Contraction Maps and Equivalent
Linearization*

By J. M. HOLTZMAN
(Manuseript received July 26, 1967)

This study s primarily concerned with the question: If the method of
equivalent linearization indicates the existence of a periodic solution, is
there actually a periodic solution near lhe approximation of equivalent
linearization? To answer this question, we use a modification of the con-
traction mapping fixed point theorem. We discuss applications to differential
equations and difference-differential equations (with forcing functions).
Also, we show that our use of contraction maps is not applicable (without
modification) to aulonomous systems because the mapping evaluated in
the meighborhood of a periodic solution to an autonomous system is not a
contraction in a space of periodic functions.

I. INTRODUCTION

The method of equivalent linearization is a most valuable tech-
nique to investigate nonlinear phenomena, particularly nonlinear
oscillations. Tt has its roots in the method of Krylov and Bogoliubov
and is related to (or equivalent to, depending on the specific defini-
tions) the method of harmonic balance, Galerkin's method, and the
describing function method used by control engineers. The purpose
of the present study is to develop a new technique for investigating
the method of equivalent linearization.

We shall be primarily concerned with the following question: If
the method of equivalent linearization indicates the existence of a
periodie solution x,, iz there actually a periodie solution near z,? To
answer this question we first introduce a convenient modification of
the contraction mapping fixed point theorem which is aectually more
general than just applicable to the question posed above.f We apply

* Taken from o dissertation submitted to the Faculty of the Polytechnic In-
stitute of Brooklyn in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (System Science), 1967,

7 Appendix A contains some reading suggestions for engineers interested in
this work but who are not familiar with the mathematies used.
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our approach to systems deseribed by nonautonomous differential
equations. Then we show that there is no essential difficulty in also
handling difference-differential equations.

We shall try to clearly indicate what our method can and cannot do.
The diseussion of autonomous systems is particularly important in
this regard. The relation of the present study to previous work is dis-
cussed in Seetion VIII.

II. THE METHOD OF EQUIVALENT LINEARIZATION *
Consider the following vector differential equation

i) = fx(0), ) = AWD(t) + n(t, =(8), (1)

where
flx, t) = flz, t + T) (2)
for all (z, t) of interest. This, of course, includes the case of f(z, t)

independent of ¢, i.e.,

flz, ) = f(2). 3)
We shall be concerned with the situation that permits an equivalent
representation of (1):

z = LN(z), (4)

where x now represents a vector function, L is a linear operator, and
N is a nonlinear operator (these terms will be made more precise
later). If it is assumed that LN (z) has the following Fourier series,

IN@WO) ~% + 3 (a,, cos b 2F { + b, sin k 2T t)- ®)
2 =1 T T
Then we define LN (x) as follows: '
- ) ¢
ING() = a, cos 5 1 + b sin ZT—” ‘. (©6)

That is, L extracts the fundamental component of the Fourier series.
The method of equivalent linearization seeks a solution of the equation

x = LN(z). )
This study will be primarily concerned with the following problem:

* See Minorsky,' p. 350, for a discussion of the relationship of the method of
equivalent linearization to the method of Krylov and Bogoliubov,



EQUIVALENT LINEARIZATION 2407

Given an =z, satisfying (7), is there an z* satisfying (4) and if there is,
how are x,, and 2* related?

Note that (4) is a functional relation more general than (1) and
our method will be correspondingly applicable to a more general
problem.

The above discussion is now related to the method of describing
funetions* as commonly used by control engineers. They are con-
cerned with the feedback loop shown in Fig. 1. The linear operator L

—(f'—A n Hiw)
+ —

Fig. 1 — Feedback Loop.

is represented in this case by a transfer function H(w) (see Kaplan®
for a definition and discussion of transfer funetions) and the nonlinear
operator N is represented by a nonlinear function,

y = nle; — x),

where e; is an input function. The engineer replaces the nonlinear
function n by its describing function which is defined loosely as the
complex ratio of the fundamental component of the output to a
sinusoidal input. That is, if

= 2
n(A sinwf) = D a, sin ket + b, cos ket (w = FTF)
k=1 [ §

then the deseribing funetion of n is

Vai + b} /tan_‘%-
JA—Cy

A

Note that while the describing funetion may be dependent on both A
and w, it is still a relatively simple matter to replace n by its deserib-

*Tor further discussion of the use of describing functions by engineers see
e.g., Truxal® or Graham and McRuer® They give further references and historical
background. The describing function method is associated with the names of
Tustin, Goldfarb, Oppelt, Kochenberger, Dutilh, and Nichols and Kreezer. Also
see Minorsky,! Chap. 17 for a discussion of the work of Theodorchik and Bla-
quiére. The work of E. C. Johnson is discussed in Ref. 2.

1 The constant term 1s assumed zero.
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ing function, then to consider it as a “linear” (or quasi-linear) op-
erator and then use standard techniques for linear systems. Of course,
such a procedure should be mathematically justified and, in fact, that
is the purpose of this study.

Before we embark on our investigation, it is well to review the argu-
ments used by engineers in their justification of the method. These
arguments seem to be plausible and they are suggestive of what may
be expected of a more rigorous investigation. If it is assumed that the
combination of n and H(w) operating on a sinusoidal function is pri-
marily fundamental (i.e., the harmonics are “small” compared to the
fundamental) then it would be expected that the describing function
method might not be too inaccurate. The harmonies will be small if
one or both of the following are satisfied:

(7) the nonlinearity n is “not too nonlinear”

(i7) the transfer function H(w) is low-pass, ie., it attenuates har-
monies much more than the fundamental. (It is assumed that no sub-
harmonies arise).

We shall use Duffing’s equation,

i+ ay + by’ = [ cos wl,

as a running example to illustrate the methods discussed. We show
here how this differential equation corresponds to a feedback control
problem and then make no further explicit reference to feedback sys-
tems. The appropriate feedback system is shown in Fig. 2.

