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The blurring of pholographs by image motion during exposure 1s
studied by means of a stmple model. Conditions under which it is possible
lo recover the unblurred image are determined and some methods of res-
toration are described.

I. INTRODUCTION AND SUMMARY

This paper is concerned with the feasibility of restoring photographs
that have been blurred during exposure by relative motion between the
camera and the entire scene being photographed.* It is assumed that all
objects of the scene are at rest relative to each other. Several simple
mathematical models of this situation are investigated.

Section II treats the case of uniform translation between film and
image. During exposure an area, 4, of the image crosses over the margins
onto the film. It is shown that unique restoration of the scene from
the blurred photograph is, in general, impossible without a prior:
knowledge of certain portions of the undistorted image of area A.
An algorithm is given for the restoration when this a prior? knowledge
is available, and a filtering technique is described that covers a case
of frequent interest,—the photographing of a small object viewed
against a uniform background.

The restoration techniques require knowledge of the translation
undergone. Section IIT describes a method of estimating this displace-
ment from the blurred photograph.

In Section IV more general image motions are considered. The case
of pure rotation has many features in common with that of pure transla-
tion. Istimation of the parameters of the motion, however, appears
to be more difficult in this case.

* This work was carried out at the Woods Hole 1966 Summer Study on Restora-
tion of Atmospherically degraded Images held by the National Academy of Sciences.
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1I. IMAGE TRANSLATION

We are concerned here with photographs blurred because of a uniform
relative motion during exposure between the camera and the object
being photographed. For mathematical simplicity, in this section we
treat the problem as one-dimensional; the modifications necessary to
desecribe the more accurate two-dimensional model are evident.

Let g(z) denote the illuminance from a scene or object being photo-
graphed that would result along a line in the image plane of the camera
if there were no relative motion between the camera and the object.
We suppose g(z) defined for all values of z. The film occupies the interval
| | = L. Imagine now that during the exposure time 7' the image
moves with constant velocity v along the image plane in the z-direction.
The total light energy e(z) incident on a point z in this plane is

ex) = & ' g(x — vt) dit
fo (1)

= [ o) ay,

where @ = »T. In appropriate units, the density of the photograph is
then

f(x) = rle@], |z]| =L, (2)

where r(e) is the response curve of the film. Our aim is to recover g,
or a portion of g, from a knowledge of f(z), |z | = L. If we assume
the film response is monotone and known, knowledge of f(z) is equiv-
alent by (2) to knowledge of e(x) = r '[f(z)], | z | £ L. For our pur-
poses, then, it suffices to assume e(z) known, or equivalently, to assume
that the film response is linear. Accordingly, we henceforth consider
recovering the undistorted scene g(z) from the blurred photograph

@ =[ sway lzlsL, 3)

where it is assumed that e is known. (The problem of estimating a
is treated in Section IIT.)
From (3) we obtain at once

f(x) = g(a) — glx — a)
or
g@) = '@ + gz —a), |z|=1L, 4
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the basic recovery equation. If g(z) were known for — L —a =z = — L,
say

glx) = ¢(@), —-L—-a=z= —1L, (5)

then g could be determined at once from (4) across the entire film
interval. One has

9@) =@ +ele—a) ;- .,

g(@) = {'(x) + gz — a)

=@ + '@z — a) + o& — 2a),
—L+a=zxz=-L+2a

S @ — o) + oo — ka), ©)

i=0

g(x)
— L4+ k—-—1Na=s=a=—L+ka

k=12 ,K
g(x) = 2 f'(x — ja) + ¢lr — (K + Dal,

i=0
—L+Ka=zxz =L,

where K = [2L/a] is the largest integer not greater than 2L/a. Similarly,
if g(x) is known on any interval H of length a contained in the interval
I = (—L — a, L), (4) can be used to determine ¢ first in the intervals
of length a adjacent to H and then successively to determine g through-
out I. More generally, if g is known on a set S of intervals in I whose
translates by various multiples of a form a set containing an interval
of length @ in 7, then g can be determined everywhere in I by repeated
application of (4). We call such a set S an admissible a priort set.

Two quite different cases of restoration are now evident: (z) g known
beforehand on an admissible a prior? set; (7z) g not so known. In the
former case, exact restoration is possible in principle. In the latter
case, unique restoration is not possible. Indeed, a given blurred photo-
graph f could arise from infinitely many different scenes. For example,
if no a priort knowledge of g is available, choose g(z) = ¢(z) for —L —
a = v < —L with ¢ arbitrary. Use (6) then to determine g for —L =
x = L. This scene g will give rise to a blurred photograph differing
from f by at most a constant. (By judicious choice of background,
and by moving the camera, it is possible to make the devil appear
as only a slightly-blurred saint!) Similar considerations show that if
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g is not known beforehand on some admissible a priori set, its values
can be assigned arbitrarily on some set of points in I and determined
elsewhere to give a scene that could produce a given blurred photograph.
There seems to be little useful that can be said, in general, about
restoration of blurred photographs when g is not known on some
admissible a priort set.

