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Recent studies have been concerned with conditions for the stability of
synchronized systems and expressions for equilibrium frequency. This
paper describes the transient response of special configurations of syn-
chronized systems of arbitrary size, as well as frequency response and
jilter response for a few cases. Tentative extrapolations to more general
configurations are suggested.

I. INTRODUCTION

Recent studies have established the sufficiency of certain rather
broad conditions for the stability of linear synchronized networks,'
and have shown that valid expressions for the equilibrium frequency
of such systems can be obtained if initial conditions are taken into
account.” Description of the transient response of such systems is of
interest, but results for general configurations have not been obtained.
This paper describes the results of studies of special configurations
of systems of arbitrary size, and some tentative conclusions about
more general configurations are suggested.

II. SYSTEM EQUATIONS
The equations for the synchronized system will be taken in the
form used by Gersho and Karafin' in their (9):
N
pr’:(/) = Uu(f) + hn(’) * Z] a’nm[pm(’ - Tnm) - pn(!}J’
n=1, - ,N (1)

(where the star denotes convolution). In Laplace transformed form,
assuming zero initial conditions,
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sP,(s) = V.(s) + H.(5) Zi: Apue ""P(s) — H,(8)P.(s),

n=1,---,N. 2

In these equations, p,(f) is the phase of the oscillator at the nth station,
v,(t) is the free-running frequency of that oscillator with the effects
of local disturbances added, A,(t) is the impulse response of a control
filter at the nth station, ,, is the delay on the transmission link from
the mth station to the nth, and a,, is an averaging coefficient asso-
ciated with that link. The coefficients are normalized so that

’g Ay = 1- (3)

Normally, a,, is zero. The filter gain H,(s) has the dimensions of inverse
time; its zero-frequency value, assumed to be nonnegative, is

H,0) =\, . 4)

These equations, as pointed out by Gersho and Karafin, are conformable
with the linear equations used by Karnaugh® if v,(¢) is understood to
include not only the free-running frequency of the oscillator at the
nth station but also the sum of the transient disturbances at that
station as well as some initial condition terms.

The assumption of zero initial conditions in (2) depends on the
following simplifying procedure. Since only dynamic responses are to
be studied, and since the equations are linear, the steady-state solution
can be subtracted from the total response. Thus, »,(t) and p,() will
be taken to represent only the disturbance component. Where the
disturbance is transient, the v,(f) will be assumed to have zero values
before the disturbance begins, and the initial phases will be taken as
zero. The result of this procedure shows only the response to the dis-
turbance, to which the steady-state solution would have to be added
to determine the total frequencies and phases.

Although formal results for arbitrary filters and arbitrary delays
will be obtained in a few cases, emphasis will be placed on the simple
case of flat filters H,(s) = A, (in effect, no filters) and zero transmission
delays. In this case, the filter gains A, determine the time scale of the
response. There seems to be no compelling practical reason to make
the A, much greater than the reciprocal of a second. The response time
can then be assumed to be large compared with the transmission
delays expected in most cases as well as large enough so that the re-
sponse would not be severely affected by the inherent low-pass filter
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effects of ordinary electromechanical control elements. The results are
sufficiently encouraging, from a practical standpoint, to suggest that
it may not be necessary to incorporate filtering by design, so that the
simple case appears to have some practical value.

III. AN ELECTRICAL ANALOG; RECIPROCITY

Although explicit transient responses have been derived only for
specific system configurations, it is possible to state, for systems of
arbitrary configuration, a condition sufficient to guarantee that the
transient response is not oscillatory. This condition is a reciprocity
condition derived from the properties of a passive electrical network
analog.

3.1 Case 1:7,, = 0, H,(s) =\,

Consider an eléctrical network as shown in Fig. 1, having N nodes
in addition to a ground node. A capacitor C, is connected from the
nth node, n = 1, --- , N, to ground, and a resistor R,,, = R, is con-
nected between some, not necessarily all, pairs of nodes n, m. A current
source delivers current from ground into each node. The Laplace-
transformed node equations are

“'LH(S) = (r I,,(ﬁ') + ZI\’ C’ []"'ﬂ(s) '4',.(-5')]. ('-))

m=1

Fig. 1 —Part of the electrical analog of a reciprocal system with flat filters and
zero delays.
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These equations are similar in form to (2) representing a synchronized
system, and can be identified with them if the nth node of the electrical
network is identified with the nth station of the synchronized system,
and

E.(s) = P.(s), (6a)

I.(s) = C.V.(s), (6b)
1

an = G"m}\nCn ) (60)

Tam = 0, (6d)

H.(s) = M\ . (6e)

Note that V,(s) is not a voltage, but a reference frequency.
The reciprocity condition

Bom = R M)

imposes a condition on the averaging coefficients and filter gains in
addition to the simplifying conditions of flat filters and zero delays.
This condition immediately gives, from (6¢),

@uhiCh = Qihn O (8)

The capacitances C, are to a certain extent arbitrary, in that if
a system has an analog with given C,, equivalent analogs can be formed
by multiplying all the C, by any common factor and rescaling the other
elements. The capacitance at the node corresponding to any one selected
station can therefore be chosen arbitrarily; (8) shows how the capaci-
tances for stations to which it is connected can then be derived using
only parameters of the synchronized system:

a’nmxn

Cm = m Sno. (9)
For a station that is connected to the selected one by a path of M
links, via M — 1 intermediate stations, iteration gives a formula of
the form
anaﬂl ning ﬂ'n — A:'u;(rjﬂ.-,
C’Ur —_ _L v e . —DM—aFA T Fo 770 , (10)
afn,no an,m anun_"_, kn“

where 7 is the index of the selected station and n, is the index of the

kth station in sequence along the path.
Unambiguous determination of the C, requires that if two or more
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paths exist between two stations, the formula (10) should give the
same result on all paths. This is equivalent to the condition that the
product of the averaging coefficients taken counterclockwise around
any closed loop must equal the product of the averaging coefficients
taken clockwise around the loop:

aum.an.u; e a?anl = aulu;, Ut Qugng@ayn, - (11)

This condition will be called the reciprocity condition for synchronized
systems; a system that satisfies this condition will sometimes be called
a reciprocal system. It is easily seen that the reciprocity condition
is both necessary and sufficient for the existence of a passive electrical
analog of the form of Fig. 1, assuming that the conditions of flat filters
and zero delays are also satisfied.

