Mode Conversion in Lens Guides
with Imperfect Lenses

By D. GLOGE
(Manuseript received August 16, 1967)

A coherent Gaussian beam transmitted through many imperfect lenses
suffers a distortion of ts profile. Partieularly smooth polishing errors
generate parasitic modes which travel with a slightly different propagation
constant and about the same low loss as the beam. While the two modes
of lowest order essentially influence position and width of the beam, all
higher-order modes deform the profile and may hamper position control
and detection if they build up to sufficient power. The calculations show
that this effect can be reduced to a negligible amount if the beam cross-
section is of the order or smaller than the dimensions of the irregularities.
This is in agreement with experiments. The perturbation of the beam
in the air path between the lenses is also investigated and it is shown from
experimental data that this effect is negligible in a properly shielded under-
ground lens guide.

I. INTRODUCTION

There has been much uncertainty about the optical quality re-
quired for the components in an optical transmission link. Particularly
for a lens guide with thousands of lenses, this is a major cost factor. It
has been shown that systematic lens aberrations may lead to a severe
degeneracy of a transmitted laser beam,! but hardly anything is
known about random errors. Previous work in this field dealt with
antenna or imaging problems,* ** but none of these theories can be
applied to iterative structures.

The theory presented here was developed in parallel with experi-
ments in a half-mile underground lens guide designed to gain data
about the required component quality.® This guide employed antire-
flection-coated quartz lenses separated by about 140 m. A loss of
roughly 1 percent per lens was measured, so that a transmission over
100 miles without amplification seems feasible. Systematic aber-
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rations are negligible as compared with random surface irregularities.

These irregularities are of various nature and origin. There are
minute scratches in the polished surface and tiny holes or craters in
the antireflection coatings. Both cause a wide angle scattering and
part of the measured overall loss without considerably changing the
intensity profile or the phasefront of the transmitted light beam.

On the other hand, the polishing process achieves a spherical sur-
face only to a certain degree, so there are always small smooth pro-
tuberances and recesses called “polishing errors.” They show up in an
interferometer check and their magnitude is usually given in fringes
or wavelength of the light used in the interferometer. This magnitude
defines the quality of the lens.

It is this imperfection which will be of interest here, for, without
introducing immediate loss, it distorts the light beam in a way that
may lead to complete deformation of the intensity profile when oc-
curring repetitively. The consequence may eventually be an additional
loss. Furthermore, it influences the choice of the receiving technique
used at the end of a long lens guide because the efficiency of a hetero-
dyne system will depend on how well the signal and local oscillator
beams can be matched. Thirdly, it affects the applicability and de-
sign of beam position control systems which probably will have to be
employed in some sections of the lens guide to provide for oceasional
realignment.® 7

Refractive index variations in the atmosphere between the lenses
are of course an additional source of beam distortion. Though weak
in a shielded underground lens guide the influence might be comparable
to that of imperfect optical components. The calculations in the last
part of this work consider these index variations using the model of an
imperfect waveguide.® Though not as general or accurate as previous
work?® this approach has the advantage that it yields simple formulae
for the case of weak coupling. By inserting some experimental data
the influence of the air paths and the optical components will be
compared.

II. THE STATISTICAL FEATURES OF IMPERFECT LENSES

Restricting the following caleulations to smooth irregularities has
two consequences. First, in the proximity of the lens surface the ap-
proximations of geometrical optics may be applied, which means that
the wavefront emerging from the surface exhibits a phase deviation
but no amplitude change.
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If there is, for example, a protuberance of magnitude § at a certain
point of a lens surface, the phase retardation of a light ray passing
this point will be

¢ =k An 8, (@))
where k is the propagation constant of the light outside the lens and
An is the refractive index change at the surface.

Second, the surface irregularities and consequently also the phase
deviations may be deseribed by a random function which is both
well-behaved (with at least the first derivative being finite) and
homogeneous over the whole surface, since the irregularities were
generated everywhere by the same process.

To proceed in the mathematical deseription, some assumptions
must be made which seem to be reasonable for the random funection
under consideration, but will not be proved as valid here. One may
conceptually construct an ensemble of identical optical surfaces
which exhibit different point-by-point deviations, but are statistically
equivalent. It is assumed that averages over the surface are replace-
able by ensemble averages, and that & and therefore ¢ are Gaussianly
distributed, have zero mean, and variance A? and ®°, respectively.
Obviously, the correct lens surface can always be defined in such a
way that the mean value of § is zero.