The next section contains an approach to a problem much more
general than the problem of equivalent linearization posed in this
section. The remainder of the study will be primarily devoted to
adapting the more general approach to the specific problem of equi-
valent linearization.

It may be noted that we are not getting more abstract in the next
section just for the sake of abstraction. It should be clear to the reader

H{w)

fecoswet 1

+ - a-w

2

bg3

ny

Tig. 2 — Feedback equivalent of Duffing’s equation.



EQUIVALENT LINEARIZATION 2409

that the mcthod of equivalent linearization leads to an integro-differ-
ential equation rather than an ordinary differential equation because
Fourier coefficients are determined by integration (this is also pointed
out in Bass®, p. 898). We then eannot expeet the theory of ordinary
differential equations to answer our questions and we are led quite
naturally to considering more general equations. In particular, the
theory of operator equations in a Banach space is shown to provide
the tools appropriate to the task. As an added bonus for the abstrac-
tion, we develop an approach whieh is applicable to problems unre-
lated to equivalent lincarization.

III. THE USE OF THE CONTRACTION MAPPING FIXED POINT THEOREM WITH
DERIVATIVES IN A BANACH SPACE

Let X be a complete metrie space (with metric d) containing the
the closed set @ and let P map Q into itself. P is a contraction map-
ping if

d(P(x), P(x") £ ad(x, 2") (v, x" e Q) (8

with @ < 1. The contraction mapping theoremt states that if P is
a contraction mapping then there is a unique 2* e @ such that a* = P("),
i.e., 2" is a fixed point of the operation P. x* is the limit of a sequence
fa.] where

Tnp1 = P(-ru) (9)
and xy is any element ot Q. Furthermore,

dx, , x,) _ A(P(x,), x,) n—1,2 e (10)
]l —« 1l —«

d(-t'n , .l'“) é

In order to use the contraction mapping fixed point theorem it has
to be shown that some neighborhood of x, is mapped into itself and
that in this neighborhood the operation is contracting. Our approach
will be simultaneously to determine a set containing x, which is mapped
into itself along with the contraction constant a for the operation on
that set. This is possible beeause of relationship (10). The use of opera-
tor derivatives will be seen to be convenient. The method will result
in a relation in « for which it is desired to find solutions with « [0, 1).
The following is proven in Kantorovich and Akilov® (p. 661).

T See Kantorovich and Akilov,” p. 627,
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If X is a Banach space and P maps a convex closed subset @ of X
into itself and if P has a derivative* at every point of Q, then

sug | P@) || =a<1 (11)

implies that P is a contraction on @ (and thus, there is a unique fixed
point of P in Q).

The object then is to find a neighborhood of xy mapped into itself
and in which the norm of the derivative is less than one. The follow-
ing simple theorem is a help in this direction.

Theorem: Let B be a Banach space. F maps B into itself and z, ¢ B.
It 7s assumed that

(7) F has a derivative at all x ¢ B
(i) There is a nondecreasing function g such that if x e B, then

| F'@ || < gl z — 2o D)
(742) There is an « € [0, 1) such that

k
9(1 _a) = a,

k= || F(zo) — o ||
Then there is a unique x* e Q such that

z* = F(z%),

where

where
Q= :t:::tteB,H:U—l'nH = i
1 o

Proof: We will show that || F'(z) || £ « for all z ¢ @ and that F' maps
into itself and thus, there is a unique fixed point in Q. If z e 2, we have
from (7z) '

IA

| 7@) || = g(lla — 2 ID

=

.

1A

IIA

*See Kantorovich and Akilov, chap. XVII, for a general discussion of dif-
ferentiation in Banach spaces. For convenience, Appendix B of this study repeats
the definitions,
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F maps Q into itself because if @ ¢ Q, then
|| F@) — 20 || = || Fx) = Flzo) || + || Flao).— o ||

Sallz—w |+ k
<ot 4k

1l —«

k .
Tl —a

We further discuss the use of the contraction mapping theorem in
Ref. 7. This modification of the contraction map theorem is less gen-
eral than some other modifications but is simpler to apply when ap-
plicable.

IV. THE CHOICE OF BANACH SPACE

In order to use the result of the previous section, an appropriate
Banach space must be chosen. For most of our investigation it will
be found convenient to use the space of continuous periodie functions.
Another space worth considering is the space of periodic functions
square-integrable over a period. Before discussing the desirable char-
acteristies of this space, a restrictive factor will be mentioned. The
nonlinear operator of interest y = N(x) is often defined by the ordi-
nary function (satisfying the Carathéodory condition)

y() = n(t, x(1)). (12)

A necessary condition that this operation map L,(0, T) into L.(0, 1"
is (see Krasnosel’skii,® p. 27) that for some b > 0 and some a(¢) & L.(0, T)

|n(t,w) | < a(®) + b || te[0, T. (13)
It is thus seen that the allowable nonlinearities are quite restricted.
This is, in fact, the reason the present investigation will be carried out
in a space of continuous functions where the requirement that a
function map 2 continuous function into a continuous function is
much more convenient. It should be noted, however, that in some
cases one may focus attention on some subset of the Banach space
and less restrictive requirements on the nonlinearities might be im-
posed. Also, for many control engineering problems the nonlinearities
are Lipschitzian and the problems can be attacked in L.
The attractive feature of L. is that Fourier series results can be
fully utilized (in particular, Parseval’s relation). More generally, Ls
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is a separable® Hilbert space with many useful properties and the
trigonometric functions are a complete orthogonal system in Ls. The
norms can often be conveniently evaluated in terms of quantities as-
sociated with the “transfer function” or “frequency response”. For
example, L may be defined by the set of complex numbers {. .., Lo,
Ly, Lo, Ly, L, . . .} (i.e., the transfer function evaluated at the fun-
damental and harmonic frequencies).t A simple sufficient condition for
L to map Ls into itself is that

sup | L, | < =.
The evaluation of || LN (xy) — || may be done as follows:

|| LN(zo) — 4 ” = H LN (o) — LN(-"()) |'|
S || L = L[| N ||
1L 0= sup | L.