Since the poles of an RC network response function are all simple
and lie on the negative real s-axis,” its transient response consists
entirely of real exponential components. It follows immediately that
a reciprocal system with flat filters and zero delays cannot have an
oscillatory transient response. Moreover, errors in parameter values
that cause small departures from reciprocity cannot immediately
result in the appearance of oscillatory components. Such components
are represented by conjugate pairs of complex poles; since the pole
locations are continuous functions of the parameter values, no pole
can move off the real axis until it has first moved along the axis and
joined another real-axis pole to form a double pole, assuming that the
departure from the reciprocal ideal is not of such form as to add new
poles.

3.2 Case 2: 1,,, small, H,(s) nearly flat

This conclusion is strictly true only for zero delays and flat filters.
However, it may be expected that delays much smaller than the system
response time, or filters that are nearly flat up to frequencies much
larger than the reciprocal of the response time, will have little effect
on the transient response. In fact, it can be shown in specific cases
that the addition of any delay, however small, introduces an infinite
number of oscillatory components, which nevertheless are small in
amplitude and rapidly damped so that their total effect is small. It
may be assumed that the omission of delays and high frequency cutoffs
is comparable to the neglect of the same parameters in ordinary circuit
analysis.

It is not necessary that the filters be flat in order that the system
have an electrical analog. The resistors can be replaced by any 2-terminal
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networks so as to simulate any filter that has a “positive real” fre-
quency response function. If the transfer function of the filter can be
synthesized as the admittance of a network of resistors and capacitors
only, the analog will still be an RC network and the transient response
obviously remains nonoscillatory.

While this study is nominally confined to dynamic behavior, the
Appendix shows how the reciprocity condition simplifies the steady-
state analysis.

V. E. Bene$ has pointed out that if the a,, are considered as the
transition probabilities of a Markov process, as in his original study
(unpublished work, 1959) of stability and equilibrium frequency, the
reciprocity condition introduced here is equivalent to the condition
of reversibility of the Markov process, which in turn is related to
detailed balance in statistical mechanices.

1V. TWO-STATION SYSTEMS

The analysis of a system of two stations offers not only an introduction
to the techniques of analysis but also an example of the behavior of
small systems for comparison with the behavior of the large systems
to be described in later sections.

An impulse disturbance of frequency is assumed to occur at one of
the stations, which we then designate (without loss of generality)
as station 1. This form of disturbance can be interpreted as a brief
rise in frequency which is almost immediately corrected, leaving a
residual phase error of one unit of phase. Alternatively, it could rep-
resent any disturbance that gives rise to the sudden appearance of a
phase error.

The system equations, from (2), are

sPi(s) = 1 4+ H,(s)e”"""Py(s) — H\(s)P:(s),

(12)
sP,(s) = Hu(s)e ' Py(s) — Ha(s)Pa(s).
These equations are easily solved to give
Pus) = o s + H.(s) —
§ + s[H\(s) + Hu(s)] + H\(H&[1 — e "] (13)
P.o) Ho ()™

8+ sH(s) + Ha9)] + Hi(8)Ha9)[1 — (F“’"’”“’]'
The final value theorem gives
A')
pl(oo) = p_,(’:ﬂ) = r;}_ Au + 7\;)&-»(71». + Tﬂl) (14)
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as the ultimate displacement in phase caused by the disturbance. The
equality of the two final values, signifying no net change in the phase
difference between the two stations, is a necessary consequence of the
uniqueness of the steady-state solution.

41 Case 1: H,(s) = X\, , 70 = 0.

More explicit results for the transient response are obtained in the
special case of flat filters and zero delays. The transforms become
simple enough for inversion by inspection; the result in the time domain
is

Ag + )\1 — (A1 +Az)t

pi(t) = e ,
T e P T A (15)

_ A? It TES POT
p-’(’) — A] + )\2 [1 € ]'
These equations indicate a simple exponential approach to the final
value, starting with initial phases [immediately after the impulse in
v(t)] of 1 at the first station and 0 at the second. Such behavior appears
satisfactory for a practical system.

4.2 Case 2: H,(s) = N\, Ty = 7.

To determine the effect of delays, the system will be made as simple
as possible in other respects. The filters will be assumed flat with equal
gains, and the delays will be assumed equal. In this case, the solution
(13) becomes

Py(s) = - sEA
s+ 28+ N —Ne ™7 (16)
Pys) = he :

s' 4+ 2hs + AT — N7

The denominator can be factored, and a partial expansion in partial
fractions gives

Pi(s) = 3[Qi(s) + Q:(9)], (17)
P,(s) = 3[Qi(s) — Qu.(9)],
where
1
Qi(s) = —— -,
40 s+ A=A 7 (18)
Q.(6) L

s A AT
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One approach to the inversion of these transforms is to divide num-
erator and denominator by s + A and treat the result as the summation
of a geometric series. Expansion of the series gives

m_—msT

QO = X

: (19)
o E'—k nle‘*mu'r

Q:’(s) = Z (S + )\)mﬂ ’

m=0

from which, by (17),

= Aﬂ.ﬂ—?h T

ECER (20)

o0 x2k+le—(2k+1)n

— (S-l— )\)2&»(2 "

P](S) =

Psy(s) =

Inversion term by term gives

Hf] hzk(t _ 2kf)2kg—l(¢-—2k7}

p!(t) = — 2]“ ’ (21)
_ [(t=7)/21] Rﬂk-'—l[t__ (2k + I)T]2k+le—\ll—(2k+l)r]
p) = 2 @k + 1)! ’

where the square bracket in the limit of summation (but only there)
denotes the integer part of the enclosed expression. This result can
be numerically evaluated term by term if the product Ar is known.
It gives an exact result (for the assumed model) up to a time depending
on the number of terms evaluated. Fig. 2 shows a graph of the cal-
culated results for Ar = 0.1, that is, delay equal to one-tenth of the
reciprocal of the filter gain.

The interpretation of this result is that the response of each station
to changes in phase at the other is delayed for a time equal to the link
delay 7. Thus, from ¢ = 0 to ¢ = 7, station 2 is completely undisturbed.
Meanwhile, from ¢ = 0 to ¢ = 27, station 1 observes no change in the
frequency received from station 2 and therefore, its response is ex-
ponential with time constant 1/\. Therefore, from ¢ = 7 to { = 37
station 2 responds to the exponential response received from station 1,
and so on. The result (21) could in fact have been derived by tracing
out the response of the system in this manner.

