Scaling Laws for Large Shields
in Quasi-Stationary Magnetic Fields

By G. KRONACHER
(Manusecript received August 10, 1967)

The application of the classical scaling laws of electro-magnetic fields
to the design of a scaled-down model of, say, a butlding-sized shield s
often difficult, even when using the simplifications permissible with a
quasi-stationary magnetic field. The reasons are that (i) the scaled wall
thickness often becomes tmpractically thin and (%) the required scaling
of frequency sometimes reduces the ratio of intrinsic wave-length in air
lo the enclosure length such that the quasi-stationary field theory no longer
applies,

In the case of a completely closed shield these limitations can be cir-
cumvented by having a model with two distinct geometric scaling factors,
one for the wall thickness and one for the overall dimensions. The modified
scaling laws governing this type of model are derived.

I. INTRODUCTION

Protection of electronic equipment against electromagnetic inter-
ference is often achieved by providing a metallic enclosure. Large
electronic complexes, such as radar installations and data processing
centers may be protected by covering the entire building with a metal-
lic shield. (Some penetrations into this enclosure are usually required
for the purpose of air-vents, cable-inlets, access tunnels ete.) The
performance of the enclosure is measured by the shielding effective-
ness, which is the ratio of the field strength at an exterior location
where the field is undisturbed by the shield to the field strength at a
point inside the enclosure.

A first approximation of the shielding effectiveness can be ob-
tained analytically.* In this case, (i) constant permeability is as-
sumed, and () the actual shape of the enclosure is replaced by a
geometrically simpler shape, such as an infinite cylindrical shell or a
spherical shell.
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The evaluation of the shielding effectiveness by testing is, for eco-
nomical reasons, best conducted on scaled down models of the en-
closure. The following discussion concerns itself with the constraints
on the scaling-factors for distance, time, conductivity, etc., necessary
to produce a model either having the same shielding effectiveness as
the original, full-scale enclosure or having one of known relation to it.
It will be seen that full compliance with the ideal constraints on
sealing-factors is rarely possible. However, useful results can be ob-
tained with partial compliance, especially in the case of large en-
closures.

II. IDEAL CONSTRAINTS ON SCALING FACTORS

An ideal, scaled model is a replica of the original configuration with
each physical parameter scaled up or down by a fixed ratio. To each
point in space and time of the original exists a corresponding point in
the model. The ratio of any distance, time, field strength, ete. of the
original to its counterpart in the model is called a scaling-factor. If
one identifies any parameter or variable of the original with the index
417 and of the model with the index “2"” one can write the scaling-
factors for distance, time, electric and magnetic field strength, per-
meability (instantaneous ratio of magnetic flux density to magnetic
field strength), dielectric constant, conduetivity as L/l , &/t , Ea/E1
H,/H,, pa/w1, €/€ , o2/a, . (For instance, I, , represents the distance
between two arbitrarily selected points of the original, full-scaled
enclosure, whereas, [, represents the distance between the correspond-
ing points of the model.) Were these scaling-factors selected arbitrarily,
the model would not be physically realizable because the electromagnetic
field of the model would not satisfy Maxwell's equations. These equa-
tions when formulated for the original and for the model contain the
constraints required to make the model physically realizable. They
also interrelate the scaling-factors for electric and magnetic field
strengths. The results* are expressed by (1), (2), and (3)

BE-0OE o

l3-0s s — lf“"l'#t

A (2)
l:'fz'.ﬂz _ ﬁ'fl'ﬂl

[ 3)

* For the mathematical derivation see either Appendix A or Ref. 2, p. 488.
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Introducing the angular frequency, «, one obtains the following scaling
constraints for CW fields:

lg‘-ﬂza'z#e = lfmla-lﬂl (4)

2 2 2 2
Lwseaps = liwieyp, (5)

ITII. INTERPRETATION OF THE MATHEMATICAL RESULTS

First, it should be pointed out that the derivation of (2) and (3) is
not based on a field-strength-independent permeability or dielectrie
constant. Consequently, model tests of ferromagnetic shields of vari-
able permeability will give correct answers, provided the model uses
the same steel as the original, is tested at the field strength encoun-
tered in the original and satisfies (2) and (3).

