Phase Progression in Conical Waveguides

By ELLIOTT R. NAGELBERG
(Manuseript received August 10, 1967)

We studied the phase progression properlies of mormal modes in a
conical waveguide in order to develop techniques for analysis of multimode
microwave antennas. We found that the large-order asymplotic expansions
of Bessel functions developed by F. W. J. Olver are most appropriale
for such calculations by virtue of their simplicity and uniformity with
respect to argument. These expansions are applied to analysis of the conical
TE,, and conical TM,, modes and, in addition, fo an examination of
the ‘“‘quasi-cylindrical approximation’” in which the conical waveguide
1s regarded as a cylindrical waveguide with gradually changing cross section.

I. INTRODUCTION

For most applications to microwave communication systems, wave-
guides are designed in such a way that only the dominant mode can
propagate. This has been the case principally for practical reasons, as
evidenced for example by problems encountered in the development
of millimeter-wave systems using the higher-order TES mode." Since
the waveguide in this case must be oversized, small geometrical asym-
metries due to errors in fabrication, bends, and other structural perturba-
tions cause coupling to unwanted modes, which can result in a sig-
nificant degradation in performance.

On the other hand, there has been considerable interest during the
past several years in techniques which require the controlled excitation
of higher-order modes combined with the dominant mode in, for ex-
ample, a conical waveguide. Two such applications have been the
TE;] — TMg* precision autotrack system for the Telstar® satellite,”
and the TE;; — TM,5 dual mode conical horn® which has been suggested
as a primary feed configuration for low-noise satellite communication
antennas.

* The notation TEZ, or TMZ, will be used to designate conical waveguide
modes.
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A common feature of these techniques is the necessity for maintain-
ing a high degree of phase coherence among the various modes of
propagation. It is therefore required, in order to design such systems
and predict the effects of frequency, temperature and structural varia-
tions, to accurately determine the phase progression properties of the
guided wave fields.

The paper’s contents may be summarized as follows: We first de-
seribe the conical waveguide modes, which are veetor eigenfunctions
of Maxwell's equations in what is essentially spherical geometry. We
note that although these solutions are well known in principle, the
actual computation of their phase progression properties is not
straightforward. It is, therefore, necessary to consider the problem of
numerically evaluating both the eigenvalues and vector eigenfunc-
tions so that we can apply these results to actual antenna problems.
In order to do this we utilize certain uniform asymptotic expansions
due to F. W. J. Olver* which are found to be well suited to such cal-
culations. We thereby observe that a very common method of deter-
mining phase progression, which might be termed the quasi-cylindrical
approximation, is not particularly accurate, and the errors associated
with this method are evaluated.

Rationalized MKS units and the (suppressed) harmonic time de-
pendence e=“! will be used throughout.

II. MODES IN A CONICAL WAVEGUIDE

The normal modes characteristic of a conical waveguide are derived
in the usual manner by finding separable solutions to Maxwell’s equa-
tions in spherical coordinates, subject to the boundary condition that
the components of electric field tangent to the lateral surface must
vanish. The solutions thus derived may be partitioned into two types,
TE< modes for which the electric field is transverse to the direction
of propagation (the r-direction), and TM< modes for which the mag-
netic field is transverse to the direction of propagation. In terms of
the coordinate system shown in Fig. 1, the components of electric field,
for example, are given by,’

TM*
E™ = 4 %Hﬂ’,(kﬂ?ﬂ(coe 8™
TM__éd ,(1)._!1». img
= [V H{Zy(kn)] 75 Pilcos 6)e (1)
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In (1) and (2), P (cos 68) denotes the associated Legendre function
(m = integer) and H!"(z) represents the Hankel function of the first
kind, corresponding to outgoing waves under the assumed time de-
pendence e~ *“‘, The constant % is the free-space wave number.

The eigenvalues v and g are found as solutions of the respective
characteristic equations

[% P (cos 8)]e=s, —0 3)

Py(cos 8,) =0 4)

for a specified horn half angle 6,.