A second approach, inherently inexact but more useful for times
that are long compared to the transmission delay, is to complete the
partial-fraction expansion of (18). This requires in principle determina-
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Fig. 2—1Impulse response of a two-station system.

tion of the locations of all the poles, which are determined by the
transcendental equation

s+ A=\, (22)

where the “plus” sign refers to ,(s) and the “minus” sign to Q.(s).
This equation has, in general, an infinity of solutions. However, if
Ar is a small number, the most important components will be those
due to poles of the order of magnitude of A. The exponent in (22)
is then small, so that the exponential can be approximated as

-7

Tl — st (23)

Using this approximation in (18) gives a form which is easily inverted
to give, finally, from (17),

~ l 1 1 —2&!/(I‘Kr)]
P ‘“"2[1 a1

~ l 1 _ 1 —n:/u—?n):l_
p'—'m’“’z[l Far 1=t

(24)
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This obviously has an error at ¢ = 0, which is small if Ar is small, but
has the correct final value determined by (14). This result is compared
with the exact response, as well as with the response of a zero-delay
system, in Fig. 2, which illustrates the case of A+ = 0.1. The approxi-
mation is better for smaller Ar.

V. LARGE FULLY INTERCONNECTED SYSTEMS

Next to be considered is a network of N identical stations in which
all stations transmit via identical direct links to all others. All co-
efficients a,,, are assumed equal:

1 -
Um = 377 n=1,---,N, m # n. (25)

If an impulse disturbance occurs at the first station, all the other
stations display identical responses, so that

Pz(f) = PB(") = = PN(!)- (2b)

The system response can, therefore, be described in terms of two
equations in P,(s) and P.(s):

sP,(s) = 1 + H(s)e "Py(s) — H(S)Pi(s)

(27)
sP,(s) = I\%ﬂiﬂi e IPi(s) + (N — 2)Py(s)] — H(s)P.(s).
These equations can be formally solved to give
s+ H(s) — (x - Z)H(s)c"”
N —1

Pi(s) = — A -
(28)

NN : (€)1

PAs) = v Z

where

A =5+ sH(s)[Q — (% : ?)(':\

waofi= (Y= - () e

The final value theorem gives

pi(®) = pa(=) = i(l_{i-Tr) (30)
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5.1 Case 1: H,(s) = \, 7, = 0.

In the special case of flat filters and no delays, inversion of the
Laplace transforms gives

ml) = % + (1 _ }\7)0..;:/(.\-_1,
‘ ‘ 31)

p_;(!) — AL{ [1 _ c*ll)ﬂ/(,\'-l)]l
In this case, the response is an exponential approach to equilibrium

as in the 2-station system. When one station is disturbed, the other
stations respond in unison, as one.

52 Case 2: H(s) =N 1w =17

In the case of equal positive delays and flat filters, the solution (28)
in transformed form can be partially expanded in partial fractions
to give

P = 106 + (V = D@,

(32)
Pi(®) = 3 (@9 — Q).
where
1
(1 = [
0 s+ A—x " (33)
Qule) = 3 S
sHAE N -1 ¢

This is similar in form to (17) and (18), and the same methods can
be used to evaluate the transient response. The principal difference
between this and the 2-station case is that the conditions for cancella-
tion of odd or even terms in the series of delayed responses (21) do not
hold in the many-station case, and the antisymmetric component, g.(f),
is more rapidly damped than the symmetric component ¢,(t). The results
for the zero-delay case and for the case of A+ = 0.1 are shown for a
6-station system in Fig. 3.

The simplicity of both the analysis and the result can be attributed
to the condition that all stations and all paths are identical. Although
the effects of slight departures from this condition may be of practical
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Tig. 3— Impulse response of a fully interconnected 6-station system.

interest, the slightest departure will destroy the symmetry and vastly
complicate the analysis. As a guess, it may be supposed that the effect
of a slight dissimilarity among paths will be smaller than the effect
of removing some of the paths. When all but N paths have been re-
moved, in such a way that the system forms a ring in which each station
receives only from its two nearest neighbors, a new form of symmetry
appears, which will be used in the next section.

VI. THE BILATERAL RING

A bilateral ring is defined as a ring of N identical stations, with
2N identical one-way links forming N two-way links by which each
station sends to, and receives from, its two nearest neighbors, one on
each side. This may be viewed as the opposite extreme to the fully
interconnected system, providing the longest possible indirect paths
in a system of N identical stations. (Longer paths are possible in a
chain, but the stations cannot be identical because each end station
has only one neighbor.)

The equations of the bilateral ring, in transform form, are

sP.s) = Vu(s) + H(S){3[Pun(s) + Poa®)e™ — Pu8)},
n=1,2 - ,N (3%
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where addition in the index n is performed modulo N, so that Py.,(s)
is P(s), Py(s) is Py(s), and the (N — m)th station can be alternatively
designated as the (—m)th. This system of equations will be simplified
by a form of Fourier analysis. We define

N
Qi'(s) = Z P"(s)e*i'-’fn*ﬂ\" k= ]-r Ty Nr (35)
n=1

where j is the imaginary unit. It can then be shown by direct sub-
stitution that

N
P = & 2 Q@™ =1, N (36)
k=1
Similarly, variables U.(s) will be defined by transformation of the
V.(s) as in (35), with inversion as in (36). The linearity of the Laplace
transformation implies similar relations among the variables in the
time domain. All these relations remain unaffected if any n or k is
changed by adding or subtracting N.
Let the nth equation in (34) be multiplied by e """, and the equa-
tion summed over all n. The result is

sQu(s) = Uils) + HE[EE"™" + ™M™ — 1]Qu(s),
Ek=1,---,N. (37)
This can be solved immediately to give

~ U.(s) .
Quls) = s + H(s)[1 — e™ cos (2rk/N)] o

Given a set of transient frequency disturbances »,(f), one may find
their Laplace transforms V,(s), find the U,(s) using (35), find the
Q.(s) using (38), use (36) to obtain P,(s), and find the phase disturbances
P.(t) by inverse transformation.

In the case of an isolated impulse in frequency at the Nth station,
we have

V.s) =0, n=12 -+ N—1; Va(s) = 1. (39)
By using (35) we get
Uis) = 1, k=1, ,N. (40)

Explicit solutions will be obtained here only for cases in which the
filters are flat. Under these conditions,

1
Qk(s) = s + h[l — ¢ "7 cos (2Wk/N)]

(41)
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The complexity of the result depends on whether the delay 7 is assumed
zero or positive.