Second, the shielding effectiveness, 5, of geometrically similar models
changes from model to model only if the expressions (2) and (3)
change. In other words, the shielding effectiveness of geometrically
similar models is a function of these two dimensionless quantities

only,ie.,
. I[(lz';"“) , (zz-t:.u):l_ ©

Here, ! might be the length of the enclosure, ¢, the pulse duration,
ete.

The physical meaning of (4) and (5) becomes clearer if we intro-
duce the skin depth,* 8, of a conductor of constant permeability and
the intrinsic wavelength in a pure dielectric, A.:

a=\/% @

2

Ae = N (8)
wV eun
Substituting these values into (4) and (5) one obtains
Lol
iy ©)
L _ L
N, L (10)

* Here (273) is equal to the intrinsic wavelength in metal, A..
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In other words, the skin depth of the shield material as well as the
intrinsic wavelength of the surrounding space have to be scaled by the
same ratio as the linear dimensions of the model.

Tt can now be seen that it usually is not feasible to produce a model
which satisfies both (2) and (3). For instance, after the scaling fac-
tor (lo/1;) has been selected, (2) and (3) can be satisfied only if two
other parameters, such as conductivity, o, and time, t, are properly
scaled. Unfortunately, the only scaling factor which usually ean be
suitably controlled is that of time (duration of an applied pulse,
period of an applied ac field). Consequently, only one of the scaling
requirements, either (2) or (3) can be readily satisfied. Therefore
one has to be content with imperfect models which will be diseussed
next.

1V. SEVERAL TYPES OF IMPERFECT MODELS

4.1 The Geomelrically Perfect Model in a Quasi-Stationary Magnetic Field

A model shall be considered geometrically perfect if all of its
dimensions, the overall dimensions such as width, height, and length
as well as the thickness of the shield and the size of its openings are
scaled by the same factor.

The quasi-stationary magnetic field is a well known simplifying
concept which is applicable whenever the linear dimensions of the
configuration are small compared to the intrinsic wavelength of the
dielectric medium. It is the magnetic field one obtains mathematically
if one assumes the time derivatives of the electric displacement, 9/dt
(eE), to be zero.

In this case, as shown in Appendix A, one obtains only one con-
straint equation for the scaling factors, namely that expressed by
either (2), (4),or (9).

In order to obtain an idea of the error caused by this simplification,
one may look at a geometrically simple shield, such as a spherical
shell, for which analytical solutions are sweulable1 Accordmg to a
graph given in Ref. 1, the magnetic shielding effectiveness at the cen-
ter of a spherical shell, if calculated on the basis of a quasi-stationary

field, is in error by less than 2.6 dB for a wavelength to diameter
ratio of 2.8 or higher. The electric shielding effectiveness (electric
field outside of the shielded space to that inside) is equal to the mag-
netic shielding effectiveness at this wave length to diameter ratio and
increases rapidly for higher ratios.
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Unfortunately, there are two serious shortcomings to this type of
model. First, the wall-thickness of the scaled-down enclosure often
becomes impractically thin. For instance the original enclosure may
have been built with 0.010-ineh thick copper. Assuming a geometric
scaling factor of 0.1 the model would have to be built of 0.001-inch
thick copper. Second, (assuming identical o, p, and ¢ for model and
original) due to the scaling of frequency, as called for by (4), the
ratio of the intrinsic wavelength in air to the length of the model
becomes proportional to the geometric scaling factor, (l/l;). This
is a simple consequence of (4) and (8). Sometimes, this ratio decreases
for the model to the point where the quasi-stationary field theory no
longer applies.

As shall be shown next, both of these shortcomings can be circum-
vented in the case of large enclosures without openings by using two
geometric scaling-factors, one for the overall dimensions and one for
the wall thickness.

