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Three stochastic models for traffic, forming a progression of decreasing
simplicily, are discussed with a view to discerning in what ways the various
assumplions they depend on affect the formula for blocking probabilily.
These models are the probability linear graph (due to C. Y. Lee), the
thermodynamic model, and a model based on Markov processes (both
proposed by the author).

Cerlain basic inadequacies of the models are described. Lee's model
lacks a sufficiently broad assignment of probabilities to events of interest,
with the result that the blocking probability is improperly defined; at the
same time it bases congestion formulas on network conditions never achieved
in practice. The thermodynamic model deals only with genuine system stales,
but makes calling rates depend unrealistically on available paths. Neither
the graph model as originally proposed, nor the thermodynamic model, can
take inlo account rouling procedures. The author's Markov model is free
of these drawbacks, but at this price: in nearly all practical situations
tn which losses occur, it leads to hitherto insurmounted combinatorial and
compultational difficullies.

To stress and illustrate the effect that routing has on loss, the blocking
probability formulas of all three models are compared at low traffic: it often
turns out that when the first two models indicate that (with A = offered
traffic) loss = O(\"), N — 0, an analysis based on routing shows that in
fact loss = o(\™), N — 0.

I. INTRODUCTION AND SUMMARY

In recent years several stochastic models for random traffic in large
telephone connecting networks have been proposed. In 1955, C. Y. Lee'
described what has come to be known as the “‘probability linear graph”
model, an outgrowth of earlier work of Kittredge and Molina. In 1957,
P. Le Gall* developed and used essentially the same model as Lee. In
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1963 the author presented another model,” which he called ““thermody-
namic”’ because of its resemblance to statistical mechanics, and a third
one* that was formulated in an effort to take routing methods into ac-
count and to meet certain drawbacks of the thermodynamic model.

These three models form a progression of decreasing simplicity and
increasing realism, and they exhibit the trade-off between verisimilitude
and computational difficulty: the more realistic the model, the harder
it is to calculate anything in it. Their existence also affords a limited
opportunity for trying to make comparisons, e.g., to see in what ways
the various assumptions made affect the formula for blocking proba-
bility.

Our object here is to discuss the respective inadequacies of all three
models, to compare their blocking probability formulas at low traffic,
and to stress and illustrate the point that routing has a basic structural
effect on the probability of loss: in particular, it often turns out that
when the first two models indicate that, with A = offered traffic, loss =
O(\") as A — 0, an analysis actually based on reasonable routing shows
that loss = o(A™), A — 0.

II. DISCUSSION OF LEE'S “PROBABILITY LINEAR GRAPH'’ METHOD

The ‘probability linear graph” approach to the study of connecting
networks has been extensively described by its proposer C. Y. Lee,’
and more recently by R. F. Grantges and N. R. Sinowitz.” Therefore,
we include only the following résumé of the method: to calculate the
congestion incurred by traffic between an inlet « and an outlet v, at-
tention is focussed on the graph @ defined by the possible (i.e., permitted)
paths through the network from u to »; G consists of all nodes and
branches through which some path from u to v passes. Naturally, ¢
is connected. Given any assignment of occupancies to the branches of
@, i.e., any (complete) specification of which branches of G are busy
and which are idle (at a particular juncture of network operation), it
is possible to examine G to see if there is a path from u to » (no branch
of which is busy). The method now assigns a probability distribution to
the possible occupancies by postulating that a link  of G is busy with
probability p, independently of all other links. The congestion for
and v is then calculated as the probability that this distribution assigns
to the event “There is no path from u to v”. The probabilities {p,, l a
link of G} are chosen to reflect the loads carried by the links in the net-
work.

A foremost merit of the Molina-Kittredge-Lee proposal is of course
that it provides a simple way of at least approaching the massive prob-
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lem of theoretically determining the grade of service in a connecting
network. For small networks the calculations can be done by hand, and
for large ones, in which the graph G is complex, it is feasible to use com-
puters to evaluate the polynomials that arise,’ or to use approximations.®
For these reasons alone Lee’s model merits serious consideration. Indeed,
R. F. Grantges and N. R. Sinowitz claim: “The utility of the results
obtainable from Lee’s model is well known. When the specific [average]
branch occupancies are chosen rationally, the caleulated blocking agrees
well enough with real blocking figures (obtained from full-scale simula-
tion or measurement) for many engineering and design purposes.”
(Ref. 5, p. 977.) However, these same authors, while using Lee’s model,
also state explicitly: “Unfortunately, in complex switching networks,
substantial differences may exist between the estimates obtained with
Lee’s analytical technique and actual performance determined by field
measurement, or full-scale (complete) simulation.” (Ref. 5, p. 1000.)
It appears, then, that some discussion and evaluation of the basis of
Lee’s model might help to indicate where and why it departs from reality.