The last relationship is proven in Appendix B of Sandberg.*

Despite the above mentioned attractive features of Lz, we chose
to work in the space of continuous functions primarily because of the
first-mentioned restriction placed on the nonlinearities in L,. Also,
the sup norm (uniform norm) in the space of continuous functions
seems more appropriate in error analysis (the error between an ap-
proximation and an exact solution) than does the L, norm. The sup
norm provides a bound on the magnitude of the error while the Lo
norm gives the integral of the square of the error.

Section V will give the details of working in the space of continuous
periodic functions. First (in Section 5.1) an integral equation equi-
valent to the differential equation of interest will be derived. Then
in Section 5.2, the derivatives will be determined and finally in Sec-
tion 5.3, the quantity || F(x)) — o || will be evaluated. Application of
the results will then he seen to be rather straightforward.

V. APPLICATION TO DIFFERENTIAL EQUATIONS

5.1 The Equivalent Inlegral Equation

Halanay shows how to convert the quasi-linear differential equa-
tion

*Tt is, of course, assumed that the measure is Lebesgue. Then L. is separable ;

see Kolmogorov and Fomin," Vol. II, p. 88.
+ No confusion should arise beeause of the double use here of the symbol Ly,
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%{) = A(Da(t) + nlt, x(1) (1

into an integral equation which is convenient for examination of pe-
riodic solutions, First, consider

d(t)

= AW + ), (15)

where A(¢) and f(¢) are both continuous and periodic of period 7.
The following theorem is proven in Halanay,* p. 223.

Theorem: A necessary and sufficient condition in order that, for any
periodic function f(t) of period T, system (15) admits periodic solu-
tions of period T 1s that the corresponding homogeneous system

WD _ Ayt (16)
does not admit a non-trivial pertodic solution of period T.

It is to be noted that if ¥ (¢) is the principal fundamental solution
matrix for (16) then the existence of the inverse of [I — Y (T)]* is
equivalent to the non-existence of a non-trivial periodie solution (of
period T) to (16). Then the following proposition is proved in
Halanay ** p. 225.

Proposition: If |I — Y (T)| ' exists, the unique periodie solution of
the system (15) can be put in the form

Anzfcmmwm, a7)

1]
where

Y(OU — Y(T)I'Y'(s), 0=s=t=T

Y4+ T — Y'Y '), 0=<t<s=<T.

Sinee this reformulation into an integral equation is quite important,
a sketch of the proof given in Halanay' will be given here. Solution
of (15) is

1A
A

1A

(L, s) = [ (18)

() = Y(t)x(0) + fnt V(O Y ' (s)f(s) ds. (19)

* [ is the identity matrix.



2414 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967
For periodicity,

A1) = 20) = YT + [ YOT O @)
or

- YR = [ YT ds. 1)

Since [I — Y (T)] is assumed invertible, we can solve for 2(0) and get
W) = YOU = YO [ Y)Y @f) ds
+ fo CYOYTEE) ds. (22)

The form of G(t, s) given in the statement of the proposition results
from algebraic manipulation of (22).
Now suppose that
dx(t)

TRl Ax(t) 4+ n(t, x(1) (23)

with A (¢) and n(¢, ) both being periodic of period T' and [I — Y (T)]
invertible. It is assumed that n(t, (t)) is continuous if z(t) is con-
tinuous. Then, from the previous discussion, if we can find a continu-
ous periodic z of period T satisfying

() = fo " 6t 9nls, 2(6) ds, (24)*

we have a periodic solution of (23). (It is easily shown that such an
x satisfies (23) ; see Halanay,'* p. 237).

The problem is thus reduced to finding a continuous solution of a
nonlinear integral equation. We need only consider the interval [0, T]
because (£, s) was constructed so that x(0) = =(T).

5.2 Computation of Derivatives

It is shown here how to evaluate the Fréchet derivative} of the

* The nonlinear integral operation represented by the right hand of (24) is of
the form sometimes referred to as a Hammerstein operator which is a special case of
Uryson’s operator defined by [I' K({, s, 2(s)) ds (see Krasnosel'skii,® pp. 32, 46).

+ The Fréchet derivative is actually more than what is required. The Gafeaux
derivative (which does not require uniform convergence) would suffice for much
of what follows. However, since the convergence is indeed uniform in most cases
of interest and since the uniformity is easy to demonstrate, we shall derive the
Fréchet derivative. Furthermore, Fréchet derivatives are needed in Section VI.
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mapping y = F{x) defined by

uy = [ G snls, o) ds te [0, T, (25)

This operation is assumed to map into itself the Banach space of
real-valued n-vectors continuous on [0, 7'] with norm
[[z |l = max max |z |. (26)
i=1,%+s.n te[0,T]
To determine the derivative of the operation y = F(z) it is con-
venient to express it as y = LN (z), where N (z) is defined by the
nonlinear function n(¢, x(¢)) and L is the linear integral operator.
Then F'(xy) = LN’(xy) (see Kantorovich and Akilov,® p. 659). Thus,
consider the mapping y = N (x) defined by

y() = n(t, 2(1)
ny (1, ()

Il

: (27)
n.(t, x(1))

It is assumed that n(f, 2(¢)) is continuous whenever x(t) is continu-
ous on [0, T'|. For simplicity, the derivative will be determined for
the case of

“‘l’(tr l(t)) =10 1= ls 2! e, — 1

n(, x(1) = p(Oh(x,(0) + #(1),
where p(t) and r(¢) are continuous functions of # with period T and
h(u) is a twice continuously differentiable function of 1. This special
case which covers our examples may arise, for example, when the
matrix differential equation is actually derived from a scalar differen-
tial equation. The more general case offers no other difficulties than
mueh more complicated notation (e.g., one must deal with matrices
of partial derivatives).
The derivative operation z = N’(xq) x is defined by