4.2 Models with Two Geometric Scaling-Factors, One for the Overall
Dimensions and One for the Wall-Thickness of the Enclosure in Quasi-
Stationary Magnetic Fields

In the following, models of large enclosures without openings will
be considered. The scaling factor for the overall dimensions is des-
ignated as (L./L;) and that for the wall thickness as (d»/d;). (The
wall thickness does not have to be uniform). Assuming the wall thick-
ness to be very small compared to the overall dimensions of the en-
closure, the spaces internal and external to the enclosure of the model
remain geometrically similar to those of the original.

With this in mind, it will be shown that the internal and external
magnetic fields of this type of model, individually, are substantially
similar to those of the original if the ratio of shield thickness to skin-
depth remains unchanged.

The validity of this statement rests on two simplifying assumptions:
namely (¢) that, the external magnetic field is almost identical to that
outside of an enclosure of infinite conductivity (the field component
normal to the surface is negligible compared to the tangential one),
and (7¢) that within the shield (see Fig. 1) the rates of change of the
tangential magnetic and electric field strength in the direction normal
to the surface (6H./dy) and (dE./dy) are much larger than the rate
of change of the field strengths normal to the surface in the tangential
direction (8H,/dz) and (0F,/dx); i.e., dH,/dz < 9H,/dy and 9E,/dx K
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//

Tig. 1 — Loeal coordinates of the field in the shield.

8E,/dy. (The field changes rapidly across the shield but only gradually

in the tangential directions.)
From assumption (i) it follows that the tangential magnetic field-

strength at some point D on the outside of the shield, H.p, is deter-
mined by the tangential electric and magnetic field strengths, H;o
and E.o, at the opposing point “0” on the inside surface of the en-
closure. Specifically, H. is governed by the following differential equa-
tions:

o, = /= (11)

ak,
—3 wH) = =5 (12)

and by the following boundary conditions:
At y = 0: H: = HE,U ; E: = E:.Cl (13)

In the case of a sufficiently large enclosure, the boundary condi-
tions can be simplified. Specifically, Appendix B shows that the ef-
fect of H. o on I, can be neglected if the following inequalities are
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satisfied:*

\/f_z" 2- (nur)uv' 6,,‘, 6'-'"
Ty« I, d> V2 (14)
2- (Dur)n_v_' 6;:\ R _61, 5
.p <L od<_g (19)

(pr) v 18 the average relative permeability of the shield,f and 8§, is
the skin-depth based on (p,)as. The equivalent diameter, D, is four
times the cross section of the enclosure divided by its circumference,
measured in a plane which is normal to the field and which bisects
the enclosure. (For simplicity, one may use for D the smallest major
dimension of the enclosure.)

If the above inequalities are satisfied the boundary conditions
simplify to

y=0: H.=0;, E.=E.,. (16)

Now, let us put the following question: Provided the internal elee-
tric and magnetic fields of model and original are similar to each
other, under which condition will the external magnetic fields be
similar, too? According to assumption (z) the only conditions are (1)
that the distributions of the tangential magnetic field strength at the
outside surface of the shield of the model and of the original are
similar to each other and (i7) that, of course, the applied external
fields are similar to each other. With the internal fields being assumed
similar to each other, condition () is satisfied if the field distributions
across the shields are similar, too. In consideration of the simplified
field equations (11) and (12) this is the case if, (7) the general scaling
equation (2) is =atisfied with respeet to the y-coordinate (see Fig. 1),
ie.,if

(13‘0'2‘.“2 _ d‘lz'dllﬂl

. . (Nt

and (i) if sealing equation (1) is valid for the boundary values H, ,
and E,o (using the shield parameters, d and paiea). For the special

* Note, that, for d > 8./ /2, if inequality (14) is satisfied, inequality (15) will
be satisfied too and for d < éuv/ +/2, if inequality (15) is satisfied, inequality (14)
will be satisfied too.

T If the shield is several skin depths thick, (u)av is the permeability near the
inside surface of the enclosure,

1 For field-strength independent p the expression v/i/ex is proportional to the
skin-depth, §, and (17) becomes d./6: = di/é.
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case of a large enclosure for which inequalities (14) and (15) are
valid, it was shown that H,, may be assumed equal to zero without
substantial effect on the external field. However, with H.o being zero,
scaling equation (1) as applied to the boundary values H.,o, Eao is
automatically satisfied since the term (H,/H:) becomes (0/0). Con-
sequently, internal and external fields of the model and the original
are individually similar to each other if (17) and inequalities (14)
and (15) are satisfied.