6.1 Casel: H,(s) = N\, 70y = 0, N < 0.
If the delay is zero, (41) can be inverted immediately to give
q(t) = exp { —A[1 — cos (2rk/N)]t} (42)
and the phase disturbances, using (36), are
v
pul) = 1% 3¢ exp [—A[L — cos (2ak/N)]t) (43)
k=1
The Nth term in this sum is real, as is the (N/2)th term if N is even.
For all other k, the kth term is the complex conjugate of the (N — k)th
term, so that the sum is real, and may be expressed as the sum of the
the real parts of the individual terms:

pa(t) = %[ g cos (2mnk/N) exp { —A[1 — cos (2xk/N)]t}. (44)

The Nth term in this sum is a constant term, which applies equally
to all stations and does not affect the phase differences between sta-
tions. All other terms are real exponentials approaching zero with
increasing time. The dashed curves in Figs. 4, 5, and 6 show the response
of a 6-station ring calculated from (44).

6.2 Case 2: H,(s) = N\, 7y = O, N = =,

This result can be extended to rings of indefinitely large size in two
different ways, so as to specify the response either a given number
of stations away from the source of the disturbance, or a given fraction
of the circumference away from the source. For the first approach,
which gives an exact result for an infinite ring, let

6, = 2xk/N (45)
and let N increase without limit (approach infinity). Then the limit
of (43) defines the integral

=\t 27

pu(t) = ")—W ¢ exp (M cos 68) do, (46)

0

which is related to a known integral form* for the modified Bessel
funetion of the first kind, order n, and gives

p, (1) = e MILND, n=---—1,0,1, -
= p-.(0). (47)
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Fig. 4— Impulse response of bilateral rings with zero delays.

Curves calculated from this equation are shown as the solid curves
in I'ig. 4. ‘

Ifull exploitation of this result requires that the station at which
the disturbance originates be called the zeroth, and that neighboring
stations be indexed with positive integers to one side and negative
integers to the other side. At any time ¢, the largest phase disturbance
is at the station at which the original disturbance occurred. The asymp-
totic approximation for large x,
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I.(x) ~ (48)

2nx

shows that the phase disturbance decreases with increasing time
roughly as

1
W) N —— 49
PO o “)
Although this result gives the wrong limit for a finite system, it gives

a clear picture of the early behavior while the response is still sub-
stantially localized.
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Fig. 5— Large-t approximation for a large bilateral ring.
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Fig. 6 — Impulse response of a 6-station bilateral ring.

6.3 Case 3: H,(s) = \, 7., = 0, N large, t large.

The alternative approach provides a better approximation for large ¢
after the disturbance has spread around the ring. When ¢ is large,
the dominant terms in (44) are those in which cos (2xk/N) is closest
to unity, including not only those in which % is small but also those
in which % is close to N, or, equivalently, % is small and negative.
Since the kth term and the (W — k)th or (—k)th term are equal, the
latter terms can be effectively included by doubling each term for
small k. For large N, the approximation

o

x
cosr 1 — 5 (50)

can be used for these terms. The Nth or zeroth term is a constant 1/N.
The other terms, which are small, can be omitted or included as con-
venient; since it is difficult to specify in advance which terms are
negligible, it seems safest to include them all, at least formally. Thus,
approximately, for large N,

1 2 = -9 ﬂf
pa(f) ~ N + N ; cos (2mnk/N) exp ( I\:; M)' (51)
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The time constants are proportional to the square of the number of
stations in the ring. The components have sinusoidal spatial distribu-
tions around the ring, and the time constant is inversely proportional
to the square of the spatial frequency. Some curves calculated from
(51) are shown in Fig. 5, compared with the response of a 6-station ring.

6.4 Case 4: H.(s) = N\, 10 =7, N < o,

If the delays are positive but all equal, the methods used in the
2-station system can be applied to the inversion of (41). The exact
result is

[t/71 m m m_=A(t—m7)
A" cos™ (2xk/N)(t — mr)"e
alt) = 2 ert ),(n' g ‘

(52)
The approximation based on (23) gives
N 1 [ 1 — cos 2mk/N) }} .
90) X TN, cos @nk/N) e"p{ “[1 e cos ek/N) ) @Y
which may be compared with (42). Curves calculated from these

equations for a 6-station ring with A= = 0.1 are shown in Fig. 6 and
compared with the zero-delay case.

VII. BILATERAL CHAINS

It has been mentioned previously that a chain lacks the simplicity
of a ring because of the exceptional nature of the end stations. However,
given any chain of N stations, an analogous ring can be formed by
duplicating all stations except the end stations so as to form a second
chain between the end stations as shown in Fig. 7, and taking the value
1 for each of the two averaging coefficients at each end station, leaving
all other parameters unchanged. The response of the chain to a dis-
turbance at any station can be found by applying the same disturbance
at the corresponding station or stations in the analogous ring; the
response of each half of the ring will be the same as the response of
the original chain.

A bilateral ring, as studied in the preceding section, will result if
the stations in the chain all have equal filter gains and if all averaging
coefficients (except at the end stations) equal . Such a chain will be
called a bilateral chain. Thus, in particular, the response shown for
6-station rings in Figs. 4, 5, and 6 will also be observed in 4-station
bilateral chains disturbed by an impulse at an end station. The response
to a disturbance at any other station may be obtained by superposition
of two station responses caleulated from the ring; the responses to be



DYNAMIC RESPONSE 337
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Fig. 7— A chain and its analogous ring.

superposed may be identified by supposing that the disturbance is
propagated in both directions from the source and is reflected at either
end of the chain,

Alternatively, in principle, the response of either the ring or the
chain might be determined by superposition of an infinite number of
terms of the infinite-ring response determined in the preceding section.
The response of an infinite ring is the same as that of an infinite chain
extending in both directions from the source of the disturbance, since
the two networks are indistinguishable. The response of a finite ring
could be calculated by supposing the disturbance to propagate around
the ring an unlimited number of times in both directions. For a finite
chain, the disturbance could be considered to spread in both directions
(except when the disturbance originates at an end station) and to be
reflected whenever it reaches an end station. This method may be
useful in large chains or rings as a refinement of the simple approxima-
tion of a large chain or ring as an infinite one.

