “change” we mean ‘‘possibly change”, ete.

t As far as the author is aware, these facts were first pointed out by Richards.?
t i.e., a linearly-ordered subset using the partial-order <.

1568 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

To define the 7., we proceed as follows. First, let T'; be defined to
be the task which has the latest finishing time in G (if there is more
than one such task then we choose the task which is executed by the
higher-indexed processor). Let ¢, be the empty task which has the
latest finishing time of all those empty lasks which finish at a time not later
than the starting time of T;, . By the construction of G, there must be a
task T, which has the same finishing time as ¢, . Define T';, to be T, .
In general, suppose we have defined 7';, for some k = 2. To define T, , ,
let ¢, be the empty task which has the latest finishing time of all those
empty tasks ¢; which finish at a time not later than the starting time
of T, . (If there are no such ¢; then we are done, ie., T, is not de-
fined.) By hypothesis, there must be a task 7T, which has the same
finishing time as ¢y, ,, and which has a starting time not later than the
starting time of ¢,,,, . Define 7, , to be T,. We continue this algo-
rithm for as long as possible, say, until we have defined T, , ---, T, .

We first note that since no processor works on one empty task ¢;
while the other processor works on more than one task, then at any time
a processor 1s executing an empty task, ¢:, the other processor is exvecuting
one of the T,, . We next claim that T;,,, < T for 1 = k& < r. Suppose
this is not the case. If {, denotes the time at which a processor P; started
executing ¢y, then by the hypothesis concerning the operation of the
processors, P; should not have been idle (i.e., working on ¢, ,,) since
at least one task, namely 7';, , was eligible to be executed at that time.
Thus, the timing diagram G is not valid and we have a contradiction.
Hence, we must have T, < T for1 = k < r. By defining T, =
T, for 1 < k = r, the first assertion is proved. It follows at once
that if we let u(p;) denote the length of time a processor spends executing
v; , then

> ule) = 20 wl(T5). (1)

¢iESG k=1

The proof of the proposition now follows directly. Let Ty < T, <
- < T;, be chosen (by the assertion just established) so that

P > w(T), (2)

where the ¢,/ are taken from g’ (the timing diagram obtained when the
list I’ is used). Note that o’ can be written as:

W =3 2 wT)+ 2 ued). (3)
$ir€G

TLET

MULTIPROCESSING ANOMALIES 1569

From (2) and (3) we have

W = %(2 u(Te) + Z#(qbs'))- (4)
TLET k=1
Since the following inequalities hold:
wz3 2 uw(Ty) (5)
TyeT
w = I; u(Ts) (6)
(where (6) follows from the fact that 7';, < T < --- < T,), then we

have from (4), (5), and (6)
o S 32+ 0) =2

and the proposition follows.
The following example shows that the upper bound of cannot be
replaced by any smaller value.

Ezxample 4: n = 2, L: (Ty, Ty, 1), L': (Ty, T2, Ts)

T/1
G(<p: T/
T?/2
, T, T
Py 1 I
G w =2
o 15 ,
P) t
T T, ,
P o 5 : .
[w =3
N Ty @1
P,] }) }

Therefore, w/w = § and the upper bound of the proposition is achieved.

1570 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

Before stating the main theorem we introduce some notation. Let
T={Ty, -, Tn) beasetof tasks. Let G = G(<,u) and G’ = G'(<' ")
be two directed graphs for T' with the partial-orders <,<’ and the time
functions u,u’. We say that G = G if:

(’b) jJ.’ = Hy i.e., ’J-’(Tj) = ,U.(T,') for all T,‘ €T

(@) <' € <,ie, T; <' T;implies T; < T; forall T:, T; € T.
Finally, suppose we execute the tasks fuice, one time using the graph
@, a task list L and n processors, the other time using the graph G, a
task list I’ and n’ processors. Let w and o’ denote the respective finish-
ing times, We then have the

Theorem: If @' = G then

7
c_u_é n—1
w

Proof: By a slight modification of the argument used in the proposition,
it follows that if ¢/, 1 = 7 =< v, denote the empty tasks of G’ then there
exists a chain of tasks Ty <’ Ty <’ --- <’ T, of tasks in T with
the property that whenever a processor is idle then some other processor is
executing one of the T';, . From this we conclude

> Wled) £ (0 = 1) 2 W), (7)

vi'€G

As before we note that

W = % (TZE:T W (T;) + EEJQ ﬂ'(rﬁu'))
. ’ * , (8)
< L(Z W+ o0 - 5r)

n \rjer k=1
where the inequality follows by (7). Since

LD MU H D W T (9)

N rieT N rieT
and
w = ’;H(Tq) 3’;#’('1‘-‘;) (10)

MULTIPROCESSING ANOMALIES

then by (8), (9), and (10) we conclude

W =

| —

> (nw + (n’ — Dw).