The relation between the shielding effectiveness of model and orig-
inal is obtained by using (1). Specifically, (H.p1)/(H:pz2) and
(Ez01)/(Eqoz2) are related to each other as follows:

E:oz’Hgnt dy-ty -y
SO : 18
E=.0.1'Hz.n,z dl'tr.u: ( )

Applying, again, (1) to the internal air field one obtains

EJOZH.:OI LQ‘tl
0.3 2nlel . 19
Ez,O,l Hz,o,z L1 "l ( )

From (18) and (19) one obtains

Hauz H: D.1 dz'Ll'Mz
0.2 Ze.D.1 . 20
Ha.u.l H:.D.2 dl'Lz'Ml ( )

Since the ratio H.p/H.o is proportional to the shielding effective-
ness one obtains the following relation between the shielding effec-
tiveness of model and original:

o (Lnrdaps
T ~ (Lz'dl'pl)'nz . (21)

Note, that (21) is valid only if the similarity requirement for con-
ductors, as expressed by (17), is satisfied, and if the quasi-stationary
field theory is applicable (wavelength in air larger than the linear
dimensions of the enclosure). If the scaling factor for the overall di-
mensions (Ls/L;) is chosen so that the similarity requirement for air
is also satisfied [see (3)] it appears that the restriction to quasi-
stationary fields ecan be dropped. Strictly speaking, this is not so.
First, at half wavelengths close to or less than the dimensions of the
enclosure, the internal field will no longer be approximately uniform,
as this was assumed in Appendix B. This assumption was necessary
to show that, for large enclosures, the tangential magnetic field
component at the inside surface of the shield is of negligible effect on
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the magnetic field at the outside surface. However, the higher the
frequency the less important becomes the assumption of an approxi-
mately uniform magnetic field.

Second, the ratio of magnetic to eleetric field strength in air along
the outside surface of the shield will not satisfy the scaling require-
ment (1}. This latter imperfection, however, will be of minor con-
sequence if the characteristic wave-impedance in the shield is low
compared to that of the waves in the external space. In this case,
almost complete reflection occurs at the outside wall of the shield,
which means that the effect of the tangential electric field strength
on the external field is negligible.

All things considered, it is advisable to satisfy for relatively short
wavelengths the similarity requirement for air [see (3)].

Appendix C illustrates, with the aid of a numerical example, the
above derived scaling laws.

4.3 Shielding Effectiveness of an Enclosure with Uniform Wall

In Section 4.2 it was shown that the fields internal and external to
a model of an enclosure without openings are practically similar to
those of the original if the wall of the model is such that the ratio
of external tangential magnetic field strength to internal tangential
electric field-strength is similar to that of the original. For CW fields,
this requirement is satisfied if the inequalities (14) and (15) are
satisfied, the shield is uniform along its tangential coordinates (how-
ever, it may be nonuniform along the normal coordinate such as in
the case of laminated metals) and the permeability and conductivity
are constant (field strength independent). Specifically, in the case for
which the shield is uniform throughout (including along the normal
coordinate), the ratio between tangential magnetic and electric field
strength can be given in closed analytical form. According to Ap-
pendix D, the external tangential magnetic field strength, H.p, is
related to the internal tangential electric field strength, E., (see Fig.
1) as follows:

H,,= [( z )sinh V jwped’ ]E : 22
D ‘\/m (V jwued’) 0 (22)
According to the law of induction, E,y is proportional to some rep-
resentative internal magnetic field strength, H;, to its angular fre-
quency, o, to a representative linear dimension, L, of the shielded
space and to its permeability, po (assuming air). Consequently, one
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obtains for H.p,

H., = C‘(U w-L- “") sinh (Vjoped’) - (23)
Vj-wpo

in which C is a constant independent of the scaling factors. The

ratio of H,p to the internal field strength, Hi, is proportional to the

shielding effectiveness, 5. Consequently,

2 —
n = KA }“’—'J%‘E-Lz-sinh (V jwpod®) (24)

in which K is a constant, independent of the scaling factors. It de-
pends only on the geometry of the shielded space, on that of the ap-
plied field and on the reference pomts for external and internal field
strengths. K is obtained by measuring » on a model of known param-
eters (w2, Li, o2, ete.). Note that, in general, (i.e., if the scaling equa-
tion (17) is not satisfied), the sealing factor for #, i.e., (m2/m1), is fre-
quency dependent. Therefore, the response of the model to a pulsed
field is not similar to the response of the original.