(28)

r 0 3
0
(1) = : , (29)
0
PR (20, (1)), (1) )
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where

Iﬂ(t) = (xﬂl(t): e rxﬂn(t))rv 1(1') = (ﬁtl(t)y Tt sxn(t))rr

(superseript T denotes transpose) and

¢

dh)

I (i'-'nl(t)) = AU ueraior (30)
To prove this, it must be shown that
lim Mﬂy") = P'(zo)r, (31)
that is,
lim max p(t}h('i'm([') + .U-‘-Ul(t)) - p(t)h(xm(t))
u—0 te[0,T] u
— p(OW (@ ((t) | =0,  (32)

with that convergence being uniform with respect to all @ with || || =
1. Since

)p(t)h(xm(t) + .un:,ﬁt)) = PORGCaD) _ oy hin ()t ‘ o0 |

o)+ aes 01 Geon(0) + P2 (1) 80, (1) — (1)

m

— W (o, (0),(D)
0<6(l) <1

= “’(t) l g : | (1) i2 | "' (o (l) + 0D pa, (1)) |
< g max | p(f) | max | A"'(2) | (for || = land |[2 || = 1),

- te[0,T) e Z
(33)
where

Z={zz=w+v;w=ua,), 1[0, T];]v] =1} (34)

the uniform convergence relationship is seen to be satisfied.
To summarize the result, the first derivative operation y = F'(xo)2
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is defined by

r
o = [ 69 : ds. (35)
Jo -
PSR (01(8))1(s)
Loosely speaking, the derivatives of the integral operators are ob-
tained by differentiating under the integral.
5.3 Evaluation of || LN (x,) — xo ||

A bound on || LN (xg) — & || is given here. The relationship

|| LN (o) — @ || = || LN () || + || 2o || (36)
is too gross an estimate. The evaluation is simplified if the following
relation is used:

LN(z)) — xy = (L — L)N(xo). (37)*

Reeall that the operation L suppresses all frequency terms except

the fundamental.
Consider the same system as in Seetion 5.2 and assume that

o 2 2
(DR, (D) 4+ (D) = 2 ax cosk % { + by sin k ‘T—’r L. (38)
k=1
and also, for simplicity, that A is a constant matrix. Then,

|| LN (xy) — @ ||

T = 2 2
f Gt s) > (ah- cos k % s + brsink %s) ds

k=2

= max max
i=1,+++,n te[0,7T]

= i (|l ax | + | bx ) max max f | G.(t, s) | ds. (39)

yeeen b0, 7] Y0

5.4 Krample
Consider Duffing’s equationt

i + ay + by’ = f coswt (@ > 0). (40)

Equivalent linearization indieates that
y = A coswt (41)
# From this expression, it is seen that || LN (2) — ao||may be regarded as a

quantitative measure of characteristies (i) and (i) mentioned in section II
+ Duffing’s equation is discussed in great detail in Stoker.™ Also see Graham and
McRuer® for a treatment of Duffing’s equation as a feedback control problem.
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with
3pA* + (a —w)A — [ =0
is an approximate solution of the equation.
Letting
M}
T2

¥

&€y

Qo :ifl

the corresponding vector differential equation is

.[01
x=
—a 0

The fundamental solution matrix for
¥ = Yy
—a 0
sin Va t

cos \/&t =
Va
—/asin \/Et cos Val

x+{

0 ] _
f cos wl — ba}

is

Y(t) =

(G (t, s) is given by

G(t, 9
, 1 sin va (g—t-l—s) \/_ cos Va
2sin ( 2 T) —Va cos Va (22—1-;-3) sin
= 0<s<t
. _—sm\f( +i-s) - s Va
2sin( ;T) |~V cos \/a( + s) _sin Va (g-l—t—s)
‘ 0

=
()

1967

(42)

(43)

(44)
(45)

(46)

(47)

(48)

+)
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The integral operation of interest, y = F(x), is defined by

" 0
u = [ aq, .5-){ ] ds. (50)
e [ cos ws — bai(s)
The approximate solution (obtained from harmonic balance) is x,,
1e.,
. 1
2o(l) = [.u,,(t) _ [ A cos wt } (51)
.Ugg(t} _LIJA Sil’l wt

with @ and A being related by (42).
From Section 5.3 we have that

3
|| LN(x) — 2, || £ Tmax max | Gu(t,s) |M

1=1,2 ¢,8c([0,7T]

< pe 104 (52)
4
where
¢ = S S max {1, 1/va). (53)
o (47
2 Isin | ——
The derivative operation z = F’(xy)x is given by (see Section 5.2)
T
2(f) = f (1, s)[ 0 ] ds
0 —3baii(s)a,(s)
[ [—G,g(r. 93bainls) 0 x|, (54)
=Ll $)3bak,(s) OJsz(S) J

The norm of the derivative operation at an arbitrary point 2 (not
necessarily at x, as above) is evaluated as follows:

T
[| F'(z) || = max max [ | Gia(t, $)3bxi(s) | ds

i=1,2 tel0, 7] Yo

=3|b|CT(max |zt |)

te[0,T]

3106 CT( ma\ | 20 () | + max | 2,(1) — 20,(0) )?

tel0

310107 A \-l- H;r.w.roH . (55)

il/\

A
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The above relation defines the nondeereasing funetion g such that
I F, 1') H g(” €ro— &y H) (56)

to use the theorem of Scetion IT, let

Q= {.1:: | —a || = I E a} (57)
where
3
— “’—‘i—l (58)
(sec (H2)).
If an « ¢ [0, 1) can be found satisfying
alsAl bAs ’
C1 J—l4
3\b|CT‘.A[+41—:—‘;— Sa (59)

then there is an +* ¢ © such that * = F(z*), i.e., Duffing’s equation
has a periodic solution in the neighborhood of theapproximation obtained
by harmonic balance.