These eigenvalues can be computed by a variety of numerical meth-
ods. For example, one can represent the associated Legendre function
in terms of the hypergeometric function® as

2

P(cos 8) = (' sin"?9 I (1 S, mo—m 4 1;0 -_—"-‘3“—8) ()
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where C is a constant. The v- or p-zeros for a given 6, can then be
found by a variety of root finding techniques. It is, however, worth
noting that a first-order approximation may be determined from the
formula

P"(cos 6) & J.(Vi(p + 1) 6) + o(6), (6)
where J,, denotes a Bessel function. Since the roots of Bessel functions
are well tabulated,” (6) can be conveniently used to provide either
an estimate of the eigenvalue or a starting value for an iterative algo-
rithm. The phase errors associated with this approximation will be
discussed in a later section.

To indicate the behavior of the zeros and to provide helpful in-
formation for design of dual mode conical horns, a partial list of »
and p values, computed using (5), has been prepared and is given in
the Appendix.

III. BEHAVIOR OF THE RADIAL FUNCTIONS. PRECISE CALCULATION OF PHASE
PROGRESSION.

Having obtained the appropriate eigenvalues as defined by (3) and
(4), we may then proceed to the more interesting calculation of the

radial dependence. In principle, the phase shift between the two
gpherical surfaces r = 7, and r = r, is given by

5™ = arg [HVy(kr)] — arg [H (k)] @
arg {t%c (Vz H ﬁi’;(x)]}

z=kra

aa’I‘M

Il

—ae{livaEme) ®

for the TE and TM modes, respectively, where arg ( ) denotes the
phase angle associated with a complex number.

The difficulty which arises when one attempts to utilize these ex-
pressions is essentially one of computation, due to the particular
regime of order and argument frequently encountered in analysis of
conical horn waveguides. We are particularly concerned here with the
so-called transition region where the argument and order of the Hankel
functions are large and comparable. For example, when 6, = 5°, v =
20.6155 and p = 43.4109 (see Appendix), which means that we must
allow for a range of arguments increasing from these values.

Asymptotic formulas for Bessel functions have, of course, been
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studied in great detail. Asymptotic forms in the transition region kr
= v have been given, for example, by Watson and Langer.® Although
of mathematical interest, these typically give only the limiting be-
havior of the function, with the remainder specified within some order.
However, engineering design generally requires more preecise results,
which can be obtained only with the aid of complete asymptotic ex-
pansions.

Expansions particularly appropriate for our problem have been
given by Olver.* These formulas represent the Bessel functions as
asymptotic series in terms of reciprocal powers of the order, and are
valid asymptotic expansions for all values of argument. Although
their derivation is very complicated, and will not be discussed here,
we shall state the general form of the result and indicate several sim-
plifications which are valid for most problems involving phase pro-
gression in conical horns,

The complete asymptotic expansion for the Hankel function of the
first kind, following Olver’s notation, is given by

4¢ )*{A.(»'r) — iBi('p)
1 — 2

o Aqt V% — S Vi 0
3 D) | ATGT) — iBi6T) EBHE(;)}_ ©

i
3

v

H () =~ (

5/
n=0 V v n=0 V

In this expression, Ai, A¢, Bi, and Bi’ represent Airy funections and
their derivatives,” and ¢ is a constant related to x by the formula

i3 1

E= =13 — 1)} — $sec 2}l (10)

The coefficients A4,(¢) and B,(¢) are determined through an auxi-
liary sequence {U,(¢)} defined by the recursion formula

Us(t) = 1 (11)

vy =B oo+ L [ a=seu.0a,

where the prime denotes differentation. The A4, and B, can then be
found using the relations

g,:{mfz (12)

2n+1 mU rem1
B0 = — 3 ez (3)
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where r = (1—2*)"t and {a,}, {b,} are given by

a = by = 1 (14)
_ @em+DEm43) - (6m— 1)
a,(m > 0) = m! (144)" (15)
_ _bm+1
b.(m > 0) = om— 1% (16)

Since for the range x > 1, which is of interest here, ¢ is negative and
r is imaginary, it is also necessary to define the proper branches, which
are as follows: -

r =@ — 1) (17)
EIT = (—ir)I (18)
1 L (19)