For the case that the thickness, d, is large compared to the skin
depth, 8, one can write (24) in the form

K : ; 5
0~ 3\ /“% L2 exp Vijepod®,  d > 6. (25)

For the case in which d is small compared to 8, one can write

1~ Klw-poo-d-1L), d < 8. (26)
In the latter case (yo/n:) is frequency independent. Therefore, the

model can be used to evaluate the effect of pulsed fields as well as
CW fields.

V. SUMMARY

The shielding effectiveness of the scaled model of a metallic en-
closure is identical to that of the original if (2) the ratio of the wave-
length in air to some specified linear dimension (say, the length of
the enclosure) remains unchanged, and (i) the ratio of the skin
depth of the shielding material to some specified linear dimension
remains unchanged. In the case of nonlinear, ferro-magnetic mate-
rials, instead of the second requirement, the expression of length?x
frequency X conductivity X permeability has to be the same for model
and original. Given a certain scaling factor for the length the above
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requirements could be met by properly selecting two other scaling
factors, say, those for time and conductivity. Usually, however, only
the scaling factor for time can be readily controlled. Consequently,
one has to be content with imperfect models which, however, will
vield good results over given ranges of frequency.

If one is concerned with the magnetic shielding effectiveness only,
the first requirement may be waived, provided the intrinsic wave-
length in air is large compared to the linear dimensions of the model.
For enclosures of building size this applies to frequencies up to sev-
eral magacycles. Unfortunately, there are two shortcomings to this
type of model: (z) The shield thickness of the scaled-down model
often becomes impractically thin, and (i) due to the necessary scal-
ing of frequency, the ratio of the intrinsic wavelength in air to the
length of the model sometimes decreases to the point where the quasi-
stationary field-theory becomes invalid. If the enclosure is free of
openings one can use a model with one scaling factor for the overall
dimensions and another one for the thickness of the shield, provided
the scaling factor for time is selected such that the ratio of skin
depth to wall thickness remains unchanged. In this case, a simple
formula relates the shielding effectiveness of the original to that of
the model. If the enclosure is free of openings, of uniform thickness
and of a material of constant permeability (nonferromagnetic metal)
and if the applied magnetic field varies sinusoidally with time the
dependence of the shielding effectiveness on scaling factors can be
established analytically. Consequently, no constraints are put on the
selection of the scaling factors of the model.
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APPENDIX A

Derivation of the General Scaling Constraints for Electromagnetic
Models

Maxwell’s Equations if applied to the original configuration can
be written in integral form as follows.

d
¢ Beal = = [ i (27)
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ad
fﬂl H,.dl, = fL oEids + 57 fL ¢, E, -ds, (28)

(a, is a closed path in the original, or model “1”. 4, is an area bounded
by a;. The symbol ds, represents a surface element of A;.) Using the
corresponding closed path in the model as well as corresponding length,
area and time increments and introducing the scaling factors, Max-
well’s equations for the model read as follows:

lezf - 12 - .quz 3
Bdl = f f i -H, -ds, 29)

Lt - o ] amn

lz t] €z " Ez ff
+ lz tg € E Bt, 4. € E dsl (30)

From (27) and (29) one obtains

2 - ()96 ~
El'Hz B (ll Lo/ Ny (01)

From (28), (30), and (31) one obtains

f) |
(1 Pty .. o, E,-ds,

Ly

2
_larhic€&tHo —
+ (1 l? i'él'luq) at, ff . E dsl 0. (32)

In general, the ratio ([[4, o,-E,-ds,)/(8/0t, [[a, &-Ey- -ds,) is a fune-
tion of time. It then follows that (32) can be satisfied only if each of
its terms in parenthesis is zero, which leads to the following two scaling

equations:

e~ | o

l:'o'z‘ﬂz _ l?"":'#) *
S (33)
Z:‘fz'l-lz _ lf'ﬁ'ﬂd
- I (34)

In the case of a quasi-stationary magnetic field which assumes the term
d(¢E)/at to be negligible only (33) is needed to satisfy (32).