A case of importance in practice where something of value can be
said concerns the restoration of a photograph of a small object moving
across a uniform background. We suppose the background corresponds
to photographic density zero and that the blurred object image is
smaller than the photograph. Specifically, assume that it is known
a priori that the unblurred object image g(x) would be nonzero only
in the interval z, < z < z, + (p — 1)a, wherez, = —L, 2, + pa = L.
The blurred photograph then would have a density different from
zero only for —L < z, < z = 2, + pa < L. We define f everywhere
by taking

fx) =0, < T, T > x + pa. (7)

We define ¢ = 0 for x < z, and z > z, + (p — 1)a. In this case, the
solution of form (6) becomes simply

0@ = L), a7t ®)
gla) = p; f'lx — ja), Tt pa<xr=a+ @+ Da
gr) = mi, @ —ja), x+@+n—Da<z=2z,+(p+na

j=n

n=12---. )]

Because of our assumptions, the sums in (9) must give zero for n = 1,
2, --- and z in the indicated ranges. They are in this sense nugatory.
Equation (8) gives ¢ = 0 for < z, because of (7). In the range of
interest 2, < ¥ < o + pa, it gives a simple algorithm for obtaining
a true picture of the object.

Equation (8) can be instrumented in many ways. The derivative f’
of the blurred photo extended by (7) can be obtained as a transparency
by optical filtering techniques. The sum (8) then can be found by p-
tuple exposure of a film with the image of f' being translated by an
amount a by a mirror between each exposure.
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An alternate restoration method suggested by (S) sheds some light
on a filtering technique previously reported in the literature.' Let us
define for all

§(@) = Z f'(e — ja) (10)

with f defined everywhere by (7).
For z = 2, + pa, § will coincide with g, but for £ > z, + pa it gives
values different from g. From the Fourier representation

-1

f@ = [ e™Fo) ax
if follows that
"z — ja) = f eMINF(N)E ™

so that (10) can be written

@) = f AN NN 3 e

i=0

_ - ihx sin (A\pa/2) . i1y
B f_m dh 6 AN sin (Aa/2) e

which shows that §[z + (p — 1)(a/2)] can be obtained from the extended
blurred photograph f by processing with a filter having transfer function

i\ sin (\pa/2)

Yoy = sin (Aa/2)

(11)
A different filter for restoration in the present case can be derived
as follows. Recall our assumption that
g=0 for = —-L and 2> L — a. (12)
Then

fx) = ’ g(y) dy
L. .

[ 1 = o) dy

holds true for all 2. Here

g < <
W) = Jll' e=r=0
0, otherwise,
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Taking the Fourier transform of (13) yields

; A
_ —(iaN/2) A
G(\) = we S /D) F()\) (14)
which shows that gz + (a/2)] can be obtained from the extended
blurred photograph by processing with a filter having transfer function

.o -
Yo = T 0 (0a/2) (15)
as has been reported previously."

The filter (15) has poles at the points A\ = 2nw/a, [n| =1, 2, -
and hence cannot be realized in practice. Some ad hoc scheme for
assigning a finite value at these pole positions must be made. Just
what these modified filters do to picture quality is not easy to analyze.
The filter (15), could it be instrumented, would yield g, that is, a
picture with infinite white skirts. The filter (11), on the other hand,
has no poles and hence can be realized.* It restores g correctly in the
interval z, £ ¢ < z, + pa where this quantity is different from zero.
It gives uninterpretable values for z > z, + pa and the value zero
for x < w,. It would appear that the infinities in (15) with their at-
tendant difficulties are due to insisting that the processed picture yield
the value zero over an infinite region where from a priori knowledge
one would accept no other value anyhow.

It is worth noting that if (12) is violated, then (13) does not hold
for all z and one cannot write (14). These edge effects have been over-
looked in past treatments of the problem based on (14).

III. ESTIMATION OF MOTION PARAMETERS

The restoration technique of the preceding section presupposed
knowledge of the direction and amount of the image displacement
during exposure. We now consider how these quantities might be
determined from the blurred photograph itself.

We suppose the blurred photograph density to be given by

T
@) = [ o@—uty—vhd, |zlSL, |ylsL, (9
0

where g(z, ¥) is the image that would result if there were no motion.
Again to avoid edge effects we suppose g(z, y) defined everywhere

* Because of the growing factor A, both (15) and (11) must ultimately be cut off
at some point beyond the largest spatial frequency of interest in the photographs.
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and different from zero only in the rectangle —L, < 2 = L, — uT,
—L, £y = L, — vT, so that defining f = Ofor |z | > L,, |y | > L.
we can write

e = [ o —uty—wd,  —wSzyse D
Into (17) now introduce the Fourier representation
oe ) = [ d [ dn G mee.
There results

T » 0
A (18

= f_w dt f_: dne' TG (E, e T Sh(lgfi—-:bg%/z

on performing the ¢ integration. Here
a = uTl, b =2T.