For simplicity, the two-dimensional model shown in Fig. 1 is used
at the beginning. § and ¢ are now functions of the surface coordinate
x only. The covariance

Flx, — a5) = {plx,)e(x:)) (2)

—_ 3

TFig. 1 — Two-dimensional model of an imperfect lens.
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can be shown to exist and be a function of the distance z; — 2 only
because of the assumed features of ¢(z). For later calculations the

identity

(exp ile(z,) — ¢(x2)]) = exp (F — &) 3)
is needed, which can be derived from those assumptions also.®
The fact that ¢ is smooth and stationary suggests a Gaussian
covariance

F = ‘I’z exp [—(31 - xz)!/UE], (4)
where v is a correlation length determined by the dimension of those
protuberances and recesses on the optical surface.

III. COUPLING TO PARASITIC MODES

A coherent light beam with Gaussian field profile conserves itself
from lens to lens in a lens guide if it enters with the right phasefront
curvature and the right half-width w of the field profile.** This
“Gaussian beam” is the lowest order of an infinite set of modes which
can propagate in such a lens guide. All these modes have the same
phase fronts, slightly different propagation constants and a field
profile that can be described by the orthogonal set of hyperbolic
cylinder functions

D,,(2 i) = e””'"’Hen(z f)) , (5)

where He, are the hermite polymonials.?-1* Note that Hep = 1 and,
therefore, D, describes the Gaussian beam profile.

The higher the mode number, the further the profile extends about
the lens area. As will be shown, the smooth irregularities under con-
sideration here generate mainly low order modes and those to an
amount that the comparatively small losses at the lens apertures are
negligible. It seems justified, therefore, to consider the lenses as un-
hounded.

Assume that a perfect Gaussian beam traverses the optical surface
in Fig. 1. Then the emerging wave function is

u(x) = Dy exp [ig(x)] (6)

which, on the other hand, can be expanded into the infinite series

u(z) = i c.D, . (7N

n=0
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The expansion coeflicient ¢, deseribes the coupling or scattering from
the Gaussian beam to the n™ mode. Using (6), (7), and the orthog-
onality relation given in Ref. 10, one finds

2 e .

o= Y2 [ DD, exp (i) d. ®)
nlw J_,

Multiplying this by its eonjugate complex and averaging over the

ensemble yields the average power coupled to the n'® mode from a

Gaussian beam of unit power passing one distorted surface. The ealeu-

lation is shown in the Appendix. The result is
_V2/r
pn n! QNw

For a Gaussian correlation function F as defined in (4), the most useful
representation is an expansion in powers of the variance ®*

f_ " DuDa exp [F(V2 ) — 4] dt. ©)

_ _(2n)! a9 ()"
"= gy &P (5P 2T Tt o (10)

This formula is valid for any value of & and ». In practice, the con-
verted power is only a small part of the total beam power and there-
fore,

dw/y K 1. (11)

In the case of a lens guide, this is a necessary condition for recon-
version from parasitic modes into the beam to be negligible.

Two cases are of interest: ® is large, say, of the order of 1 rad or
larger, but (11) is satisfied since v is large at the same time. A series
expansion in powers of ®, as in (10), is not very useful in this case.
However, expanding F in powers of w/v and truncating after the
quadratic term yields for (9)

__(2n)! (@)
pa - 2‘_’»(_" ').’ (1 + qjﬂwz/UZ)”;

(12)

Probably of more importance are optical surfaces which cause a
small rms phase distortion @ but have a correlation length v of the
order or even smaller than the beam width w. Then (10) may be used
and terms with ¢ > 2 in (10) may be neglected. Note that for both
(10) and (12) a summation over all n yields unity. No power is lost
in the conversion process. p, is the power that is left in the Gaussian
beam and 1 — p,, consequently, the conversion loss.
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Iv. THE THREE-DIMENSIONAL REPETITIVE STRUCTURE

To investigate the three-dimensional model, the additional assump-
tion is made that the irregularities are isotropie over the optical area.
The correlation function (4) may then be extended to two dimensions
by

— &2 _ (@ — @) + (y — yz)z]_
F=2ae exp[ . (13)

The modes of the new model are defined by two numbers n and m.
It can be shown that groups of modes with the same

r=n-+m (14)

are degenerate, that is, they travel with the same propagation
constant.**

The coupling coefficients for the three-dimensional model must be
evaluated from double integrals which are separable if higher orders
of ®* may be neglected. One finds for the average power coupled from
a unit power beam

@2
Puozl_ 5, 3,
1+ o*/w (15)
and

@) (2m)! %* fw®
an - 22rl(n!)2 22m(1n!)2 (1 + UZ/wa)n+m+1
Physically more meaningful is the computation of the average power
that is coupled to a complete group of degenerate modes:

for n,m=1,2,---.

