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Normal modes and their propagation constants have been found for a
two-dimensional lens-like medium in which the transverse refractive index
varies essentially with quadratic law but has perturbing terms of higher
order. In such a realistic guiding medium with aberrations, those modes
are used to find the field configuration of a Gaussian beam of half width W
entering off-axis.

Close lo the input the beam oscillates periodically with amplitude z;
as if the medium were aberration-free, but slowly the beam cross-section
changes shape, breaking up in several marima, and increases size, reaching
a maximum approximaltely equal to 2(W + x,;). Afterwards the beam
slowly shrinks back to the starting field configuration and the process
repeats again.

These resulis are applicable to a sequence of lenses with aberrations
and become tmportant when the lenses are closely spaced. If redirectors
are to be used to compensale for lens misalignments, the corrections must
be made before a large break-up of the beam occurs.

I. INTRODUCTION

Transmission through a lens-like medium consisting of a dielectric
rod in which the dielectric constant decreases radially with quadratic
law has been studied because, first, it is closely related to light transmis-
sion in a periodic sequence of gaseous lenses,"* second, it helps to
understand the filamentary nature of the oscillations in ruby lasers,*
and third, if the dielectric constant is complex, it describes the gain
medium in a gaseous laser.’

Whenever the radial dependence of the dielectric constant is quadratic,
any paraxial beam propagates undulating periodically about the axis,
and the field reproduces itself after each period. This is true only within
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some approximations.* Part of the object of this paper is to find the
distance over which the approximations hold and how it depends upon
the beam shape and displacement from the axis. The mathematical
description of Gaussian beams in such an aberration-free lens-like
quadratic medium has been achieved via two techniques. The first
consists of expanding the input beam in terms of on-axis normal modes’
and summing them up everywhere. The second technique consists of
solving differential equations that elegantly relate the location of the
beam axis, the spot size, and the curvature of the phase front at any
place along the beam.” Nevertheless, we show in this paper that if the
lens-like medium has aberrations, no matter how small, the electro-
magnetic field of a paraxial beam changes shape radically as it travels
along the guide. The distorted beam cannot be described any more by
the beam axis location, the spot size, and the phase front curvature,
and consequently, the off-axis beam must be calculated following the
first technique.

The on-axis normal modes and their propagation constants are found
in Section IT using a first-order perturbation technique; the off-axis
beam is calculated in Section III; the limits of validity of the previous
results are given in Section IV and conclusions are reached in Section V.

The modes in lens-like media with arbitrarily large perturbations
have been studied by 8. E. Miller® and J. P. Gordon.” However, they
have not given a quantitative description of an off-axis beam.

Beam deformations similar to those analyzed in this paper have
been obtained by D. Marcuse'® who calculated, via a computer, the
transmission of an off-axis Gaussian beam through a sequence of
curved and distorted lenses.

II. MODES IN A LENS-LIKE MEDIUM WITH SMALL ABERRATION

Consider a lens-like medium in which the refractive index
_ LEAY (m:)“]*
”‘”"[1_(L)‘;““L M

* A H. Carter has found® that if the dielectric constant of the lens-like medium
varies radially, not with quadratic law, but with the square of the hyperbolic secant
law, the periodicity is not restricted to paraxial beams and since there are no approxi-
mations involved, the results hold for any length. Unfortunately, the functions de-
seribing the modes are hypergeometric and they cannot be easily handled as the
parabolic eylinder functions of the quadratic medium. Because of this and also be-
cause our main interest is the study of transmission through non-ideal media anyhow,
we11 v_vﬂldke?p on basing our calculations on the quadratic medium and we will even
call 1t 1deal.
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varies only in the transverse direction z; n, is the refractive index
at x = 0, and L and a, are constants whose physical significance will
be shown later. The quadratic law of the dielectric constant is slightly
perturbed by the summation in the integers @ = 1,2, 3 --- .

We study here modes propagating along z in a medium with variation
only in the z direction; nevertheless, the extension to the case in which
the dielectric constant varies also along the other transverse direction y,
can be easily achieved as shown in Ref. 1.