It is often stated (e.g., Ref. 5, p. 969) that a principal unrealistic
feature of Lee’s model is the assumption that the occupancies of the
links are statistically independent. However, the Kittredge-Molina-Lee
approach involves some problems most of which are independent of this
assumption:

(z) It does not assign probability to enough events of interest, so
that there is difficulty in properly defining the probability of blocking.

(#7) It may assign substantial probability to (and base congestion
caleulations on) events which can never occur in real life. (This fact
depends, of course, on the independence assumption.)

(#77) It does not recognize (wide or striet sense) nonblocking networks.

(i) It does not take into account the effects of routing decisions.

Noting most of these difficulties, Grantges and Sinowitz® have devised
ingenious modifications of Lee’s basic method in order to meet them,
and to increase the realism of the graph model. When each procedure is
compared against full-scale simulation, these refinements give a re-
markable improvement in aceuracy over Lee’s original proposal. The
modifications are suitable for computer simulation of Lee’s method, and
do not give rise to a formula for analysis; thus, we are not able to include
them in the low traffic comparison at the end of this paper.

Problems (i) and (i) are discussed in the next two sections; (i)
and (#v) are considered after a description of the thermodynamic model,
which also has such drawbacks,
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III. INCOMPLETENESS

By a full-fledged stochastic model for network operation, we mean one
in which every event observable in the real-life system has a counterpart
in the model which is assigned a probability. If this seems an excessive
requirement, let us agree that at least any event depending on the busy
or idle condition of crosspoints and links in the network is to be assigned
probability. It is a pertinent comment that Lee’s calculation is not based
on such a model, not even in the weak sense agreed on.

The incomplete character of the assignment of probability in Lee's
model has serious consequences. For example, not all events depending
on what inlets or outlets are busy or idle are assigned probability. In
particular, when the congestion for traffic from inlet u to outlet » is
under consideration, the model does not assign a probability to the event.

{the call from u to v is blocked},

in the customary sense of ‘blocked’. This is because it may be true, at
a particular moment, that there is no path from  to » on G in the sense
that every possible path from u to v has at least one busy link, while u
or v or both may be busy talking to other terminals over other links.
In such a case, we would not say that a u, v call was blocked; only if there
was no path and both u, v were idle would we say they were blocked.
However, the event that « is idle, or that v is idle, is not (and cannot be)
considered, since no event of this form has been assigned probability.
Lee’s model assigns probability to so few events that it cannot distin-
guish between the above two cases. Indeed, this circumstance is directly
responsible for the model’s inability to recognize a nonblocking network
when it sees it. In such a network the event

{every path from u to v has at least one busy link}

will in a reasonable stochastic model have positive probability, but the
event

{the call from u to v is blocked}

has probability zero. It is in part because Lee’s model calculates the
probability of the former event that it gives the wrong answer for non-
blocking networks; to the latter event it does not even assign probability.

The problem just discussed has been treated by Grantges and
Sinowitz® in their prefatory remarks, and at considerable length by
E. Wolman.”
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IV. IRRELEVANT STATES

The probability linear graph model not only fails to assign probability
to events like blocking which should have it; it also does assign it to
events which never occur in an operating exchange. It bases congestion
calculations on situations, i.e., conditions of the network, which never
arise in practice. Moreover, these irrelevant situations ean be so numer-
ous as to greatly outnumber the relevant ones. The model assigns these
irrelevant situations probabilities that are comparable to those assigned
to the relevant states. The applicability of any calculation depending
so heavily on irrelevant material is open to question: it is very hard to
see why these irrelevant states do not swamp the ones of real interest.

To illustrate our point about irrelevant situations, suppose that for
some inlet % and outlet » the graph G determined by the paths from u
to v includes every inlet and outlet on some square switch, deep in the
middle of the network. Now, in every physically meaningful state of
the network, reachable under normal operation, this switch will have as
many idle inlets as outlets. However, in this case, Lee’s method will also
base congestion on situations with m inlets busy, n outlets busy, and
m # n. It is easily seen that these are in the vast majority, and that
Lee’s model assigns them probabilities comparable with those assigned
to situations with m = n. (The second of these facts depends, of course,
on the “independence of links”’ assumption.)

Assessing the effect of the irrelevant states is difficult, but their
presence may help to explain the variable agreement of Lee’s model
with experiment: when the proportion of blocking states is the same in
the set of relevant states as in that of all states, the model may be ac-
curate; when the inclusion of irrelevant situations produces bias—
either too low or too high a proportion of blocking states in the set of
all states—the model is inaccurate.