@2
Py =1~ 1+ /w’
and (16)
o 2 2 2
P, LA r=1,2 - .

ST

It has been shown in Ref. 1 that an optical surface can be adjusted
in such a way that no power is coupled to the first group of parasitic
modes. If this is done, the power loss is a minimum and the power
kept in the beam may be found from (16) to be

_ P*

Bty o
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If, furthermore, one is free to adjust the width of the transmitted
beam at the receiving end, say by a telescope arrangement or by
adapting the local oscillator beam to the width of the signal beam, one
can minimize the losses even further. In this case no power is coupled
to the second mode group either.! The power kept in the beam may be
found from (16) to be

(I)E

A+

It seems reasonable to assume that the irregularities on both sides
of a lens surface are uncorrelated, in which case the powers generated
in both conversion processes simply add. Fig. 2 shows the conversion
loss 1 — 2P, and the powers in the three parasitic modes of lowest
order versus w/v for a lens quality of A/10. For the first approxima-
tion, it is assumed that such a lens has an rms deviation of A = A/10
though actually the rms value should be somewhat smaller. An in (1)
is 0.5. The loss inereases rapidly with deereasing correlation length.
For v < w, the loss approaches the value ®* For a correlation length
larger than the beam width, almost all the losses are found in the
first parasitic mode.

Pu= 1 (18)
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Fig. 2— Average loss and power coupled to higher mode groups by a lens of
quality A/10.
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Proper adjustment reduces the loss by this amount. This is shown
in Fig. 3. For v = 2w, a factor of 4 is gained by adjustment. The loss
decreases by more than an order of magnitude if the beam spread is
neglected also. The lens quality in this example is A/10. Fig. 4 com-
pares the losses for lenses of various qualities. Fig. 5 gives the same
quantities when proper adjustment of the lenses is taken into ac-
count. Fig. 6 in addition neglects spreading of the beam.

For hand-polished lenses, the correlation length can be expected
to be of the order of em. The beam width in a lens guide depends on
the lens spacing and the wavelength of the transmitted light.* For
lenses separated by 140 m and red light of 0.63 p, the beam width is
2w = 1 em. Fig. 6 shows that in this case the conversion loss is less
than 0.1 percent and therefore, a negligible amount of the total loss.
Nevertheless, poorly attenuated parasitic modes may build up and
distort the beam profile.

Certainly there is no correlation from lens to lens. So the average
mode power simply increases proportionally to the number of lenses.
The modes under consideration have about the same overall attenua-
tion as the Gaussian beam. Therefore, after N lenses, the average
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Fig. 3—The conversion loss is reduced if the lens is adjusted and a beam
spread tolerated (quality A/10).
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power in the rth parasitic group of degenerate modes is

2NP,
1 — 2NP, e

times the power in the Gaussian beam, provided that the conversion
even after N lenses is small enough to permit the negligence of re-
conversion and higher-order loss terms. The average amplitude
ratio is

V' 2NP, (20)

1 — NP,

The respective phases even of modes in the same group are undeter-
mined.

To gain a conception of the distortion a situation is assumed in
Fig. 7 to 9 where all modes are in phase. Fig. 7 shows a possible in-
tensity profile after passing a lens of quality A/10 and correlation
length v = 2w. The result is mainly a displacement. In Fig. 8 the
beam passed 10 lenses but these now are adjusted so that the beam
stays on the guide axis. The main effect is a spreading. Fig. 9 is a
sketch of the profile after 100 lenses, all adjusted, and the profile is



Fig. 7—Possible profile distortion caused by a lens of quality A/10.
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Fig. 8 — Possible profile distortion after 30 lenses of quality A\/10 (beam aligned
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reduced to the nominal beam width. There is a slight tilt of the pro-
file and a side lobe, but no basic destruction of the beam.

V. CONVERSION IN THE ATMOSPHERE BETWEEN LENSES

Similar to the mode coupling at certain cross-sections of the lens
guide there ecan be mode coupling all along the guide if there is a
source of distortion. In the case of a gas between the lenses the source
may be the random fluctuation of the refractive index of this gas.

For simplicity let us return to the two-dimensional model of Fig,
1. Here An, the deviation from the mean index ny, is a function of z
and z. Consider slabs of thickness Az cut perpendicular to the guide
axis. A light beam traversing a slab at z suffers a distortion of its phase
front

oz, 2) = k Az An(z, 2). (21)

This eauses a conversion into parasitic modes which can be calculated

from (8). The validity of this model has been investigated in Ref. 8.