Assuming that the only component of electric field # is parallel
to the y axis and independent of y the wave equation is

B - - e ]

where N\ is the plane wave wavelength in a medium of refractive
index n, .
Let us call

0, ©))

2r
=3 3)

a new transverse variable normalized to the beam half-width

w = VAL @

1['

in the unperturbed medium, and also
E = E, exp (—iv,2). (5)

E,, the transverse field distribution of the pth mode, is a function
of £ exclusively and

7o = 1—(p+ +Ta 1(")/)% (©)

is the propagation constant of the pth mode along the z axis. The
summation Zﬂ @ofo(N\/L)**7", is the perturbation due to the aberra-
tions and the unknown f, will be determined later.

Now we substitute (3), (4), and (5) in (2) and obtain an equation
in £ exclusively for the transverse field E, ,

rR ot M P R

For a, = 0, the solution"" is the parabolic cylinder function D,(¢) =
exp (—£°/4)H (&) which is a product of the Gaussian function exp (—£/4)
and the Hermite polynomial of integer and positive order p.
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For a, # 0 it is shown in Appendix A that if

Z aﬂ(% p)ﬂ/%l &1 (8)

]

the differential equation (7) can be solved by using first-order stationary
perturbation theory.'® Then, the transverse field distribution of the
pth mode in the perturbed medium expressed in terms of the normal
modes of the unperturbed medium is

En = Dzz(E) + ZC,.D,,(E); (9)

n#p

the sum extends from 0 to « excluding n = p and the values of ¢,
are given in (54). We also find in (55) that

o a/2 2"’
971/ 1 p! E _ if aiseven,
fo = o — ! (5 — m) (10
0 if «isodd.

Further on, specific values of f, will be needed, so some of them are
given in Table I. From the table and (6) we conclude that if the medium
has only antisymmetric perturbation (a odd), the propagation con-
stants of its modes are identical to those of the modes in the unperturbed
medium. Physically, this means that to a first order, the change in
phase velocity introduced by the perturbation on one side of the guide
is canceled by the other.

I1II. BEAM IN THE PERTURBED MEDIUM

We want to calculate the field F(z) everywhere in the perturbed
medium such that at the origin it coincides with a preseribed function

TasLe I —SoME SpEcIFIc VALUES OF f,

fa
0
i1+ 2p)
0
6(1 + 2p + 2p%)
0
3#(1 + 8p + 2p* + $pY)

S ;e W K = R
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F(0). In terms of the normal modes E, , the field is
FG) = 2 AE, exp (—iv,2), (1

and at the origin

F(0) = Z AE, . (12)

We simplify next A4,F, and the propagation constant =, .

Since the approximately calculated normal modes of the medium
with aberration are orthogonal to the first order of the perturbations
a.,(\/L)*"*7", we calculate, with the help of (9), each term of the
summation to be

ALE, = B,D,(§) + Ola.(\/L)*"*"], (13)

where

[ ron.a
B, =

(14)
[ piwa
is the amplitude of the pth mode of an expansion of the input field

F(0) in terms of modes of the unperturbed guide and the term of the
order of a,(\/L)*"*7", given only for completeness, is

vi] = D@ [ FOD®E+D® [ FOD.©
ool ) 5o "0k [rovan

n=0

[ D

Substituting (13) in (11) one obtains

a/2-1

Fiz) = Z B,D,(§) exp (—1iv,2) + 2 O[ (2) :| exp (—iv,2). (1)

We will find that for large z the first summation yields configurations
which depart grossly from the field in the unperturbed medium, there-
fore, according to (8), the second summation whose amplitude is of
the order of a,(\/L)**™" will be neglected.