VIII. UNILATERAL RINGS AND CHAINS

All the networks studied in previous sections have satisfied the
reciprocity condition, and in consequence all components of the response
have been nonoscillatory: strictly so in the zero-delay case, and ap-
proximately in the case of small Ar. In this section, the opposite ex-
treme is studied. In the unilateral ring, the produet of the averaging
coefficients in one direction is positive, while every coefficient in the
other direction is zero.
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8.1 Rings

To define a unilateral ring, we assume a ring of N identical stations
and assign a positive direction around the ring. Each station transmits
only to its nearest neighbor in the positive direction. Each station
then receives from only one other station and thus has only one averaging
coefficient equal to unity. All links are identical. The system equations
are

SP,,(S} = V“(S) + H(S)[P,,_I(S)B_" - P,.(S)], n = ]-r Tty N. (54)

The transformation defined by (35) and (36) may be applied to this
network also. In place of (41), assuming the same impulsive disturbance
as given in (39), we get
1

(s) = - . 55
Q"() s + k(l _ c—nr—r?rki!\r) ( )

811 Case 1: H,(s) =N 1am =0, N <
Only the case of zero delays has been studied in detail. In this case,
gu() = exp {=\[1 — cos (2xk/N)]t} exp [—jM sin (2xk/N)]. (56)

Hence,

N
pu(l) = % 3 exp {jf2eak/N = M sin (2ek/N))
k=
exp { —A[1 — cos (2nk/N)]t}. (57)
The sum is real and may be alternatively expressed as
N
palt) = % cos [2mnk/N — M sin (2rk/N)]
k=1

-exp | —A[l — cos xk/N)]t}. (58)

The components are not real exponentials, but exponentially damped
sinusoids.

8.1.2 Case 2: H.(s) = N\, 1. = O, N =

In the infinite unilateral ring, using (45) in (57) and passing to the
limit,

=At 2r
p(t) = %w— j; ¢ exp (\Me ') dé. (59)

Expanding exp (Me™ ") as a power series in Ae” "’ and integrating term
by term gives
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This result is plotted in Fig. 8. The phase disturbances at adjacent
stations are in the ratio
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Fig. 8—Impulse response of an infinite unilateral ring,

(61)
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so that for fixed ¢, and increasing n, p,(f) increases until n = ¢. There-

fore, at any time ¢ the largest disturbance is at the mth station, where
M —1=m= M. (62)

For large {, the magnitude of the largest phase disturbance, obtained
with the aid of Stirling’s approximation for the factorial, is asymp-
totically

(63)

() ~ ——
P V2N

This is the same as the asymptotic value (49) obtained for the infinite
bilateral ring, except that in the unilateral case the peak precesses at
the rate of A stations per unit time.

8.1.3 Case 3: H,(s) = \, 7., = 0, N large, t large
Application of the approximation (50) together with
sina X (64)

gives, for large ¢ in a large ring,
1 2 & ) (—2w2k2 ) .
=+ = s |2xk(n — Nlexp|\—— . $
p.(1) = v ¢§:1 cos [2rk(n — N)/N] exp RE N (65)

Compared with (51) this shows a response that resembles that of a
bilateral ring except that it precesses around the ring in the positive
direction at the rate of A stations per unit time. The oscillatory nature
of the response is associated with the progression of the disturbance
around the ring.

8.2 Chains

A finite unilateral chain is a system with one master station and
N — 1 slaves. If such a system is disturbed at one of the slave stations,
the response of each station following it in the positive direction is
the same as that of the corresponding station in an infinite unilateral
ring. An impulse disturbance at the master station, however, does not
correspond directly to any situation in a unilateral ring. A permanent
phase shift of one unit occurs in the master station output. The effect
at the second station is the same as that of a step of magnitude A in
the free-running frequency of the second station, and, a step being
the integral of an impulse, the response of the entire chain can be
inferred by integrating the response to an impulse at the second station.
Each station can thus be shown to approach its new equilibrium phase
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monotonically. If the nominal time of response of each station is defined
as the time of maximum rate of change of phase (maximum frequency
shift), each station responds with a delay of 1/\ after the preceding
station. The effect of positive link delays in the unilateral chain is to
further delay the response without changing its form.

The unilateral ring is not the analog of any chain in the sense of
the preceding section.

IX. RECTANGULAR ARRAYS

A rectangular array, in which each station is connected to four
nearest neighbors, can be considered as intermediate between a fully
interconnected system and a chain or ring, and may be more appropriate
than cither as a model of a network of stations on the surface of the
earth. A reectangular network with no edges or corners can be laid
out on the surface of a toroid as in Iig. 9. This network can be analyzed
by methods similar to those used for rings.

The stations are most conveniently indexed with double subseripts,
m =1, ---,M;,,andn = 1, --- , M, ; the number of stations is
N = MM, . Assuming equal filters and equal delays, the system equa-
tions are

sP,.(8) = V,.(8) — H(S)Pu.(s)

+ 2O P ) P+ Paa® + Para®] (60

Fig. 9— A toroidally-connected rectangular array.
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assuming addition modulo 17, in the first index, and modulo M, in
the second. Defining

B My My mk nl )]
i = $ $ oo (it 4 35)]
k=1,---,M,, =1, -, M (67)

and proceeding as with the bilateral ring, we obtain, in the case of flat
filters and zero delays, with an impulse disturbance at the M,, M.th
(or zero-zeroth) station,

My M,

put) = & 3 5 e | e{E + 51 i)
2l

27k
-exp I:—)\(I -3 cos i, — 1 cos E)t] (68)

Comparison with the bilateral ring is most convenient in the limiting
cases of large systems. IFor the infinite array,

et = 1 ()(3) @

which has the asymptotic form
1
() ~ 3 (70)

indicating a more rapid approach to the final value in the rectangular
array than in the ring. The approximation (50) for large ¢ in large
arrays gives

1 & & mhk nl
Pl 5 2T ¢ [ (Ml-'_Mg)]

[+ )] @
‘exp | —w H Mg ’ ( )

The longest time constant is shorter for a rectangular array than
for a ring with the same number of stations. Fig. 10 shows some curves
calculated from (69).

A bounded rectangular array in a plane is more complicated than
a toroidally connected array because of the exceptional edge and corner
stations. However, a bounded 3/, by M, array can be analyzed in
terms of an analogous 2M, — 2 by 2M, — 2 toroidal array as shown
in Fig. 11. All columns except the first and last are duplicated and
connected as shown by the solid lines to form a cylindrical array, and
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Fig. 10— TImpulse response of an infinite rectangular array.

then all rows except the first and last are duplicated and connected
as shown by the dashed lines; averaging coefficients are divided by
two whenever a station receives from duplicate stations. The toroidal
array has one station corresponding to each original corner station,
two for each edge station, and four for each interior station. The re-
sponse of the original bounded array to a disturbance at any station
is identical with the response of the corresponding part of the toroid
when the original disturbance is applied to corresponding stations.
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Fig. 11—The toroidally-connected array analogous to a bounded rectangular
array.

‘_

Alternatively, in principle, the response of a finite toroidal array
can be determined from that of the infinite array by considering the
response to propagate around a toroidal array in the four cardinal
directions, or to be reflected from the sides of a bounded array.