* See Ref. 2, p. 488.
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APPENDIX B

Conditions Under Which the Effect of the Magnetic Field Intensity at
the Inside Surface on that at the Outside Surface vs Negligible
Equations (11) and (12) of Section 4.2 can be readily integrated
for the special case of constant permeability, . The result of this
integration with £ and H being sinusoidal time functions is

)

H,, = E, ,-———=sinh
WD .0 '\/jm,ua’
For 4/2-d > & the sinh-term is of the same order of magnitude as
the cosh-term. Consequently, the effect of H,, on H,; is negligible if

a [}
—— > |H,,|; d>—F= (36)
V jwuo ‘ ° ‘ ‘\/5

For v/2-d < & the sinh-term and the cosh-term shall be approximated
by the first terms of their Taylor-series. One obtains

) + H, ,-cosh ( (35)

’E:,O

— d
Hop~E,,——V23%4+ 1,1 37
D .0 ‘\/jw,ua ] 5 + .0 ( )
In this case, the effect of H, , on H, , is negligible if
- d b
E,o—r—V2%5%|>H,,; d<——. 38
.0 '\/jcu,ua’ J 5 .0 _\/‘2‘ (38)

If, as in the case of iron, the permeability is variable it appears reason-
able to replace in inequalities (36) and (38) the permeability u by an
average permeability u,, and the skin depth & by an average skin
depth, é,,, which is equal to Vv/2/w-p,.¢*. The conditions for making
the effect of H,, on H,, negligible become then

o
E.,———|>»|H,,.|; d>-2
* Vi |7 e V2
— d &
E, —U—-\/2 l) H.,|; d < —%=- 39
B VAL ) Vo

The order of magnitude of (E,o/H.s) for an enclosure of regular

* In the case that 6. is small compared to d, as this is usual with iron shields one
best uses for uav the average permeability of that part of the shield that is within a
distance §uv from its inside-surface. This is based on the thought that if H, is prac-
tically independent of Hy at y = 8av/+/2 it will remain so for larger values of,
y, regardless of the permeabilities at larger values of y.
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shape can be evaluated. The average magnetic field strength normal
to the area A, (see Fig. 2) which passes through point 0 and is normal
to the direction of the internal flux will be called H, 0. The average
electric field strength tangential to the line of length, ly, which is
formed by the intersection of plane A4, and the inside surface of the
shield will be called E.y . Havo and Euvp are interrelated as follows:

j'w'#o'Au'Hav.o = Eav,o'lu . (40)

If one assumes that the ratio H.o/E.o is of the same order of mag-

nitude as Hyyo/Eqvo one obtains for the order of magnitude of
EI.O/H:',D

j'm'#u'An
(E.r.[]/sz.ﬂ)ardcr of magnitude = ,___I__.__. (41)
0
If one calls 4(Ag/ly) the equivalent diameter D, recalls the expres-

sion for 8§ and introduces the average relative permeability (r)ay
one obtains from expressions (39) and (41)

V22 (1) 8 8
r/av av <<1; d> av 42
D V2 “2)
y
z Hav.B
O e
Hz, B

I ,

%}bgm{o u

10” \
{m.o

€T

\ ]
\
§ S\é\

TFig. 2. — Local coordinates at two points of the enclosure.
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and

2-(u)uw By . Bus

"“W & 1; d < 75 (43)
If one selects as reference point, point B of Fig. (2) one obtains a
relationship as given by (40) between the normal internal magnetic
field strength and the tangential, internal electric field strength.
Since, with respect to area Ap, the direction of the magnetic field is
predominantly normal the tangential magnetic field component is
less than the normal one. Consequently, as before, the effect of the
tangential internal magnetic field strength on the external one is
negligible if the inequalities (42) and (43) are satisfied with, D,
being the equivalent diameter of the area Ap. [For symmetry rea-
sons the tangential flux-density approaches zero as the center-line is
approached. Consequently, its effect is negligible in this area (small
D) regardless of inequalities (42) and (43).]