Iurthermore, the propagation constant v, , (6), which is exact for
the ideal quadratic medium and good to first order of Y, a.(\/L)*"*™"
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can be expanded in series

2r 1 1 N )
w=2 -3 b Zan ()]}

Al e ) o

The third and higher-order terms can be neglected only if their con-
tribution to the phaseshift of the highest-order mode P of significant
amplitude is small, that is, if

A 1 A
w(r i+ D)

According to (47) in the Appendix, once the inequality (8) is satisfied,
the summation is negligible compared to P and consequently the in-
equality above reduces to

Z%% PP« an

This expression establishes the range of validity 2, of the deseription
of a beam composed essentially of P modes at wavelength A, traveling
in a lens-like medium characterized by L. Since the inequality is in-
dependent of a, we conclude that the finite range of validity z is deter-
mined not by the perturbation of the medium, but by the approximation
involved in the expansion (16) of the propagation constants thus
affecting the description of the beam even in the ideal quadratic medium.
¥ Once P is known, the inequality (8) determines the magnitude of
the perturbation a, for which the calculations are valid. Then, provided
that inequalities (8) and (17) are satisfied the simplified version of the
field (15) becomes

P = = { |: - (A)a.ﬂul]}
(Z) - T,Z“BTIDII(E) exp Y\ = Yoi — E Za: aa.fa E S » (18)

in which

P ] (19

is the propagation constant of the pth mode in the unperturbed ideal

quadratic medium.
Therefore, the field F(z) is described by a summation of modes of the
ideal quadratic law medium but with phase constants corresponding to
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modes in the perturbed medium. Actually, if a, = 0, we derive from
(18) the field in the ideal quadratic medium

16) = 3 BD,E) exp (~iv,e). (20)

In order to find out more about the field distribution along the
perturbed guide, we will work out a typical example assuming that the
only perturbation of the dielectric is of order 4. Dropping the subscript
from @, and with the help of Table I we find that

A a/2-1 A 3 A
Zanfn(i) = af4z=ﬁaz(1+zp+2pa)-

The field (18) then results

P = o (135) B0, e {—i[m -~ 5@+ ]z} , 1)

where the distance

8L’

D = 3ai

(22)

has a physical significance to be described later.
I do not know how to add (21) in general but the summation can
be performed for discrete and significant values of z. They are

Zuy = (0 +27)D (23)

where u is an arbitrary integer and » is a positive integer. The summation
can also be performed for z = (u — 27")D but the results are quite
similar to those found for z,, . For the particular values of z, given
in (23), the exponential in (21) containing p* can be expressed as a
sum of exponentials containing only p. As a matter of fact,

exp [irp’(n + 27)]

= exp {—'ivr'p[# + (—_17),]} 2 G, exp (—i2'7rgp)  (24)

and

2r-1

G, =27 > exp [in27%s(s + 2¢9)]. (25)

The correctness of this expansion can be verified by substituting (25)
in (24) and performing the summation first in ¢ and then in s.
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The field (21) at z = z,, results with the help of (24)

2r=1

Few) = exp | 5+ 2| > G exp (i), (20

where
T 4L\ 1 1 q
e 50 - 005 - i 2“”] &0
and
fwe = (u+27)D + (L - A L)L_ (28)
e o (! 2

Ignoring the overall uninteresting phase =/2(x + 27°), equation (26)
establishes that the field at z,, is made of 2" terms, each given by a
factor G, exp ie,, times the field distribution I({,,,). As we saw before,
this field (20) coincides with the field distribution that the input F(0)
would have in the aberration free medium at a distance z = {,,, given
in (28). Therefore, in the perturbed medium, at z = z,, the field
F(z,,) due to an arbitrary input F(0) is described by the superposition
of field distributions that the same input F(0) would produce in the
unperturbed medium at 2" cross-sections located at distances {,.q from
the origin, multiplied by certain phase shifts and amplitudes.

Let us extend the example assuming the input F(0) to be an off-axis
Gaussian of half-width W = +/AL/r. In the aberration-free medium
the beam trajectory is a sinusoid of period 2L, and at all cross-sections
the field is Gaussian of half-width W (see Fig. 1(a)). Now we proceed
to calculate the field F(z,,) in the perturbed medium at the specific
abscissas z,, (23) assuming the same off-axis Gaussian input F(0).