§_3m/2 = (_g_)3!ri/2'
Using a table of Airy Integrals,” one can proceed to evaluate the
required Hankel functions to whatever accuracy is needed. As an in-
dication of the number of terms required in a typical calculation, it
has been observed by J. A. Cochran and C. M. Nagel* that for v > 10,
four decimal place accuracy can be obtained simply by using terms
including By and 4,. The coefficients required for most horn calcula-
tions are thus given by

81 4627% + 3857) _ T(3r, + 5r)) | 455
A= — 1152 1528 T 4608¢° 1)
_ 31’1 + 57? _ 5
B, = 24¢} 48¢1 (22)
where r; = (2* — 1) #and {, = —¢L

1V. APPLICATIONS

In this section we shall discuss several applieations of the preceding
results. After presenting examples of phase progression for different
modes we consider the phase errors introduced by approximating the
eigenvalues p and v. Finally, we examine what might be called the

* Private communication.
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“quasi-eylindrical approximation,” in which phase progression is
calculated by considering the horn to be a eylindrical waveguide with
slowly varying cross section.

4.1 Phase progression of the TEY, and TMy, modes. Effect of errors
v and p.

A qualitative understanding of the phase progression properties of
conical waveguide modes can be achieved by regarding a horn as a
eylindrical waveguide with gradually increasing cross section. Although
such a model has limitations, which will be discussed later in Section
4.2, it correctly predicts the fact that the phase progression rates
for both classes of modes begin at relatively low values and increase
monotonically toward that corresponding to the far field of a spherical
wave in free space. This limiting behavior is reached when the conditions
kr 2> v or kr >> p are satisfied, corresponding to conical TE or conical
TM modes, respectively.

Fig. 2 shows, for example, a direct computation of the phase shift as
a function of kr.—kry for the conical TE,; mode for half angles 8, =
3°, 10°. The value kr, is in each case taken to be that corresponding
to the cut-off cross section of a eylindrical waveguide, i.e.,

§

kr, = ———
Y7 sin g, ?

(23)

where { & 1.84118. Fig. 3 shows analogous results for the TM, mode,

40

w
o

5]

PHASE SHIFT IN RADIANS
N
o

0 % I - \

20 25 30 35 40 45
kr- fTE/sm 6,

Fig. 2— Phase shift for the TEf, mode relative to the cross section at which cut
off would occur for a eylindrieal waveguide. {1 =~ 1.84118,
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Tig. 3—Phase shift for the TM, mode relative to the cross section at which cut
off would occur for a cylindrical waveguide. {1y = 3.83171.

the principal difference being in the more gradual increase in phase
near kr, .

In view of the difficulty in computing the v- and p-zeroes of the
Legendre functions, as required by (3) and (4), it is of practical in-
terest to determine how an error in the eigenvalue will effect the cal-
culation of phase shift. If, for example, we denote by A™ the error in
phase shift due to a small error 8v in the eigenvalue, then from (7) we

TaBLE I—MaxiMmum PaasE Error Due 1o 0.10 PERCENT
MISCALCULATION OF v OR p

k(r, — r,) = 100

TEn mode
o 1% ATE = (r/2) b» ATE gctual
3° 0.035 3.15° 2.04°
5° 0.021 1.89° 1.26°
10° 0.010 0.90° 0.61°
TMu mode

o u ATM = (x/2) bu ATM actual
3° 0.073 6.87° 4.68°
5° 0.043 3.87° 3.14°
10° 0.021 1.89° 1.16°
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have that

A™F = {a% arg [H,Vy(kr)] — t%arg (H i‘f;(kn)]} b, (29)

where v denotes the correct eigenvalue. Although the ecaleulation
required by (24) is, in general, very difficult, it is relatively simple to
obtain an upper bound to AT, First, it can be shown (see Ref. 7, p.
368), that at the cutofl radius r,, the argument kr; is approximately
equal to the eigenvalue v (or p) and furthermore that the partial
derivative at that value tends toward zero as v or p becomes very
large. It follows that an upper bound on the error AT can be obtained
by neglecting the second term on the right side of (24) and letting
krs = oo. In this way we find, from the asymptotic behavior of the
Hankel functions (see Ref. 6, p. 85), that

max | AT | = | & \’—é (25)
and, in a similar way for AT
max | A™ | = | & [g (26)

In Table I we present a comparison between the actual computed
error in differential phase shift, for an assumed relative 0.1 percent
error in the eigenvalue, and the upper bound as determined by (25)
and (26). The results indicate that the predicted estimates are quite
reasonable. Note that the larger phase errors for smaller angles are due
simply to the fact that the eigenvalue and hence the absolute error
is greater.