X. RESPONSE TO SINUSOIDAL DISTURBANCES

The steady-state response of a linear system to a sinusoidal dis-
turbance is sinusoidal, and the phase difference between the response
and the input disturbance, together with the ratio of the amplitudes,
is given by the frequency response function as a function of frequency.
The impulse response is equivalent in principle to the frequency response
function as a specification of dynamic properties, since either can be
expressed in terms of the other through Fourier or Laplace transforma-
tion. The frequency response functions of a bilateral ring, in particular,
are the functions P,,(jw), which are the P,(s) evaluated along the

“real frequency axis” s = juw, for real w.

The frequency response will be determined in t.hls section for infinite

rings, both bilateral and unilateral, in the case of arbitrary equal
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filters and arbitrary equal delays. Although the expressions are more
complicated than the impulse response expression in the case of flat
filters and zero delays, they do not become very much more complicated
in the more general case, for which closed form expressions for the
impulse response have not been obtained.

10.1 Case 1: Bilateral Ring, N = «

For the bilateral ring, an expression for @;(s) is obtained from (38)
using (40), and P,(s) is obtained using (36). Using the substitution
(45) and passing to the limit of infinite N gives

1 27 efnﬂ de

P = — — YT 2
"(S) 2‘11' a L] + H(S)(l - ('” CcOos 6) (7 )

To evaluate this by contour integration, let
z=e". (73)
Then

P.(s) = 1— S 27 dz ] -

2 —ar !
! s+H(s)[1 —"'2 (z+£)]

integrated counterclockwise around the unit circle centered at the
origin in the z-plane.

When n = 0 the integrand has two poles in the z-plane, located
at the roots of the quadratic equation

8

H(s)

Since the denominator of the integrand is symmetric in z and 1/z,
one root is the reciprocal of the other. We defer consideration of the
case where both roots have unit magnitude; then one pole will lie
inside the path of integration and the other outside. Denote the root
inside the contour by

Z - 2{'"[1 + :lz + 1 =0 (75)

5 = p“[l + H“(S)] - \/c"'“[l + ﬁs(?)J —_1. (76)

where it is understood that the square root is to be taken to have
whichever sign gives z, the smaller magnitude.
For convenience, let

H(s)

B = T A

(77)
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this incidentally being the quantity whose magnitude is required to
be less than unity in the sufficient condition for stability given by
Gersho and Karafin." Then

1 Visseen
Bls)e™™ (78)
Blge

1 + \/l _ ﬁ2(8)8—2lr

where the second form can be obtained by rationalizing the numerator.

The integral around the contour is 2wj times the residue at this pole,
so that P,(s) is equal to the residue, which can be put in the alternative

forms

Zy

L= Vi-gr T
HEB (@™ V1 — B@e ™ (79)
= g (s)e ™" I
H(S)\/i—_.s—z(s)Tm[l 4= '\/1 _ .32(-5‘)8-2" I

For negative n, (74) can be transformed into an integral in y = 1/z
to show that

P.(s) =

P.(s) = P_.(s). (80)

The deferred case in which z, has unit magnitude will now be briefly
considered. In this case, the quadratic equation (75) has two conjugate
roots of unit magnitude, or double roots at 1 or —1, and it is easily
shown that this occurs when B(s)e”*" is real and has magnitude 1 or
greater. If the sufficient condition for stability mentioned earlier is
satisfied, this cannot occur in the left half s-plane or on the real fre-
quency axis except at zero frequency, where a singularity is expected
to occur in any system configuration.

Where B(s)e™"" is =£1, P.(s) is infinite and will ordinarily have a
branch point. This always occurs at s = 0, and occurs for other values
depending on the filters and delays. Where B(s)e™*" is real and has
magnitude greater than unity, P,(s) will be finite but will have a step
discontinuity, because as s passes through a value at which B(s)e "
is real, 2, crosses the unit circle and must immediately be redefined
as z, , and the square roots in (79) abruptly change sign. The function
P.(s) is thus defined as a single-valued function in the s-plane with
line discontinuities where it might be expected to have branch cuts.
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If the system is stable, these discontinuities are confined to the interior
of the left half s-plane except for s = 0.

Thus, (79) defines P,(jw) as a continuous single-valued function
except at @ = 0. In the case of flat filters and zero delays, P,(s) is
the Laplace transform of (47). I'ig. 12 shows the magnitude of P,(jw)
for this case and for the case of Ar = 0.1.

10.2 Case 2: Unilateral Ring, N = =

For an infinite unilateral ring, a similar procedure gives

) 1 2" dz
P = 5on ¥ s & B — Hee ™ B

1.5/

ZERO DELAY
—_—— AT =0.1

0.5/

0 t |

3A ax 5A 6\
w

Fig. 12— Frequency response of an infinite bilateral ring.
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to be integrated over the same path as (74). When n = 0, the integrand

has a single pole at z = B(s)e *". If the magnitude of B(s)e”"" is less
than 1, the pole is inside the unit circle, and for nonnegative n
n+1 —nsT
Py = P 01,2, (82)

Hs)

while for negative n under the same conditions, the substitution y = 1/z
puts all poles outside the unit circle and

Ps) =0 n=—1,-2 . (83)

Fig. 13 shows the magnitude of P,(jw) graphically. As the magnitude
of B(s)e”"" becomes greater than 1, the pole crosses the unit circle
and there is a step discontinuity in P,(s) for all n. However, the suffi-
cient condition for stability mentioned previously is both necessary
and sufficient, in the unilateral ring, for these discontinuities to be
confined to the left half-plane.

The finite value of P.(0), where a singularity should occur, is at-
tributable to the fact that every station in the infinite unilateral ring
is a slave station, and no finite change at any given station can alter
the equilibrium frequency. The infinite unilateral ring is in this sense
a pathological limiting case of the unilateral chain in which the master
station recedes to infinity and becomes inaccessible.

1.0/ A
0.8/A
ZERO DELAY
0.6/A
3
el
= n=o
0 o.4/Af
U
0.2/A\ 2
/ 3 \—‘
4
o] | t L L I
0 N 2\ 3 an 5\ 6\ 7A

w

Fig. 13— Frequency response of an infinite unilateral ring.
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XI. JITTER RESPONSE

Jitter denotes random variations in the phase of a signal. In a digital
signal, jitter ean occur as a result of pattern-induced retiming errors
in regenerative repeaters.’ Jitter reducers’ can reduce the high-frequency
components of jitter, but, because the jitter reducer output frequency
is slaved to the input frequency, the low-frequency components eannot
be reduced.

In a mutually synchronized system, the low-frequency components
of jitter will affect the observed phase differences used to control the
clocks. Even if the variations in the received phase, after jitter reduc-
tion, are not themselves objectionable, they might cause objectionable
variations in clock phases through the cumulative effects of each clock
acting on the next. To simplify the analysis, only the effects on the
clock phases are considered; the immediate effects of jitter are omitted.