APPENDIX C

Numerical Example for the Scaling Laws of a Model of Two Distinct
Geometrical Scaling Factors

The shielding effectiveness of an enclosure to a magnetic field pulse
shall be evaluated by testing a scaled down model. The size of the
enclosure is 15 mx15 mx15 m. Its material is sheet steel of thick-
ness d = 0.00317 m(0.125 inch), of average relative permeability
(pr)ay = 500 and of conduectivity ¢ = 1 X 10" mho/m. The peak excur-
sion of the applied magnetic pulse is 10 oersted and its significant
frequency content is within a band from 1 x 10* to 5 x 10° Hz.* (The
corresponding range of the intrinsic wavelength in air is from 30,000
to 60 m.)

Tentatively the scaling factor for the overall dimensions, L,/L, ,
is selected as 0.1. Since the minimum intrinsic wavelength in air is
only four times the length of the enclosure it is advisable to satisfy
(3) (keeping the ratio of intrinsic wavelength to length of the model
unchanged). Accordingly, the time scaling factor (¢,/{,) becomes 0.1.
According to (17) the thickness scaling factor (d./d,) becomes /0.1 =
0.316. The shielding effectiveness of the original, », , according to (21),

*It is assumed that the frequency content of the pulse below 10' cps is so
small that it will not cause any damage even though the shielding effectiveness
of a large enclosure approaches unity at very low frequencies.



2338 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

becomes

1
m = (-(_)j) X 0.316'7}2 .

Because of the high intensity of the applied pulse the iron-shield
will be driven into saturation near its outer surface. Consequently,
the model enclosure must be built of the same steel as the original
and the peak intensity of the magnetic pulse applied to the model
must be equal to that acting on the original.

Finally, one has to test whether the inequalities (14) and (15) are
satisfied. Based on a frequency of 1x10° Hz (the lowest significant
frequency applied to the model) the average skin-depth is

2
(8u)2 = \/ @7 % 100,000) X (47X 107X 500) X (1 X 10
=23 X 107°m.

With the smallest overall dimension, D, being 1.5 m one obtains for
the expression of inequality (14)

V22 X (1) b V2 X 2 X 500 %23 X107°

= = 0.022.
D 1.5
One can readily verify that inequality (14) is satisfied for the

original as well.

APPENDIX D

Integration of the Differential Equations (11) and (12) of the Field in
the Shield for Constant p and o

For a CW field, (11) and (12) read as follows:

. _ dH,
oli, = dy (44)
. dE,
J'WJ.IH, - dy ° (45)
Eliminating E,, one obtains
. d’H, _
jwpoH, — P 0. (46)

The general solution of this equation is

H, = C, exp (+Vjops v) + C exp (— Vijous y). (47)
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With the boundary conditions given by (16) one obtains,

0 . —
H,p,= (\/}w;;)‘slnh (V jopo -d) (48)

LIST OF SYMBOLS

C' = constant factor.
d = thickness of shield.
E = electric field strength.
H = magnetic field strength
7= V-1
K = proportionality factor.
[, I, = distance proportional to the size of the model.
{ = time proportional to a specified time interval of the applied
electromagnetic field (for instance duration of a pulse).
6 = skin depth ‘\/2/w,ua'.
e = dielectric constant.
p# = permeability (usually of the shield).
o = permeability of vacuum, (4= X 1077 Henry/m).
p, = relative permeability
o = conductivity.
w = angular frequency.
A, = intrinsic wavelength in dielectric 2r/w/ ;;;_
A\, = intrinsic wavelength in conductor 2w V/2/wue.
n = shielding effectiveness.
® = magnetic flux.

(L./L,) = linear scaling factor of overall shield dimensions.
(d,/d,) = scaling factor of shield thickness.
(f./1,) = linear geometric scaling factor if (L./L,) = (d./d,).
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