E]

Hence,

n—1

14 -
n

e &,
A

and the theorem is proved.

1571

To show that this bound is best possible, we give several examples,
which show that the bound can be attained (to within &) by varying

any one of the four parameters L, u, <, or n.

Ezample 5: L is varied.

n:n” p=_u.', '<=<’
L= (Tl, 7,2; T, 11"71, T?.n—l, Tn: Tn+1: -t
L'=(T,T., Twpry -+ Tons, Ta, Ta,
.1/
.Ta/1
T/l

G(<,n): .T./n—1

Top/n — 1

-T'_’u—z/‘l’b -1

. -’I'ZR—I/n

3 Tn—l] T?n—l)

1572

Py

P,

P

P,

Pn—l

THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

TL[Tn 1
1 n—1 '
T‘z " Tn+l "
1 n—1 '
.......... w =N
T, Ty ;
1 n—1
T211—1 1
p- ¢
Tl N TT‘.! L .Tn—l. T'Zﬁ—l 1
11 5 n '
T, | ©1 .
n—1 n '
.......... w =2n—-1
Trguf;; N Pn—2 n
n— 1 ' n '
TZn—‘Z 4 Pnu—1 I
n—1 n)

MULTIPROCESSING ANOMALIES

Thus,
1

mf
L -9 -2
(4] n

which is the value of 1 + (n — 1)/n’ when n = n’.

Ezample 6: u is decreased.

n =n, =y, < =<’

L = L’: (Tl,Tg, Tty Ta,.)

w(T) W(T) -

1573

'y

I’

rn—l
.,
rn+1

rrz+2

T'lﬂ

T2r|+l

T2n+‘.'

rau

2¢

¢

2¢

2e

&

T2n+2

T‘2r|+3 (In G,
Ti < T_i < Tg,,,_u
forl £¢i=n
<Jj = 2n)

Tﬁn

1574 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

T] “nurﬁ “n_..ﬁ d
. 1 —u L1 3 .
T ~|=nrﬁ A|=u.h T .n|=_.N T m
WN+="3
_ 1—u 138 .
T N+=N_.H .NnT:rH) N_.N d
_ T — u 1 3% .
' g AN AN/ d

1575

MULTIPROCESSING ANOMALIES

i+1—ug =,

1 —u 3 - 11 . 1 7z
T—uich ﬁdl:ﬁ ! nlzmrﬁ__ e .N+=rﬁ_ BN
1 —u L1 1 — 3
£—UTgh T =g T :nrﬁ ~L._rh
1 —u 1 1 —u 3
ugh L7 n+nnrﬁ _NrN
1 — u 1, I —u 3
ﬁ+=u:m ! :«H. i.:«:u :&

.-|=ﬂ~

'd

'd

1576 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

Thus,
2n — 1+ ¢
n + 2¢

which is arbitrarily close to 2 — (1/n) for & sufficiently small. We
should note the interesting fact that o' = 2n — 1 + ¢ for any list L’
which may be used.

7
[}
w

Example 7: < is relaxed.

n=n, p=yp, <D
L = L': (Tl, T2, Tty Tn(u—l]+2)
Ta/1
Ts5/1
G(<,u): T:/e
Tr-n/1
T’l’l (n—1)+1/1

T rn—42/n

.Th/e

.Te/1
G(<"\m):

M r-n/1

Tan—n/1

Trn—yyt2/ 0

1577

MULTIPROCESSING ANOMALIES

Ll AL .
-+:!5==w v I—ug g T e
A A S —u
:IEJ.H._ .. ml:m»ﬁ mlp_rh t—ug L d
4uUu=®
ko e g
¥FGE—x) I v «+=ph ey 16
_.m- 1 g F
._“_Izn_-. N.Imlt‘._:»h nm
u
I T
ﬂfmlé_.__.m ..+_.:u ' N7 ;& 'd

1578 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

T—ug=,/m

1 u .‘_ H 1 1 H 1 ﬁ

' T—ugh Nuleudr.ﬂ _=n_.H ' :_rh

] : - 1 .H L Il .H I H

v TT—ugh e g “ee e p 1w g

1 : [.H el — | .H 1 H

! %) HE—wu “or (357 ' ¢

\ N P WS T

' aH(1—u)u e+H(E—u)u 3 “er stur T3
L Ly L L

. P-u , L I T 3

' %) q.+.2.|£=...ﬁ T B T+ L 1 ¥

'