For v = 0, that is at abscissas

2 = (u + 1)D (29)
the field in the perturbed medium is derived from (26) and (25) to be

F(z.,) = exp [i % (u + 1)]1 (o) (30)

Except for the phase shift =/2(u + 1) the field in the perturbed medium,
F(z,,) coincides with the Gaussian field in the unperturbed medium,
I({,..) at the same abscissa

Zio = S = (0 + 1D. (31)

The distance D = 8L?/3ax is then the distance between successive
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INPUT FIELD

E:E-(%)2
1/e= = 2w
< LER
ILT:

il 4

HORIZONTAL SCALE IS GROSSLY REDUCED

Fig. 1—(a) Off-axis beam in ideal medium, n = n,[1 — (xz/L)%}. (b) Off-axis beam
in perturbed medium, n = nJ[l — (wrr/L)?* — a(xx/L)L
D = 8L2/3ax and w = VAL /x.

Gaussian field distribution in the perturbed medium. We will call D
a pseudo-period because the fields at abseissas z,,, in general, do not
have the same position with respect to the axis as the input field. Only
if 41/3a) is an integer those fields are identical and the pseudo-period
becomes a true period.

Do we know about the field close to z,,, say within a few L? The
perturbed medium differs only slightly from the quadratic one, there-
fore close to z,,, the field in both media must be quite similar. The
similarity of fields in both media in the neighborhood of abscissas
(v 4+ 1)D for p equal to —1 and 0 is depicted in Figs. 1(a) and 1(b).

For v = 1, that is at abscissas

Za = (u+ 3D (32)
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half way between the previous ones (29), the field derived again from
(26) and (25) is

exp [zg (n+ I):I[I(g'nm) — I($un)]
-\/E .

Ignoring the phases the field in the perturbed medium F (2,,) is made
of the superposition of the fields 7({,.,) and I( ¢,11) in the unperturbed
medium, reduced in amplitude by V' 2 and found at abscissas derived
from (28) to be

Flza) = (33)

o = (u+ DD + % (34
and
L
G = (,u + %)D - 5 (35)

Again, since the medium is only slightly perturbed, the two Gaussians
can be treated independently. Therefore, within a few L from z,,,
the field in the perturbed medium consists of two Gaussian beams
interleaving. In Fig. 1(a), for =0, the fields at abscissas {10 = (D+L)/2
and o, = (D — L)/2 are located, and then used in Fig. 1(b) to con-
struct the field in the perturbed medium around 2z, = D/2.

For » = 2 we find that the field at z,, = (u + $)D, can be synthesized
by the superposition of four fields that, except for the amplitude and
phase, are found in the unperturbed medium at abscissas

Cazo = Zu2 + %—: )
Coot = Zun — % y
(36)
o, s
$u22 u2 4 1
and

5L

Cuzzg = Zya — _4_

The field close to z,, consists of four Gaussian beams weaving as shown
in Fig. 1(b).
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Within a pseudo-period the field in the perturbed medium differs
substantially from the Gaussian input, and at a single cross-section
it can exhibit several maximas if the peaks of the several Gaussians
that depict the field at that cross-section are resolved. Furthermore,
the cross-section of the beam becomes at most as wide as twice the
half-width of the input beam plus twice the amplitude of the beam
oscillation in the unperturbed medium.

Even though the fields in the perturbed medium at distances close
to D/2 and D/4, Fig. 1(b), are made of symmetrically interleaving
beams it must not be concluded that the fields at D/8, D/16, etec.
must be symmetric with respect to the x = 0 plane. As soon as the
interleaving beams overlap, the relative phases become important and
the apparent symmetry breaks up. As a matter of fact, close to z = 0,
the field (26) can be expressed in iwo ways. Kither choosing p = —1
and » = 0 in which case the field is that of a single beam or else picking
# = 0 and » — o, in which case the same field is made by the super-
position of 2" interleaving beams with deceiving symmetry.

If instead of Gaussian the input field has another shape such as that
in Fig. 2(a), the field in the unperturbed medium reproduces the input
at even multiples of L, while it repeats the input mirrored in the plane

T

777777777777 : -

****** foo=(DtL)/2 —— > i

1 1

————§ou=(D-L)/2 —- o ! i

i !