Its usefulness lies in its physical simplicity which allows controlled
approximations.

Contrary to the lens irregularities 8, the index variations An are
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only “locally homogeneous,” which makes it necessary to use strue-
ture functions instead of covariance functions for the statistical de-
seription. In two dimensions the structure function of ¢ is

S($1 — X2 ,2 — zz) = ([‘\0(1'1 }zl) - P(Iz ; 32)]2)- (22)
Instead of (3) the identity
(exp tfe(x, ,2) — o(z; ,22)]) = exp [—38]. (23)

will be used later, which may be derived in the same way as (3).?
From Kolmogoroff’s theory for a locally isotropic turbulent flow one
finds??

8 = k(A2 0(z, — )" + (& — 2)"]". 24

o is called the refractive index structure constant and measures the
strength of the index fluctuations.

If Az, the thickness of the slabs, is made very small the coupling
per slab will be proportional to Az, say ¢,Az for the nth mode. As-
sume that a Gaussian beam of unit amplitude traverses the air path
from one lens to the next. Then in every slab an amplitude e¢,Az is
generated in the nth mode. Assume that the coupling to all parasitic
modes is so small that reconversion can be neglected. Then, at the end
of the air path of length I, the amplitude in the nth mode is

a, = fL ¢.(2) exp (—inbz/L) dz. (25)

nf/L describes the phase lag between the fundamental and the nth
mode as they travel along the path." For a confocal system 8 = /2,
i.e., the phase retardation of the first parasitic mode with respect to
the fundamental is 7/2 from one lens to the next. Considering that
the patches of correlated index variations are much smaller than the
lens distance, it can be expected that the phase between low-order
modes changes only a negligible amount within the area of correlated
coupling. In the following, therefore, the phase lag will be neglected.

Tor the evaluation of (25) it has to be considered also that ¢, is a
function of the beam width w which varies slowly along the transmis-
sion path. In a confocal lens guide the modes are V/2 times wider
at a lens than in the center between two lenses." It is by a factor of
this order that the results will deviate from the true values if for the
following w is kept constant and equal to the width at a lens.

With this in mind the expected power coupled to the nth mode can
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be calculated by multiplying (25) by its conjugate complex and taking
the average, which in this case will be an average over an infinite time.
The evaluation agrees with the one outlined in the appendix. Since S
is proportional to the square of the small increment Az the exponential
function in (23) may be expanded up to the linear term of the argu-
ment. The average power in the nth mode is finally

p = 2 [ DD, — 48UV 0] de (26)
with
Sz, — ) = f: f: Sz, — @2, 8 — 25) d2, dzy . @27

Sr. has been calculated elsewhere in connection with the investiga-
tion of a plane wave propagating in a turbulent flow.’* It is called the
phase structure function of a plane wave and describes the statistics
of the phases in a phase front that has traversed a turbulent air path.
Equation (26) states that under the employed approximations the
parasitic power arriving at the path end can be calculated from the
intensity profile of an undisturbed beam multiplied by the phase
structure function of a plane wave at the path end. From Ref. 13
one finds

Sp(z, — x,) = 291k’ Lo(x, — 2,)>°. (28)

As long as the function Sy, is of the form & for « > — 1 the follow-
ing general solution can be found for (26):

F(l + a) /2
pn = 5(!» - ‘qL(‘\/é-w) (a )( 1)"9‘1/2 (29)
with
b = {1 for n =20
0 for n=1,2

For the three-dimensional case again groups of modes with equal
propagation constants are combined. The expected power in the rth
group can be calculated from an expression similar to (26) but with
double integrals for the x and y coordinates. It is

P, = = Suv20) 2 (@) (/)12 (30)
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In the case of the plane wave approximation « = 5/3. 1 — P, is
the total average power loss for a Guassian beam. Note that the sum-
mation over all P, yields unity. No power is dissipated.