It is assumed that the effect of jitter on the link from the mth station
to the nth is to add a random component u,,,(¢) to the phase p,({ — 7...)
that would be received without jitter. This random component is
assumed to have the properties of white Gaussian noise and to be
independent on different links. Assuming that a jitter reducer can be
designed that will compensate the immediate effects of jitter, we
determine only the cumulative effect of jitter propagating through the
system as a result of its effect on the station clocks.

The autocorrelation function assumed for u,,, (1) is

Elu*, (D, (0 + )] = Ké(x). (84)

Here “E” stands for the “expectation’” or mean value, the star denotes
complex conjugation (immaterial here since u,,, is real), and 6(¢) is the
Dirac delta function. K represents the noise power density, assumed
to be the same for every link in the systems to be considered.

11.1 Clase 1: Phase-Locked Oscillator

As a standard of comparison, consider the effect of this jitter on a
simple phase-locked loop of gain A, in which an oscillator is controlled
by the signal received from an unperturbed source over a jittered link.
The equation for the output phase p(t) in this system is

P'(’) = Fl + >\(an + .‘-‘([) - p(t))v (85)

where F, is the free-running frequency of the controlled oscillator,
Fy the frequency of the master source, and the link delay is assumed
zero. Since the system is linear, and we are interested only in the random
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component of the output, we may set F, = F, = 0 without loss of
generality. Thus, the Laplace-transformed system equation becomes

sP(s) = AM(s) — AP(s) (86)
with solution
Ps) = ;i - (). 87)

We obtain the mean-square value of p(f) from its autocorrelation
function ¢(z) evaluated at * = 0. This is determined from the power-
density spectrum

B(w) = 2‘; " e@e e d (88)

by means of the inverse transformation

30

o) = j B(w)e'** do. (89)

The power-density spectrum of the input u(f), obtained from (84) and

an integral of the form of (88), is flat, equal to K/2x, for all w. The

output power density is obtained by multiplying this by the square

of the magnitude of the frequency response, obtained from (87):
MK _

2r | + N [

The inversion integral (89) is evaluated by means of a partial-fraction
expansion. The analytic continuation of (90) in the s-plane, s = jo,
has poles in both the right and left half-planes. Since (89) is a Fourier
(not Laplace) inversion, terms due to poles in the right half-plane will
be zero for positive z; thus, for positive xz we need only consider the
left half-plane. We obtain

Plw) = (90)

AK —Ar
olr) = ~5— (91)
and, as a limit,
AK
e0) = 5~ (92)

is the mean-square value of p(f). The rms phase error is of course the
square root of this.

11.2 Case 2: Bilateral Ring

We now consider a bilateral ring with flat filters and small delays.
Each station receives two inputs, each with jitter with the autocor-
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relation function (84), and therefore power density K/2xr. Each input
is multiplied by A/2, to produce an error-signal component with power
density (\/2)°K /2w, and when two independent components are added,
their power densities add to produce a total power density of 2(\/2)*K /2,
or N°K/4w. The effect of the two jitter components is thus equal to
the effect of a white noise component of power density A*K /47 added
to the free-running frequency. We ignore the steady-state components
and consider this to be the only input at each station. Thus, we assume
MK
2

Epi(v.(! + 2)] = 8(x). (93)

The variables w,(t) are derived from the »,(¢) as in (84); direct evalua-
tion gives

NK
EluX(hu,(t + x)] = [W 8(z), k=1 (94)
0, Io# L

This shows that the wu.(tf) are uncorrelated, and therefore (since we
have assumed Gaussian distributions) independent, each with power
density MK /4rN. It follows, since each ¢,({) depends only on the cor-
responding wu,(f) as in (38), that the g.(f) are independent. Denoting
their autocorrelation functions by y.(a), we obtain their power-density
spectra, using the frequency response given by (38), as

- MK /4xN
A+ jo — Ae 7“7 cos BN — jw — N’ cos 6]

Vi(w) = (95)

where the substitution (45) is used as an abbreviation.

When k = N, (95) indicates infinite power density at zero frequency.
The autocorrelation function yy(z) is consequently infinite for all z,
and in particular the mean-square value of gy(f) is infinite, so that
the mean-square value of each p,(t) is infinite. This occurs because
the random variations that the jitter induces in the system frequency
cause the system phase to execute a random walk. However, since gy (t)
contributes equally to every p,(t), it does not affect the phase differences
between clocks, and all other ¢.(f) have finite mean-square values.
It follows that while the phase of each clock tends to deviate indefinitely
far from that of an unperturbed clock of the same frequency, the
deviation between clocks in the same system tends to remain bounded.

We are primarily interested in the phase difference between the
clock at each station and the delayed signal received from an adjacent
station. The mean-square value of this phase difference will be denoted by
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CI’N.HII = E{[pn(!) - p"il(! - T)]u] . (96)

We express the phases in terms of ¢,({) using (36), writing the square
of the real sum of these complex quantities as the product of the sum
by its conjugate so that expansion of the product gives terms of the
form of the left side of (84); thus,

By = 2 E (4:(0) — Re [" ™ yu()]}. o)

Therefore, (95) should be used in an integral of the form of (89)
to determine ¢,(0) and y(r). The analytic continuation of (95) in the
s-plane has, in the left half-plane, all the poles of (41), and in addition
the reflections of these poles in the right half-plane. We continue to
use (23) as an approximation when A7 is small. The result is

[ 1 — cos b )]
MK exp [ 7“’"(1 ¥ At cos 6,

3 x = 0. (
vl 4N(1 — cos 8,)(1 + A7 cos 6,) vz 0 (98)
In particular, to the first order in Ar,
_ MK — A7 cos 6,)
%l(0) = 4N(1 — cos 6,) (99)

and, again using the linear approximation to the exponential,

- AK(1 — A7) )
vil(r) = 4N(1 — cos 6,) (100)

We now find, from (97), that

N — 1\ AK
B, e :x( v )—9—- (101)

&

The mean-square phase discrepancy observed in received signals is
thus substantially independent of the size of the system and sub-
stantially unaffected by small link delays. It is roughly equal to the
mean-square phase error, given by (92), that would be induced, by
the jitter in a single link, in a simple phase-locked oscillator with control
gain \.