FIELD ( "
AT INPUT 1
AND AT A J

FIELD AT B

HORIZONTAL SCALE IS GROSSLY REDUCED

Fig.2—(a) Off-axisbeam in ideal medium, n = nJJ1 — (xz/L)2)}. (b) Off-axis beam
in perturbed medium, n = nJ[l1 — (7z/L)* — a(xz/L)Y%.
D = 8L2/3a and 4L/3a\ integer.
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x = 0, at odd multiples of L. In between the beamwidth varies period-
ically with period L and we represent it qualitatively in Fig. 2(a).

The field in the perturbed medium at zo , Zoo , Z01 , and their neighbor-
hood is depicted in Fig. 2(b) following similar steps to those taken
for the previous example.

If the perturbation of the medium were of sixth-order, instead of
fourth, the pseudo-period, deduced from (18) and Table I, would be
32/5 L' /as\* and as before, an off-axis beam would periodically deform
itself exhibiting several maxima and the largest beam cross-section
would be roughly twice the input beam half-width plus twice the
input beam displacement from the axis.

V. LIMITS OF APPLICABILITY

Over what length z is the field in the unperturbed medium (20)
valid? That length, caleulated from the inequality (17), is

2

z K oy (37)
We need the value of P, that is the highest-order mode of significant
amplitude.
Continuing with the example, the input
F0) = Dy — &)

is a Gaussian beam of half-width W, displaced z; (normalized §;) from
the z axis. Then according to (14) the amplitude of the pth mode is

Lexp [:— (E—;—E’—E}Dp(f) dk _ (é)p exp (_ %)

® 2 ! (38)
[ Diwae

B, =
For
p>1

the asymptotic value of B, results™ in
_ 5_2)
o (05) o
Verp \2p

Obviously B, decreases rapidly for p such that the second parenthesis
is smaller than one. Therefore, we select the highest-order mode of

B, =
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significant amplitude to be

P =25 (40)

With this value and that for W given in (4) the range of validity (37)
results

2 << 53 ,;e,g $2.' (41)

It depends on the characteristic of the medium I and the beam
input displacement z; but is independent of wavelength. Let us put
some typical numbers for a sequence of closely spaced gas lenses.® For

L=1m
z;, = 2mm
the range of validity results
z K 4300m.

The inequality (8) determines the amount of perturbation for which
the calculations are applicable. For @ = 4, that inequality reads

1

<<P

L
and with the help of (40)

’} «- E (42)

The physical significance of a\/L can be derived from (1). With only
fourth-order aberration the refractive index of the perturbed medium is

nenfi- () o) T

The ratio between the perturbing term and the quadratic term at an

ordinate x is
7z’
r. =al7—] .
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For z equal to a beam half-width W = +/XL/x,
A

'w = E (44)
With (42) the following self-explanatory inequality is derived
w
re K 8_1': (45)
Let us continue with the previous example. For
A= 1u
and
ry = 0.1 %
ex;
we obtain
'w = 00058.
The pseudo-period (22) results
_8L
D = 370 (46)

that is D = 460 m.

VI. CONCLUSIONS

An off-axis beam oscillates and reproduces itself periodically for any
arbitrary length only when it propagates in the hyperbolic secant
square lens-like medium described by A. H. Carter.” Nevertheless,
within some approximations the quadratic law yields similar results
with much simpler mathematics. For example, a Gaussian beam which
is properly matched to maintain a constant spot size will oscillate
periodically with period 2L and amplitude z; . We have found that
this approximation holds for a distance z that obeys the inequality

4 I’
-4 << ‘11'382 ;f‘
We surmise that the inequality is valid also if the width of the beam
is not perfectly matched and if the guiding medium is not continuous
but made of a sequence of square law lenses. For a typical sequence
of gas lenses with half natural period L = 1 m and beam displacement
x; = 2 mm the range of validity is

z < 4300m.
A more realistic lens-like medium though, is one in which the quadratic

law is perturbed by aberration terms of higher order. Again, a Gaussian
beam of half-width W = ~/AL/r entering parallel to the axis at a
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distance xz; from it oscillates at the beginning with period 2L, but
changes shape slowly as it travels along, increasing the width of the
beam up to 2(x; + W), after which the beamwidth shrinks back to
the starting value 2. This process repeats at intervals D that depend
on the nature of the aberration. For fourth-order aberration