Since (18) holds for all x and ¥y, we see that the Fourier transform of f
is given by

i = ~ilttasnny /21 S0 (§2 + 1b)/2
FE, ) = GE ne Ga + /2

As seen from (19) the transform of the blurred photograph is zero
on the family of parallel lines

(19)

ta + nb = 2nrw n= =1, +£2, --- .

These lines of zero density in F should provide a reasonable means
of estimating the parameters @ and b. Due to noise, the curves of zeros
of F will not appear as straight lines. The job of fitting straight lines
to these curves of zeros should be greatly simplified however by the
knowledge that the lines are parallel and uniformly separated. Once
the fitted lines are drawn, value of @ and b are readily found.

IV. MORE GENERAL MOTION

In the present model, the blurred photograph that results from the
general nondistance-distorting motion of a small object is
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fl, y) = fo dt gl(x — u) cos ¢ — (y — V) sine,

(x —wsing 4+ (y —v) cosel. (20

Here g(z, y) is the illuminance that would result if the object were
at rest with respect to the film during the exposure, u and v are functions
of ¢ giving, respectively, the x and y coordinates of the origin of a
coordinate system fixed with respect to the body, and ¢ = w(t) is
the angle that this second coordinate frame makes with respect to the
a—y frame. In the case of most immediate interest

u = x, + ut
v = Yo + Bt (21)
@ = wt.
One finds without difficulty that the Fourier transform of f and g
are related by

T
F(E, q) = f:} dt e "EQE cos ¢ — g sin g, Esin ¢ + 7 cos @], (22)

This equation appears somewhat simpler in polar coordinates. We write
E= pcosd n = psin @
u =V cosa v= Vsina
and set
FiE ) = FPp, 0) G ) = Glp, 0).

Then (22) becomes
”
Plo,0) = [ e " GG, 0+ o). (23)
L]

Here V, « and ¢ are functions of .

Under these general conditions, I have been unable to find a practical
method for obtaining the undistorted scene g from f, either in the space
domain, or from the transform statements (22) and (23). Even in the
case of combined uniform translation and uniform rotation given by
(21) no method is as yet evident.

The case of pure uniform rotation, @ = # = 0 can, however, be
treated and complements the case of pure translation (w = 0) already
discussed in Sections IT and ITI. Working directly in the space domain,
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(20) becomes
T
fw ) = [ diglle — ) coswt — (y — y) sin w,
Jo

“(x — o) sinwt + (¥ — yo) coswi].
Introduce polar coordinates located at the center of rotation
xr — 2 = pcos@

psin 6

Il

Y = Yo
jp, ) = f(x,y),  G(p, 6) = g(p cos 6, psin 6). (24)

We now have

[ dt o, 0 + )

0

J(p, 6)

I

€ I

[ o 4o, 0)

which is basieally of the form (3) already treated. The basic restoration
equation is

0o, 6) = o 55 o, 0) + 4o, 0 + ), 25)

where p is to be regarded as a parameter, § and J are periodic in 8
with period 27 and the equation holds for all values of 4.

If G(p, 0) is known a priori as a function of 8 along an arc of angular
extent w7 radians, (25) can be used successively to determine § for
all 0. It is not hard to show that #f § s not known a priori on a 6 set
of angular measure wT, unique restoration is impossible. Indeed, there
exists a scene with values assigned arbitrarily (except for an additive
constant) in a wedge of angle w7 which, when rotated, will give rise
to any preassigned blurred photograph.

In the case of a blurred photograph of a rotating unknown object,
for example, if the center of rotation is within the body, unique restora-
tion is impossible in the neighborhood of this center. If restoration
is to be made, one must use some form of a prier: knowledge to specify
¢ or an estimate of ¢ in some angular interval of amount T,

Restoration by means of the difference equation (25) presupposes
knowledge of w and [from (24)] the center of rotation z,, y,. We have
not found a simple way of estimating these parameters. Unlike the
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case of pure translation, the Fourier transform of the blurred picture,

T
ﬁ(P, 3) _ e—ip(ro cos f+ye 8in #) [ dt é(p, 6+ wt),
0

does not seem to offer special clues. If the object has some straight
line edges, their initial and final positions may show clearly enough
in the blurred photograph to allow estimates of x,, 5 and «7' to be
made. For example, if I, and I{ are the lines along the initial and final
positions of some edge of the body, the angle between , and [{ is clearly
wT. Let I, and I} be lines along the initial and final position of some
other straight line feature of the object and let P be the intersection
of I, with I, and P’ be the intersection of I{ with I} . The center of rota-
tion O must lie on the perpendicular bisector of the segment PP’, and
its position is chosen so that £ POP’ = «T. It is likely that, in practice,
restoration with several different trial values of the parameters will
have to be made and the best result selected.
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