The prineipal purpose of the previous exercise was to determine
what error might be expected from using (6), which expresses the
Legendre function in terms of a Bessel function. Results for the TM,
mode show that (6) is sufficiently accurate in predicting the u-zeroes
that the maximum differential phase error for horns up to 30° in half
angle should be less than 1°. As might be expected, however the same
approximation applied to the v-zeroes of the derivative of the Legendre
function is not as accurate. Nevertheless, as shown in Fig. 4, for a horn
with half angle equal to 30° the maximum phase error is approxi-
mately 6°, which would ordinarily be acceptable.

4.2 Evaluation of the Quasi-Cylindrical Approximation
The difficulty of making precise caleulations of phase progression in
conical horns has led to the use of an approximate formula derived
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Fig. 4— Maximum error in phase shift using Bessel approximation to the Legendre
function.

by assuming that the horn behaves as a cylindrical waveguide with
gradually increasing cross sectional radius. The phase shift is then
determined simply by integrating the local waveguide propagation
constant, with the result that

" Vrsn o = ¢ — a4 ¢ ]
88 =~ i [ (kr sin 6,) ¢ ¢eos™ Ak (26)

no L,

where ¢ is the characteristic value for the particular mode (e.g., for
the TES mode { ~ 1.841 and for the TM; mode { ~~ 3.832). This
formula is, in fact, asymptotic to the true phase shift in certain limits.
For example, let (kr sin 8,) be fixed and let 6, — 0. Then it can be shown
that (26) becomes essentially equivalent to the simple Debye approxi-
mation. (See Ref. 7, p. 366.) However, this formula is known to be
invalid in the range where order and argument are comparable. Never-
theless, it is useful to investigate the properties of (26) in order to
determine what errors accompany its use.

Fig. 5 shows the resulting error in differential phase shift when the
quasi-cylindrical approximation is applied to the TE,; mode, with
kr, = ¢/sin 6, (corresponding to the cut-off diameter) and 6, = 5°.
The error is seen to grow very rapidly at first, showing that the quasi-
uniform approximation predicts too slow an increase in propagation
constant with increasing cross section. Eventually, the error curve
approaches a linear variation. This asymptote can actually be predicted
fairly well by using the large argument behavior of the Hankel funection,
combined with the fact that for large » (see Ref. 7, p. 368),

arg H"(») ~ —=/3. 27
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By letting kr sin 6, — = in (26) and using (6), which relates ¢ to v,
we find that in the limit of large kr

T _ gt T _ i_flf)z (_M)
b A 12 g‘Tn(t’i} tan 6,/ 2 + 1! tan 6, Je (28)

which, for small 6, reduces to

TE TE m Crem B(z,
This result, shown in Fig. 5 as the dotted line, is seen to predict very
accurately the asymptotic behavior of the error.

Fig. 6 shows the corresponding error for the TM,; mode. In con-
tradistinction to the previous example, the quasi-cylindrical approxi-
mation at first predicts too high a phase progression rate, but eventually
also conforms to the linear error predicted by the last term of (28).
The formula analogous to (29) is given by

62
o™ — 8™ = —;r—g - ﬁa‘ﬂ 0 + < kr. (30)
This result, shown in Fig. 6 as the dotted line, is also seen to cor-
rectly deseribe the asymptote.

A salient feature of these results is that the linear portion of these
curves is quite independent of the type and order of the mode being

25 :
! EXACT ERROR !
| | =
(3] 20— —
w \
w i J
& / = ASYMPTOTIC APPROXIMATION (EQ. 29)
515 | | S
Z |
= |
w |
2 10 — -
X [
E |
] \ |
< 5
) ‘ I
0 | I |
0 5 10 15 20 25 30 35 40 45

kr—{TE /sin 6

Fig. 5—Error in phase shift due to quasi-cylindrical approximation for the
TEf, mode. {7p =~ 1.84118.
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Fig. 6 — Error in phase shift due to quasi-eylindrieal approximation for TM;,
mode. {tm =~ 3.83171.

considered. This immediately implies that the error in differential
phase shift between modes resulting from the quasi-cylindrical ap-
proximation is always bounded at a value easily predicted by (29)
and (30). This latter result is considered to be one of the more sig-
nificant conclusions of this study.