8 L
D*3?'w"

where ry is the ratio between the fourth-order term and the quadratic
term of the refractive index at a distance from the axis equal to the
natural half beamwidth W = ~/AL/x of the medium. These results
hold as long as
ry K E
ex;
Where the beam is large and distorted, the field intensity at one cross-
section exhibits several maxima. The number of them and their re-
solution varies along the trajectory. Both increase with the ratio
of a;,/W.

We saw that one of the effects of the aberrations is to smear the
beam size to roughly twice the displacement that the same beam would
have in an ideal quadratic medium; furthermore, it is known that in
a sequence of perfect but randomly misaligned lenses the rms deviation
of a beam from the axis grows proportionally to the square root of
the number of lenses."* Therefore, if the lenses have aberrations we
conclude tentatively that the rms beam size grows with the same law.
If redirectors'® are to be used to compensate for misalignment of the
lenses the corrections probably must be made before a large break-up
of the beam occurs.

APPENDIX

Approximale Solulion of

5o (- 2ol T o

Provided that

2 a ML), Kp + % (47)

@

and
> a N LD)YTNE2) T K 1 (48)

a

up to a value of ¢ to be defined later, the differential equation can
be solved using the stationary perturbation theory.'?
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The solution given in terms of parabolic cylinder functions is

E, = D, + 2 e.Da(®). (49)

n#p

The summation is a perturbation on D,(¢) and it extends from 0 to =
excluding the pth term.
The eigenvalue corresponding to the pth eigenfunction E, is

P+ 2 a.MD) .

In order to find ¢, and f, we substitute K, given by (49) in the dif-
ferential equation. Neglecting terms containing products of a,c, and
knowing that the parabolic cylinder equation is

D0 4 [p 41~ () |0 =0 (50)
we obtain
> @-meD®+ X 21 - ) oo =0 6

The functions D,(¢) with integer index g, are orthogonal, therefore,
multiplying (51) by D,(£) and integrating from — e« to + « one derives

- o
o) [ (¢ DAOD) & -
“ 0~ [ Do de
and
.
. [ (§)poa -

[ piwa
After integration'® the explicit results of the last two expressions are

Z (A)u,/E—l 2(p+n—3m)jea! '
= Ga\T, p—n

N> o .
= "“'“(p—m)!(n—m)!m!(m—l—#—+g““)! 54)

if p+n+ aiseven,
0 if p4+n+aisodd
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and
a/2 2m
el p!l Y if o iseven,
fa = " (m)p — m)! (% - m)! (55)

0 if « isodd.

These results are applicable as long as the inequalities (47) and (48)
are satisfied. Both are harder to satisfy for large values of f, and §
which we proceed to find next.

According to (55), f. increases with the order of the mode p and
for large va ues of p

(56)

The function £, given in (49) has significant amplitude essentially
in the same range of ¢ than the unperturbed solution D,(¢). Since''

2 dp 2
0,60 = (-1 o (§) & ew (- ) 7
a good approximation for & >> 1 is
D, () = exp (—£/9)¢. (58)

This function has significant amplitude for values of & smaller than
that of the second inflexion point. We find it by making the second
derivative of (58) equal to zero and by finding the largest solution of
that equation. The result, again for large p is

Emax = 2V, (59)

Substituting f, and ... of (56) and (59) in (47) and (48) we obtain

k a/2—-1 Q!'
> aq(z p) — K1 (60)
a 2a

and

> au(% p)aﬂ_l &« 1. (61)
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Furthermore,
!
o (s - < 1
&)
2
for
a>0.

Therefore, condition (61) is the most stringent. Given a., A\, and
L it establishes which is the highest-order mode p for which the per-
turbation calculations apply.
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