V. DISCUSSION OF THE THERMODYNAMIC MODEL

The thermodynamic model’ for equilibrium traffic in a telephone
connecting network is obtained as follows: the physically meaningful
states of the network are collected in a partially ordered set (S, =),
and a distribution {g,, x ¢ S} of probability over S is defined by the
condition that ¢ maximize the entropy functional

H(g) = —Esqr log q.

subject to the condition that Y .5 |z |g, = carried load (agiven number).
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With ®(z) = 2 ..s 2'*' and ¢ the positive solution of

carried load = Ej_g log ®(), (1)

¢ has the form
g. = ®'(®E"". @)

An extensive discussion of the thermodynamic model is given in
Ref. 3. We confine ourselves here to a brief presentation of points rele-
vant to comparing it with Lee’s model, and with that of Ref. 4.

(¢) It provides a full-fledged stochastic model for traffic in the net-
work: each possible meaningful state is assigned probability in a simple
way [formula (2)]. This great advantage is of course obtained at the
considerable price of introducing the complicated set S of states; for
many purposes, calculation with S can be replaced by calculation with
the numbers | L, | , where L, is the set of states with n calls in progress,
and | - | indicates cardinality. While this replacement is an enormous
simplification over use of S, the determination of the numbers | L, | is
nevertheless a formidable and unsolved problem; however, it is also
one on which virtually no effort has been expended except n unpub-
lished work of A. J. Goldstein.

(#%) In order to construct a realistic model, it is not enough to take
into account all and only the meaningful states in some full-fledged
stochastic model. It is also necessary that the model be based on a
realistic description of the rates at which the system moves from state
to state. In this second respect the thermodynamic model falls quite
short. It was pointed out in Ref. 4 that the thermodynamic model
corresponds closely to random choices of routes for calls, together with
the artificial feature that the calling-rate of a call depended on the num-
ber of paths available for it.

(#3i) The thermodynamic model shares with Lee’s the drawback
that it is incapable of describing the effect of general routing policies.
It is known that these effects can change substantially the probability
of blocking, in some cases by a factor of ten.® The reason for this is,
roughly, that proper routing largely avoids the disastrous states in
which many calls are blocked. Oblivious of routing, the thermodynamic
model gives positive probability to any path on (S, =), the “bad”
paths receiving probabilities comparable to those of the “good’ ones.

(1v) Since the thermodynamic model assigns probability to every
meaningful state, it is possible to give a reasonably satisfactory defini-
tion of blocking probability in it. In analogy with Ref. 4 we define it as
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S
Pr{bl}, = ‘= 3)
.

where £ is as in (1), 6 stands for ‘thermodynamic’,

8. = number of idle inlet-outlet pairs in = that are blocked,
e, = number of idle inlet-outlet pairs in .

This formula holds an advantage over Lee’s in that it gives the value
zero for a strictly nonblocking network. However if the network is
only nonblocking in the wide sense, i.e., if it is only nonblocking if the
right routing is used, then the blocking as given by (3) will not distin-
guish this behavior: it will give a positive answer that does not depend
on how routing is actually carried out.

VI. LOW TRAFFIC BEHAVIOR: CALIBRATION

The differences between the three models being considered here are
particularly evident when they are used for studying a network that
is nonblocking, whether strictly or in the wide sense. Needless to say
Lee’s method cannot distinguish the nonblocking behavior at all, while
the thermodynamic model can recognize a strictly nonblocking network
(8. = 0), but cannot distinguish lack of blocking due to proper routing
(nonblocking in the wide sense.)

In an effort to provide an analytical comparison between Lee’s
model, the thermodynamic model, and the Markov process model of
Ref. 4, we shall examine the leading terms of the blocking probability
formula in each model for low traffic in a Clos 3-stage network with
rn X m outer switches, m r X r middle switches, N = rn inlets (outlets),
and n = m = 2n — 2. This network is depicted in Fig. 1.

Such a comparison can only be sensible if the link occupancies in the
models agree asymptotically. In many ways it would be more desirable
to calibrate by requiring the same carried load in each model; but in
Lee’s model the only way of defining this requirement is by reference to
the link oceupancies, a procedure equivalent to ours.

It is to be kept in mind that the comparison to be made is carried
out on the basis of asymptotic formulas valid only for sufficiently small
values of X\. The range of loss probabilities over which the comparisons
are performed is not known and could conceivably fall entirely outside
the domain of practical relevance.

In the model of Ref. 4 the inlet occupancy is reasonably defined as
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nxm rxr mxn

. 1 1 1

Fig. 1— 3-stage Clos network.

carried load )
N

Since it is elementary that
carried load = AN® + o()), A—0
it is reasonable that the link occupancy p in Lee’s model be

p = ca,rruzag load % % _ Z\;Im__ + o), A — 0.