Rather than just solve the cubic relation (59) for particular numerical
values of @, b, f, and w (which is, of course, the thing to do if one is
given a partlcul.u equation of interest) we shall obtain some general
results. Consider a, f, and w fixed and f # 0. Sincet for any « ¢ [0, 1)

3 2
cr bl

lim3|b|CT||A|+—— =0 (60)

b—0 1l —a
it is seen that for b sufficiently small, there will be an o & [0, 1) satis-
fying (59) (and thus a periodic solution neighboring the approxima-
tion). Note that while the result has been stated as an asymptotic
result, it is possible to determine quantitatively what is meant by
“sufficiently small”. This is in contrast to most asymptotic analyses
based on “small nonlinearities”.

5.5 Spectal Cases
In many cases, it is not necessary to convert the differential equa-
tion into a veetor integral cquation. For example, let the system be

T See Appendix C for defails,
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deseribed by the equation

apx™ () + a ™) + -+ a.xt) = alt, 2(1), (61)
where the a,, ..., a, are constants, n(¢ , ) is continuous in f when
218 continuous in £, and

n(t + T, u) = n(i, u. (62)
A periodic solution to the differential equation will satisfy the follow-
ing integral equation

(l) = f Wt — wntu, 2w) du, (63)

where Wy (t—u) is the appropriate convolution kernel (see Kaplan,*
chap. 4 for details). All the manipulations of previous sections will
be somewhat simplified as a result of not having to deal with matrices.
In particular, the example of Section 5.4 could be repeated with some
simplification. We omit the details because they exactly parallel the
previous case. We felt it would be more useful to work out the details
of the more complicated case. As the order of the differential equation
inereases it eclearly becomes more advantageous to avoid the use of
matrieces,

It may be noted that there is a finite Fourier transform Y (inw)
(again see Kaplan,® chap. 4) associated with the differential equa-

tion (61)

1

ay(ine)” + -+ + a,
This Y (p), considered as a function of a complex variable p, evidently
can only have poles and cannot have finite zeros. In many electrical
enginecring applications (e.g., control systems, networks) the relevant
transfer function has both poles and zeroes. In these cases, we would
start with the transfer function, rather than a differential equation of
the form (61), find the corresponding convolution integral and then
apply our method. For other applications it must, of course, he verified
that the appropriate conditions are satisfied.

Yiinw) = (64)

5.6 Autonomous Systemst
The describing function method has been used by control engineers
primarily for the prediction of self-oscillations (i.e., with no forcing
7 Since the actual oscillation of an autonomous system may have a different

period than that of the approximation, it is usually convenient to normalize the
time variable and have the period be a parameter.



24922  THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1967

functions). It would seem at first glance that our approach should be
appropriate for analysis of this problem. Suppose the deseribing
function method indicates that there exists a non-trivial periodie
solution, x4, to the operator equation

2o = LN(x,). (65)
Usually, N(0) = 0, so that it is of interest to investigate whether
there is any non-trivial solution to the exact equation near . If our
method is successful, then we can guarantee that @ does not contain
the trivial solution (z = 0) if

[1F@) =20 [l || 4, (66)

since the fixed point x* satisfies

< | F(xo) — @ H (67)

SL
ot = w |l = 2P

Unfortunately, an attempt to use the approach in the autonomous
case will be unsuccessful. The reason for the failure of our approach
is due to the nature of the fixed point: the mapping is not a contrac-
tion in a neighborhood of the fixed point.f The discussion below will
clarify this point.

Assume that the differential equation of interest is

#(t) = Az(t) + n(z(t) (68)
with 4 a constant real valued matrix and n(zx) is a real-valued func-
tion having continuous partial derivatives with respect to all of the
elements of the vector 2. Suppose that there is a continuous periodic
x* of period T satisfying (68). Then z* satisfies the equivalent
integral equation:

T
() = [ G, In@ () ds. (69)
o
The equation of first variation corresponding to (68) is
. el
90 = Ay() + 55 v, (70)

where dn/dz* is a matrix with entries an;/0x; evaluated along the
g

t Actually, this should not be surprising since if x(¢) is a periodic solution, then
so is x(t + €).
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trajectory defined by a*(t). As is easily shown (by differentiation;
see, e.g., Hochstadt,*® p. 251) the time derivative of 2*(¢) satisfies the
equation of first variation and thus the equivalent integral equation

i = [ 69 286 ds an

Now congider the derivative operation y = LN'(x*)x associated with
the integral operation of (69). The derivative operation is defined by

() = fUT G(t, 9) 5 2(5) d. (72)
We have shown above that i* satisfies this last equation or
i* = LN'(a*)&*. (73)
Then
s 1] = 1 LN 1] ). (74)

Since || #* || > 0, we must have that
[|LN'a*) || z 1 (75)
or LN cannot be a contraction in a neighborhood of z*. We leave open,

however, the possibility that the contraction mapping theorem might
be applicable in a subspace.

The above reasoning also shows that there would be difficulty asso-
ciated with using Newton's method for the problem. To seek a zero
of P(x), Newton's method uses the following iteration:

Ty = &0 — [P (PQ) n=01---. (76)
Letting
Plx) = o« — F(u) (F(x) = LN(x)), (77)
we are led to investigating the inveritibility of I — F/(x) where I is
the identity operator. Consider the operation
y = P'¥re = (I — F'(z¥)x. (78)

If 2 = 0, then y = 0. But because F’(z¥) is associated with the equa-
tion of first variation there is also a nonzero x (the time derivative
of z*(t)) which results in iy = 0. There is thus not a unique x satisfy-
ing ¥ = 0 and P’(2*) is not invertible (see Kantorovich and Akilov,®

p. 168).
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5.7 Properties df the Fived Poini— Dependence on Parameters; Stability

The method of this investigation is to obtain a relation for « in terms
of parameters of the differential equations. If certain conditions are
satisfied and 0 £ « < 1, then « represents a contraction constant.
If « is a contraction constant and, also, @ depends continuously on a
parameter then for sufficiently small changes of that parameter «
will still be a contraction constant and a periodic solution is still guar-
anteed. Once again note that “sufficiently small” can be quantitatively
determined if one wishes to do that. As an illustration, in the Duffing
equation example, « depends continuously on b.