The application of the waveguide model is no longer useful if the
refractive index variations are so large that reconversion from para-
sitic modes into the fundamental must be considered. The mode con-
version at the path end, however, may then still be calculated from
the undisturbed profile multiplied by the appropriate phase structure
funetion. Only, the phase fluctuations at the path end will then be so
large that an expansion of the exponential function in (26) is no
longer valid. For a configuration close to confoeal the phase structure
function Sy, of the plane wave will be a good starting point to calculate
the expected powers

_ V2

n! 2w

. [ DD e (-3S.VEOI & @)

A better approximation would have to consider the amplitude varia-
tions at the path end in (34) as well. It has been shown elsewhere
that its neglection results in an error of the order of two only.*

The results given in Fig. 10 for the three-dimensional case were
calculated from an expression similar to (31). Fig. 10 shows the loss
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Fig. 10 — Average loss and power coupled to higher mode groups versus the
phase correlation parameter (291 k*Le)™* for a turbulent medium.
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in the beam and the powers in the first four parasitic mode groups
versus the correlation parameter

v = (2.91k°La) ™" (32)

which is a measure for the correlation at the path end. This plot al-
lows a comparison with Fig. 2.

For large v the curves in Fig. 10 turn into straight lines indicating
a functional dependence w™® as given by the approximate formula
(30). Also for large v the ratio between P; and the total loss is a con-
stant close to 1. By measuring P; the total power loss can be found.

This has been done in an experimental underground lens guide
using a photoresistor bridge.” The first mode group consists of two
modes of equal average power orientated in perpendicular planes. The
photoresistor bridge deseribed in Ref. 7 measures the instantaneous
amplitude of one of these modes as compared to the amplitude in the
fundamental. Actually if this ratio is of the order of some percent or
smaller it is equal to the ratio of bridge signal V to bridge battery
voltage Vo (see Ref. 7). The variance of this signal is the ratio of ex-
pected first mode power to beam power and twice that is the loss.
Neglecting a seasonal slow beam drift a variance of 3 10~" was meas-
ured in a 400-foot section of the underground lens guide. The loss is
consequently of the order of 107 of the total power.

It cannot be asserted here that this loss is indeed due to atmospheric
effects. Microseisms may cause fluctuations of the lens positions that
lead to disturbances of the same order. The measurement must be
understood merely as an upper limit for the conversion caused by a
well-shielded air path. The conversion expected from the lenses is
several orders of magnitude larger, but, being independent of time,
it can only be measured in a large number of sections to represent a
reasonable average. An experiment of this kind is described in Ref. 5.

VI. CONCLUSIONS

In a lens guide with widely separated solid lenses, aberrations are
negligible as compared to random surface irregularities. How much
a Caussian beam is distorted by the irregularities depends not only
on the rms deviation A, but also very strongly on the dimension of
the irregularities as compared to the beam cross-section.

Tor a beam of width 2w, which loses no power into the two parasitic
modes of lowest order, the conversion loss is proportional to (w/v)®
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where v is a correlation length defining the dimension of the irregulari-
ties. Consequently, w should be made small enough to assure that the
conversion loss is negligible compared to all other losses and that the
beam profile distortion caused by the generated parasitic modes is
tolerable.

A beam with nominal width of 1 em seems to satisfy these condi-
tions if lenses with a quality A/10 are used. These calculations are
based on a conservative estimate of 1 em for the correlation length.
In this case, the conversion losses are smaller than 0.1 percent per
lens and 1/10 of all other losses. The profile after 100 lenses may, at
best, exhibit small side lobes with a peak intensity of the order of
1 percent of the beam peak intensity.

Refractive index variations in the air path between the lenses also
lead to a conversion loss, It grows with w?®/2 for weak distortions. In a
400-foot section of the underground lens guide described in Ref. 7 an
upper bound for this loss was measured to be 10-° of the total power.

APPENDIX

A meaningful measure for the effect of surface imperfections is the
power coupled from the Gaussian beam into parasitic modes, averaged
over the ensemble of equivalent surfaces:

. = n! {c.c®). (33)

The coupling coefficients ¢, are given by (8). After changing the order
of integration and averaging process and by replacing the ensemble
average by an average over the surface, one gets

P = E%E f f Do) Do) Dole) D) (e 07200 iy, diry | (34)

where all integrals here and in the following extend from —eo to + 0.
To separate the double integral in (34), it is appropriate to change to
new coordinates
P T — X _T +_;L‘2 -
£ V3 and 17 ~;\/2 (35)
in the plane of integration. From the properties of the hyperbolic
cylinder funections, the identity

n

DeDie) = 3 (=2 () D@D (30

p=0
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can be derived. The use of (35), (36), and (3) turns (34) into

= ) (—2)‘“(2) [ DuDurcaydn [ DDV 2 a7)

~ alaw =
and because of the orthogonality of the D,, this can finally be sim-
plified to

P = B /2/11_ (;'230_ fDDDEnGF(\/EJ_q” dE (38)
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