With this calibration the blocking in Lee’s model for the network of
Fig. 1is
1 — (1 —p°1"=p" + o)
2\ m
- x"(zﬂ) + o0y, A—0.
m

For the thermodynamic model the calibration is a little more in-
volved. The basic requirement is that the parameter £ used in that model
satisfy

DA

LES

carried load = Nq = W ’

zeS
It is easy to see that the ratio has the form

| L, | £ + (), | L, | = number of states with one call in progress,
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with ¥(£) = o(£) as ¢ — 0. Since for complex z small enough

@ [ _ | _ Ng
([ = F 7 TL]

it follows from Lagrange's theorem® that for ¢ small enough,

_Ng | s1d7 (3@
f*lLIJJ’Zn!d"*'(lL. I)

n=1

z=Ng/|Lal '
_ Ng _ AV
E_ |LII+O(Q)_ ’L1J+O(R)l A_>0'

It is easily verified that | L, | = nrovn = N°m, whence

A
E_m+o(h)l R_)0- (4)
(This formula exhibits the sense in which at equal carried loads the
parameter ¢ of the thermodynamic model is about 1/m times the param-
eter A as a result of the increased calling-rate in that model due to its
proportionality to the number of available routes.)

VII. LOW TRAFFIC BEHAVIOR: THE EFFECTS OF ROUTING

It can be seen that, for the Clos network under discussion here,
a, = N* so that (3) and (4) give

. m
Pr{bl}y = N7* =% 2 B.4+ oA™.
m lzl=m
In the model of Ref. 4, the blocking probability for this same network
has the form

m

Pr{bl} = N7 25 3 rp, + 04",

*lxl=m

where
B. = number of calls blocked in state z
7. = number of ways of ascending from 0 to x along paths permitted

by the routing rule in use.

We thus arrive at three low traffic formulas for loss all expressed in
terms of A: as A — 0,
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_a A" m
Pr {bl}y = N7 5 l‘; 8. + o(\™), (5)
Pr {bl}y.. = (2%)?\ + o(\™), (6)
Pr {bl} = N~ -?% T B o). )

The sums in these formulas are in general not easy to calculate, de-
pending as they do on network structure and routing. Our point, though,
is precisely that the dependence on routing is crucial, since by making
the bad states relatively inaccessible we can make the sum

> b

lzl=m

small, even to the point of being zero. In such a case the first two block-
ing formulas do not even have the right leading term.

To see how this comes about, we refer to Fig. 2, which shows a typical
blocking state of dimension m of the Clos network of Fig. 1. It is clear
that if some of the calls were to double up on the middle switches, in-

rxr
{ =— 1
. 1 i 1
n =— e ]
K
L]
K+ 1
= —
r m r .
n— —n

Fig. 2— Typical state with dimension m and some blocked calls.
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TasLE 1
Network parameter Coefficient of Am in blocking formula
n m r Lee ] ‘ Ref. 4
2 2 2 64 4 0
3 3 2 1728 27 0

stead of wastefully each using a middle switch, there need be no block-
ing. Now for » = 2, m = [3n/2] the network under study is nonblocking
in the wide sense. That is, these conditions on r, m, and n ensure that as
long as correct routing decisions are made, no call need be blocked. The
“correct” routing that achieves this performance consists precisely in
not using an empty middle switch when a partly-filled one is available.
It is highly likely, as the results of Ref. 8 suggest, that this advice is
good even when r > 2, m < [3n/2]. Let then R be a routing matrix for
the network of Fig. 1 which embodies the above advice. It can be seen
that

.= R"")p. =0

for |z | = m and 8, > 0. L.e., all the blocking states of dimension m are
unreachable from 0 in m steps under R, because R insists that empty
middle switches be used only when partly-filled ones are unavailable.
This very reasonable routing makes the coefficient of \™ in Pr {bl}
vanish.

Table I shows the coefficient of \™ in the low traffic formulas (5) to
(7) for two very small networks; for (7) it has been assumed that no
unblocked call is rejected and that routing is optimal, i.e., minimizes
loss.

VIII. CONCLUSION

This paper has provided one more illustration of a situation that
traffic experts are well aware of, namely, that blocking probabilities
in connecting networks can be computed only under assumptions that
are not satisfied in practice. There is concrete evidence indicating that
results obtained within the framework of such approximate models
can be of practical value. By considering the respective advantages
and drawbacks of a spectrum of models, it is possible to discern to some
extent the effect of the various assumptions made on the structure of
the formula for loss.
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