1§ our method indicates the existence of a periodic solution of period
T then there is no neighboring solution of period T (for a sufficiently
small neighborhood). This condition does not imply stability of the
periodic solution. With a perturbation of the initial conditions, stabil-
ity is concerned with closeness to (asymptotic stability is concerned
with the eventual approaching of) the original periodic solution. A
perturbation of the initial conditions of the period solution of period
T may result in a solution not of period 7' and thus, not even con-
sidered in the Banach space used.

A sufficient condition for the asymptotic stability of a periodie
solution (of period T') to a nonautonomous system is the asymptotic
stability of the null solution of the corresponding equation of first
variation (Hochstadt,®® p. 251). We are only able to show that the
equation of first variation may not have a (nontrivial) periodie solu-
tion of period T if the fixed point is a contraction. The nonexistence
of a periodic solution to the equation of first variation is (along with
a continuous differentiability requirement) a sufficient condition for
the continuous dependence of the periodie solution on a parameter.
This result is not identical to but is compatible with our initial com-
ments on the continuity of the contraction constant with respect to a
parameter.

5.8 Perturbation Analysis

A very common approach to nonlinear problems is to solve a linear
problem ignoring the nonlinearity and then to use a series expansion
or a perturbation about the linear solution (see, e.g., Hochstadt,*® Sec-
tions 6.5, 7.4). As useful as these procedures are, they usually suffer
from the defect of not providing adequate quantitative information
about the nonlinear solution, i.e., it may not he possible to determine
quantitatively what is meant by “sufficient small”. Our use of
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the contraction mapping theorem may prove useful in this regard.

As an illustration, again consider Duffing’s equation and assume
that xo was obtained by ignoring the nonlinear term (by®). In this
case, vy = F(xy) is defined by

,
Loll) = f (/1.(1, 8)f cos ws ds. (79)

Then arguments similar to (but simpler than) those of Section 5.4
show that if b is “small enough” there is a continuous periodic solu-
tion to (40) which is “close” to the linear approximation

tnl) = L2l (80)

a—w
Note that “small enough™ and “close” may be quantitatively eval-
uated.
VI. DIFFERENCE-DIFFERENTIAL EQUATIONS®

Our use of the contraction map fixed point therom is not limited
to ordinary differential equations or integral equations. As a further
example, consider the difference-differential equation represented by

x = LN(D,), (81)
where y = Dy is defined by

y(t) = x(t — h). (82)
If the Banach space B of interest is the space of continuous periodie
funections, then

[l Dall = 1. (83)
This follows easily from
[l Du [l =sup {|| Dux [[:xeB, ||z || = 1}

sup {max |z(t — k) |: 2 e B, max | z(t) | = 1}.

(84)

Assume that N maps B into itself. If N is differentiable (i.e., has a
Fréchet derivative) at ap then N (D)) has a derivative at 2, (Kan-
torovich and Akilov,® p. 658) given by N’(Duxo)D;. Then LN (Dy)
has a derivative at xq given by LN’(Djxe)D;. The norm is easily

*An interesting discussion of the problems of oscillations in difference-dif-
ferential equations is given in Chap. 21 of Minorsky* Halanay™ contains much
information (and references) on difference-differential equations.
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evaluated:

|| LN' (Do) Dy || = || L ||-|] N'(Diza) || (85)

Conceptually, the introduction of the time delay offers no great dif-
ficulty as compared to the case without the time delay. However,
it will generally complicate the arithmetic involved in examples, in
particular, in obtaining the solution to z, = LN(x,). This relative
lack of complication going from differential equations to difference-
differential equations is not typical. In existence, uniqueness, and
stability considerations one must consider initial function conditions
in difference-differential equations while the initial conditions for dif-
ferential equations are merely at one time (or perhaps boundary con-
ditions at several times).

To illustrate the above remarks, consider the following difference-
differential equation:

i+ ay + by = [ cos ol (86)
y(D) = y(t — h) (87)

This is Duffing’s equation but with the argument of the cubic term
retarded. The corresponding operator equation is

z = LN(x) = LIN.(Dy2) + F], (88)

where y = N () is defined by the cubic nonlinearity, L is the same
linear operator as in Section V, and

\
Ft) = L 0 J (89)
cos wi
It is elear that
|| LN"(zo) || = [| L || || Nizo) || (90)

and that the analysis will be completely analogous to that of Section
V, except that the approximate solution, z,, will be different. Note
that the Banach space is the space of continuous periodie functions,
not the space of functions continuous on one period.

To obtain the equivalent linearization approximation let

y(t) = A cos ot + B sin wt
C sin (wt + ),

(91)

where
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C

VAT+ B

tan™" (El)

Substitution of this function into (86) yields

(92)
9

—w’C sin (wt + 8) + aC sin (wt + 0) + 2C°b [cos wh sin (wt + 6)
— sin wh cos (wt + 6) + third harmonics] = f cos w. (93)

The approximation is obtained by neglecting the third harmonies and
equating coefficients of cos wl and sin wt. It is interesting to compare the
equivalent linearization solution obtained for the difference-differential
equation with that obtained for the following differential equation
(Duffing’s equation with a damping term):

¥+ ki + ay + by’ = f cos wt. (94)
Substituting (91) into (94) vields

—w’C sin (wt + ) + ko€ cos (wf + 6) + aC sin (wt + 8)
+ $bC” sin (wt + 6) + third harmonics = f cos wl. (95)

Comparing (93) and (95) it is seen that, as far as harmonie balance
1s concerned, the effect of the lag is to introduce a damping term
with damping coeflicient k,

E = —(sin wh)2C*b/w (96)

(Also, one other term is multiplied by cos wh).