V. SUMMARY AND CONCLUSIONS

In this paper, we have considered the phase progression properties of
conical waveguide modes. The principal difficulties have been in com-
puting Bessel functions over their so-called transition region. It is
suggested that, in view of the typically large orders involved, the
asymptotic expansions due to Olver are the most applicable. An exam-
ination of the quasi-cylindrical approximation has shown that this
latter formula, although not necessarily accurate for evaluating phase
progression of a particular mode, can be used to determine differential
phase shift between modes with an error which is bounded over the
conical region.
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APPENDIX

Roots of P}, (cos ) = 0 and d/d6 P (cos 8) = 0 for a Given Value of 8

In order to assist in design of dual-mode conical horns, we have
prepared an accurate table of the roots of the associated Legendre
Funetion and its derivative for a given value of the horn half angle 6.
These values of » and x4 may then be used to evaluate the vector wave
functions which characterize the propagation of the TE;, and TMZ,
modes in the horn section.

The ecomputational program consisted of using the hypergeometric
series representation for the Legendre function, and determining the
zeroes by a standard root finding method. The program was termi-
nated when the value of the function was less than 10-* in amplitude.

TasLe IT—Roots or P, (cos 6) = 0

0 W 8 u
3.00° 72.6819 17.00° 12.4239
3.50 62,3379 17.50 12.0552
4.00 H4. 3874 18.00 11.7070
4,50 48,2893 || 18.50 11.3777
5.00 43.4109 19.00 11.0657
5.50 304106 19.50 10.7697
6.00 36.0935 20.00 10. 4885
6.50 33.2792 | 20.50 10.2211
7.00 30.8669 21.00 9.9664
7.50 28 7764 21.50 9.7235
8.00 26.9471 22.00 9.4918
8.50 25.3332 22.50 9.2703
9.00 23,8985 23.00 9.0585
9.50 22,6110 || 23.50 8.8557

10.00 21.4597 | 24.00 8.6613
10.50 20.4146 24.50 8.4749
11.00 19,4645 25.00 8.2960
11.50 18.5970 25.50 8.1241
12.00 17.8019 26.00 7.9589
12.50 17.0704 26.50 7.7998
13.00 16.3952 27.00 7.6467
13.50 15.7700 27.50 7.4992
14.00 15,1894 28.00 7.3570
14.50 14,6490 28.50 7.2197
15.00 14,1446 29.00 7.0871
15.50 13.6728 29.50 6.9591
16.00 13.2304 30.00 6.8354
16.50 12,8149
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TaBLE III—Roots oF d/df P, (cos 8) = 0

[ ¥ @ v
3.00 34.6743 17.00 5.7637
3.50 29.6526 17.50 5.5881
4.00 25.8867 18.00 5.4224
4.50 22.9581 18.50 5.2657
5.00 20.6155 19.00 5.1174
5.50 18.6992 19.50 4.9768
6.00 17.1026 20.00 4.8432
6.560 15.7518 20.50 4.7163
7.00 14.5943 21.00 4,5955
7.50 13.5913 21.50 4,4804
8.00 12.7139 22.00 4,3706
8.50 11.9400 22.50 4.2658
9.00 11.2522 23.00 4.1656
9.50 10.6370 23.50 4.0697

10.00 10.0835 24.00 3.9779
10.50 9.5828 24.50 3.8900
11.00 9.1279 25.00 3.8056
11.50 8.7126 25.50 3.7246
12.00 8.3321 26.00 3.6467
12.50 7.9822 26.50 3.5719
13.00 7.6593 27.00 3.4999
13.50 7.3605 27.50 3.4306
14.00 7.0831 28.00 3.3638
14.50 6.8250 28.50 3.2995
15.00 6.5842 29,00 3.2374
15.50 6.3591 29,50 3.1775
16.00 6.1481 30.00 3.1196
16.50 5.9500
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