11.3 Case 3: Unilateral Ring

In a unilateral ring, each station receives only one input, so that
the equivalent v,(f) has power density A’K/2r and its autocorrelation
function has twice the value given in (93). The appropriate frequency
response is given by (55), so that instead of (95) we get
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NK/2zN _
N+ o = NN = o — AT

We continue to use (23) to determine a simple approximation. The

result is
o[ L))
M "M e/

Vi(w) = (102)

¥ile) ~ 2N(1 — Ar)(1 — cos 6,) (103)
In particular,
 _AK(1 4+ A1)
wl0) ~ 2N(1 — cos 6,) (104)
and
o MK[1 4 A7)
) ~ 2N(1 — cos 6,) (105)

Equation (97) is equally valid for the unilateral ring as for the bilateral

ring, giving
AN =1
q:’u.n-l ~ hI‘( N )

A — 9
D1 R AK[(A \,——l) + QAT(N N :ﬂ (106)

The mean-square phase discrepancy is essentially twice that which
occurs in the bilateral ring. The link delay has a first-order effect
on the signal received at each station from the station to which it
transmits timing control because of the round-trip delay.

XII, SUMMARY AND CONCLUSIONS

In this section, I propose to extrapolate the specific results of the
preceding sections to general conclusions that, although not strictly
proven, seem quite likely to be true from a practical standpoint.

It was shown in Section IIT that a system that satisfies the reciprocity
condition and has flat filters and no delays will have a nonoscillatory
transient response. The response was described more specifically in
later sections for specific configurations: 2-station systems, fully inter-
connected systems, and bilateral rings and chains, all of which met these
conditions. These configurations appear to span the extremes of practical
systems.
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The effect of delays was determined specifically only for these special
configurations and for the special case of equal delays and flat filters.
The effect was shown graphically for Ar = 0.1; it appeared to be small
and unobjectionable. Fig. 6 shows that at all stations, over the time
range shown, the response to a transient disturbance is actually smaller
when delays exist. At the zeroth (or N'th) station, where the disturbance
originates, this can be attributed to the short period after the disturb-
ance during which the neighboring stations remain undisturbed and
are, therefore, reliable indicators of the original state. At other stations,
the appearance of smaller disturbances is due in part to the delayed
peak of the response.

I propose to conjecture that the dynamic effect of delay in any
reciprocal system with flat filters will be equally unobjectionable as
long as the product of the largest filter gain and the largest single link
delay is less than 0.1. This would be a unjustified extrapolation from
a purely mathematical standpoint, but it seems reasonable in the light
of the physical interpretation suggested in the preceding paragraph.

The effect of filters with other than flat frequency response has not
been shown at all in terms of transient response. Two aspects of this
question appear important. In the first place, it may be possible to
obtain some improvement in transient response by appropriate filter
design, but further analysis appears necessary to answer this question.
In the second place, assuming that the flat filter gives a satisfactory
response, the effect of high-frequency cutoff, which is inevitable in
a practical system, must be estimated. A tentative answer to this
question can be obtained by examination of the expressions for fre-
quency response P(s) developed for specific configurations. In all
these expressions, the system response is substantially the same as
in the flat-filter case as long as the filters H,(s) remain substantially
flat until the frequency s becomes large compared with the zero-fre-
quency filter gains \,. This condition establishes an approximate
bandwidth requirement for the filters. The extrapolation to arbitrary
configurations is proposed in this case also.

The effect of departure from the reciprocity conditions is illustrated
in only one case: the unilateral ring. Here, although the departure
from reciprocity is the greatest possible, the effect on the transient
response is mild. The magnitude of the response, and its rate of sub-
sidence, are substantially unchanged; the principal effect is the preces-
sion of the disturbance around the ring. The oscillatory components
in the response can be associated with this precession.

Extrapolation of this result appears uncertain. The reciprocity condi-
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tion can be stated in terms of the equality of the products of averaging
cocfficients in opposite directions around any loop. It can easily be
conjectured that if the product of the averaging coefficients around
any loop is much larger in one direction than the other, there will
be a tendency for disturbances to precess around the loop in this direc-
tion, thereby generating oscillatory components in the response. On
the other hand, it is hard to imagine pure precession in a multiloop
network. A possible answer is suggested by the argument in Section III,
in terms of pole loci, suggesting that a considerable departure from
reciprocity could be tolerated before oscillatory components began
to appear.

This extrapolation is suggested only for the case of flat or nearly
flat filters and zero or small delays. For other cases, departures from
reciprocity may give rise to a stability problem. This is suggested
by the analysis in Section VIII of the discontinuities in the frequency
response of an infinite unilateral ring, which showed that the stability
condition that has been shown in the general case only to be a sufficient
condition is in this case not merely sufficient but necessary. The latitude
for filter shaping may be smaller in the nonreciprocal case, limited
not simply by instability but by the deterioration of transient response
that generally accompanies an approach to instability.

The analysis of jitter response shows that in certain representative
cases the effect of jitter does not accumulate in a large system. This
gives a definite negative answer to the question of whether cumulative
jitter necessarily occurs in a large system. It seems reasonable to
conjecture that this conclusion is independent of configuration, and
remains true for substantially flat filters and small delays, but less
reasonable to suppose that it will remain true for arbitrary filters.

Nothing in this study should be construed to indicate a preferred
configuration for a practical system. Full or nearly full interconnections,
nearest-neighbor connections, branching networks, or other forms may
be appropriate. In particular, the apparent superiority of the fully
interconnected network from the standpoint of transient response must
be tempered by the practical considerations against setting up a large
number of very long connections.
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APPENDIX

Reciprocal Systems in the Steady State

The assumption of zero initial conditions, used in the study of tran-
sient behavior, must now be dropped. Thus, the transformed (2) are
no longer valid, but the original equations (1) may be used. In the
steady state, the rate of change of phase at every station is equal to
the common system frequency f,

i)y =4f, =n=1---,N (107)
so that
(D) = ft + ¥u, —w <1< @, (108)

Thus, in the steady state, the v,(f) being constant, the system equations
(1) become

f=va+ N 2 Cn(¥m — Yo — fTum), n=1,---,N. (109)

m=1

The general solution to these equations is the expression given by
Gersho and Karafin' in terms of cofactors of a matrix derived from
the a,,, . In the reciprocal case, let the nth equation in (109) be multiplied
by C, and the equations be assumed over all n; when the reciprocity
condition in the form of (8) is applied, all the terms in the phases ¥,
drop out and one gets

N N N N
f E C" = E Cﬂvﬂ - f E xVIC‘VI E a’nmfnm- (110)

n=1 n=1 m=1

This can be solved immediately for f, the expression being similar
in form to the solution reported by Gersho and Karafin, except that
the C, , which are easily determined by (9), replace the matrix cofactors.
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