For some parameter values, the equivalent damping is negative.
Because of the negative damping, it appears that the periodic solu-
tion is not asymptotically stable. We say “appears that” rather than
making a more definite statement for the following reason. While it
seems plausible that the stability properties of the solution of the
equation of equivalent linearization should carry over to the actual
solution, the mathematical proof does not seem so obvious.

VII. RELATION TO PREVIOUS WORK®

As mentioned previously, the method of equivalent linearization
has its roots in the method of Krylov and Boguliubov. For an ac-

* The literature on equivalent linearization is vast, We shall thus discuss only
those references which seem most pertinent. Even in those cases, we shall discuss
only those aspects which are directly related to the present study. The reader
should consult these references for many other interesting ideas.
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count of the very important work of Krylov, Boguliubov, and Mitro-
polsky in this area, see Minorsky.! Their work is primarily of the
asymptotic type, ie., leading to statements of the form, “for suf-
ficiently small p, there exists . . . .” We may view our approach as
using a fixed point theorem to be able to determine quantitatively
what is meant by “sufficiently small” for a somewhat different but
related problem.

Bass® considers the justification of the method of equivalent lineari-
zation in the autonomous case. In view of our comments on the inap-
plicability of the contraction map fixed point theorem, it is of interest
to note that Bass uses a much more sophisticated fixed point theorem.
Much of his analysis is interesting and important but his final results
are unfortunately difficult to apply (as Bass himself points out).

Sandberg?® considers the operator equation®,

z = LN(z + ) 97)
and the equivalent linearization approximation
zo = LN(zo + f). (98)

Sandberg’s analysis is carried out in the space of periodic functions
square integrable over a period. He presents conditions under which
there exists a unique periodic response to an arbitrary periodic input
with the same period as well as an upper bound on the mean square
error in using equivalent linearization. He also gives conditions under
which sub-harmonies and self-sustained oscillations ecannot occur.
Sandberg’s method is to determine conditions that guarantee that
LNt is a contraction mapping in the whole space. As mentioned pre-
viously, we do not try to obtain a contraction mapping in the whole
space but only in a neighborhood of xp. We thus free ourselves from
Lipschitz type requirements. It may be noted that many nonlinearities
encountered in engineering are non-differentiable and Lipschitzian
(e.g., piecewise linear functions such as saturation-type nonlineari-
ties). For these, Sandberg’s analysis is applicable while ours is not
because we have required differentiability. Thus, Sandberg’s work
and ours complement each other in this regard. Also, Sandberg very
fruitfully uses Fourier transform results in his analysis of feedback
systems.

* This is the same notation as in Section II except that in Section IT we did
not explicitly show the dependence on a forcing function. That is, ¥ = N(x)
could be defined by y(t) = n(z(£)4+f(¢)) or by y(t) = n(z(t)) + f(¢).

1 Actually, an operator related to LN.
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Cesari* considers the real differential system

& = g(z, f)
:E:(zll"')xn) (99)
i:”:g:'(xla"';zn:t) j=1, - ,n

(For the specific conditions imposed on the above functions see Ref.
14). 1f

2;(l) ~ a; + 2 (a;, cos swl + b, sin swt) (100)

=1
and m is a positive integer the vector funetion Pxr = (Pyxy . . ., Puty)
is defined by

P.x,() = a; + > (a;, cos swt + b;, sin swl)
a=1

j=1, - ,n. (101)
The operation H (z) = (X1,...,X,) is defined by
X = 3 L(—b cosswl +apsinswt) j=1,---,n (102

a=m+1 Sw

The operation F (z) 1s defined by
F(z) = H(I — P)g(x), (103)

where I is the identity map and

g(@) = (g, -+, ga7) (104)

gix = g,-[x(t), {] (.? =1, ,'ﬂ).

Letting T = P + F, Cesari determines conditions for the existence
of fixed points of x = T'z. He uses both Banach’s fixed point theorem
(contraction mapping theorem) and Schauder’s fixed point theorem
(which does not give uniqueness but requires weaker conditions). He
then shows that if ¥ is a fixed point, it satisfies

= gy, O + Py — g:0). (105)
If
Py — gy =0, j=1,---,n (106)
then
y(t) = g0, 0 (107)
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Cesari discusses the solution of (106) which may be reduced to deter-
mining a Galerkin approximation. Cesari worked in the space of
square integrable (periodic) functions and Knobloch*® adapted his
approach to the space of continuous functions.

While the above method has the use of truncations of Fourier
series in common with our approach, there seems to be a closer rela-
tionship between Urabe’s approach and ours.

Urabe'® considers the real nonlinear periodie system

dx

E = X(-I:: 't)a

where X (z, t) is periodic in ¢ of period 2u. If

2.l = a + V2 Y a, cosnt + b, cosnt, (108)
n=1

a Galerkin approximation* of order m is obtained if one can deter-
mine the 2m + 1 coefficients aq, ay, by, . . ., @w, by that satisfies the
following equation:

d.L',,, _ -1_ 27 o
dt - 211' j; ‘\' ['t'"l(b); 3] dS

-+ }T > {cos nt f X[z, (s), s] cosns ds

n=1 (i}

+ sin nt f Xlx,(s), s] sin ns ds}- (109)
0

Urabe considers the problem of determining whether there is an exact
periodic solution near an approximate (Galerkin) solution, . He
determines conditions under which an iteration starting at x, converges
to an exact periodic solution. His proof, while not explicitly mention-
ing a fixed point theorem, is closely related to the contraction mapping
fixed point theorem and uses the fact that a contracting iteration
sequence must stay within a certain sphere centered about the initial
point.F Our approach is in the same spirit but we take a more general
viewpoint at the beginning. The basic theorem is derived in an arbi-

* The method of equivalent linearization is essentially a first-order Galerkin
approximation.