'd

'd

MULTIPROCESSING ANOMALIES

Thus,

which is arbitrarily close to 2 — (1/n) for ¢ sufficiently small.
Ezxample 8: n is varied.
Case 1: n < n/, p =y, < =<'

L=1L: (Ty,T:, , Tan—nrinsa)

1579

711/{' o Tllﬂ'—n'+lt+2/n'
Tole Tot2/1
G: Twia/1
Tu/e
Tn+1/€ i Tnn'—u’+ll+1/1
P Tll If‘"ﬂ-#lI 71ilrl»ﬂ \ e Ig'rm'—n’+3l
! e e 1 !
n'
P T2 , T'i'm'—n'-i-ivﬂ-i.’ Pn—1,
2 T 7 T T
£ n £
T Lo Tuts N T ITnn'-n'-H.
P:l £ T P T 1 T T 1 T
Tn Pn—2 TEn s .Tnn'—n'+ni+1

e e 1 ' |

w=mn"+ 2¢

Py

Py

Pn-l—l

1580 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1966

Tl N T,,+2 , e T:m '—2n'4n42 L1
€ 1 1 n'
n — 1

Ty Tuws c Tonr—on4nip P2

£ 1 1 n'
Tn+l , T2n+2 , U Trm f—2n'+2n4-2 @n+1

£ 1 1 n'

14 , Tn+n’+1 | T T_ml’—n'+n+1l Tnn'—n’+u+2

e 1 1 n'

w=n"4+n—-1+4c¢

Thus,

" a4+ n—1+c¢
- n' + 2¢

which is arbitrarily close to 1 + (n — 1/n') for & sufficiently small.

w
w

Case 2: n > n'. The construction in this case is similar to that of Case 1
and will not be presented.

We should note that in Example 8 we took L = L/, If it is of some
consolation to a possibly battered intuition, it should be noted that if
n < n,u = p,and < = <’ then for any L which is chosen, it is
possible to choose a suitable L’ for which o’ < w.

I1I. CONCLUDING REMARKS

It should be pointed out here that we have not considered models of
the multiprocessor system in which the priority list L is “‘dynamically
formed” (as opposed to the fived lists we have used thus far). For ex-
ample, one seemingly quite reasonable way of doing this is as follows:
At any time a processor is free, it immediately begins to execute the

MULTIPROCESSING ANOMALIES 1581

“ready” task (i.e., one which has all its predecessors completed) which
currently heads the longest chain of unexecuted tasks (including itself).
Suppose by following this algorithm in choosing tasks, we have a finish-
ing time of w* If we denote by w, the least possible finishing time
(minimized over all lists), then we would like to assert something about
the ratio w*/w,. It follows from what has been proved in this paper
that w*/w, £ 2 — (1/n), (where n is the number of processors) and
we would hope that, in fact, we could show w*/w, is considerably closer
to 1 than this. Unfortunately, this is not possible since it can be shown

that the best possible bound on this ratio is given by

iy 2

Wo n+1

It is interesting to note, however, that in the case in which the partial-

order < on the tasks is empty, then this bound can be improved* to
ot 41

we 3 3’

which, again, is best possible.

In conclusion, one might ask just how “typical” the examples are for
which o'/w, is close to the upper bound 2 — (1/n). While very little
work has been done on this aspect, empirical results (using computer
simulation (see Ref. 1)) indicate that examples in which o’/w, 2 1.1
are quite common.

IV. ACKNOWLEDGMENTS

1 wish to acknowledge here the stimulating discussions I have had
on this subject with 8. Lin and with G. K. Manacher, who originally
brought these questions to my attention.

REFERENCES

1. Manacher, G. K., The Production and Stabilization of Real-Time Task Sched-
ules, Institute for Computer Research, Quarterly report, Univ. of Chicago,
May, 1966.

. Ochsner, B. P., Controlling a Multiprocessor System, Bell Laboratories Record,
February, 1966 .

. Richards, P., Parallel Programming, Report No. TD-B60-27, Tech. Operations
Inc., August, 1960.

. Heller, J., Sequencing Aspects of Multiprogramming, JACM, 8, 1961, pp. 426-
439.

. Kelley, I. L., General Topology, Van Nostrand, Princeton, 1955.

[5L BEE -C E]

* The proofs of this and the preceding result will appear in a later paper.