# It may be shown that Urabe’s result (Proposition 3, p. 125 of Ref. 16) is
essentially equivalent to requiring that the operator derivative have norm less
than one (a contraction) in the appropriate sphere.
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trary Banach space where derivatives of operators are fruitfully
used. The more general viewpoint is very simple conceptually and
also permitted the easy extension to difference-differential equations.
Urabe in Ref. 16, and also in Ref. 17 and 18, considers many aspects of
Galerkin’s method for differential equations not touched on in our
study. Also, see his comments on Cesari's method on p. 121 of Ref. 16.

VIII. CONCLUDING REMARKS

The development of analytical methods (other than asymptotic
methods) for the equivalent linearization technique with autonomous
systems remains a very important area for investigation.* Whether a
modification of the contraction mapping theorem (perhaps using a
subspace) might be applied to this problem remains to be seen. In con-
nection with autonomous systems, a question perhaps more important
than the one we have considered (if equivalent linearization indicates
a periodie solution, does there actually exist one?) is the following: If
a non-trivial periodic solution exists, will the method of equivalent
linearization indicate it? A typical engineering use of the deseribing
function is to determine conditions under which no self-sustained oseil-
lations are predicted. The engineer would like these same conditions to
also imply that there are no oscillations in the original (exact) system.
Urabe'® has shown that the existence of a periodie solution will (un-
der certain conditions) imply the existence of a Galerkin approxima-
tion of sufficiently high order. The equivalent linearization technique
is essentially a first-order Galerkin approximation and the first-order
approximation may not be high enough to indicate the existence of
a periodie solution according to a result of the type of Ref. 16. It
would be very useful to determine conditions that would answer the
question. This question is related to that rased by Aizerman’s con-
jecture.

Leaving the problem of autonomous systems we find our adaptation
of the contraction mapping theorem to be quite convenient in ana-
lyzing equivalent linearization in forced systems. The calculations are
straightforward and require no difficult mathematieal argument in
the execution of the basie idea. It is hoped that the method may prove
useful in justifying and refining approximations,

It should be clear that our approach is easily adapted to the dual-

* A theory of autonomous systems, due to Urabe, is outlined in Chap. 3 of
Halanay ™
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input deseribing function approximation (see, e.g., Gibson,'" p. 402).*
The remarks in Section VI concerning difference-differential equations
apply in that ecase also. That is, the only essential difficulty is in ob-
taining the dual-input describing funetion solution (which has nothing
to do with our method of investigating the accuracy of such a solu-
tion). It should be noted that the dual-input describing function
method has been used primarily for two sinusoids with commensurate
frequencies (one an integral multiple of the other) and is actually
equivalent to a Galerkin approximation. When the ratio of the two
frequencies is irrational, we are in the realm of almost-periodic func-
tions where analysis can get much more complicated. Boyer has
presented an interesting approximate method of analysis (an account
of which is given in Gibson,'® p. 408ff.) for an input consisting of two
sinusoids with incommensurate frequencies but with one much larger
than the other. Analysis of this method would be of interest.
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APPENDIX A

Guide to Some Mathematical Background Reading for Engineers

The purpose of this appendix is to make reading suggestions to en-
gineers interested in this work but who are not familiar with the
mathematics used. The primary reference on functional analysis used
for this work is Kantorovich and Akilov.® A more elementary intro-
duetion is given in Kolmogorov and Fomin.’t Lucid introductions to
the theory of differential equations are given in Hochstadt*® and
Struble.2® The theory of oscillations is extensively covered in Minor-

* The dual-input describing function was apparently first used by J. C. West,
J. L. Douce, and R. K. Livesly. In Ref. 7 there is an example of the existence of
a subharmonic solution to Duffing’s equation. This is actually an example of the
dual-input describing function.

+ The reader should be cautioned that some of the terminology is not stand-
ardized among American and Russian writers. For example, Kantorovich and
Akilov do not require a compact set to be closed while most American authors
do. Also, a linear operator is necessarily bounded according to Kantorovich and
Akilov but not necessarily bounded according to most American writers (Kolmo-
gorov and Fomin's definition agrees with American writers on this point).
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sky* which also has a discussion on difference-differential equations.
Kaplan treats Fourier series and finite Fourier transforms on an ele-
mentary level.* Further information on Fourier series (but still on an
elementary level) ean be found in Tolstov.?*

APPENDIX B

Derivatives in a Banach Space

The following material is abstracted from Chap. XVII of Kantoro-
vich and Akilov.*

Let P map an open subset © of a Banach space X into a subset A
of another Banach space V. Let 2, ¢ @ and suppose that there exists
a linear* operation U/ mapping X into ¥ such that for every z ¢ X

lim P@ + @) = Pl) _ ;0. (110)

t—=0 t

The linear operation U is said to be the derivative of the operation P
at the point z,. We write this

U = P'(x,). (111)
The derivative thus defined is the Gateaux or weak derivative and
U(2) is the Gateaux differential.

If the convergence relationship of (110) is satisfied uniformly with
respect to all 2 ¢ X with || # || = 1, then the operation P is differentiable
at the point z, and the derivative P’(z,) is called the Fréchet or strong
derivative.

APPENDIX C

To discuss the satisfaction of (59), let

3 2

cr 241
Z=31b]|CT||4]+——2—
i 4 4

Consider a, f, and w fixed with f # 0 and let a ¢ [0, 1). To show that

limZ =0
b—0
we must show that
lim | bA* | =0
b—0

* Kantorovich and Akilov® include boundedness in their definition of linear.
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since
cT 2 |2
I - | bA | 2 2 1
_ . 2 ( cT ) bA )
Z—SCTlle[—i— T T % [
From (42) we have that
. _ 4 (L 3 _ )
bA® = 3 \4 + w a
Also
lim A = —
b0 a —w
so that
lim bA4* = 0.
b—0
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