Deformation of Gas Lenses by Gravity

By D. GLOGE
(Manuseript received September 14, 1966)

Gravity forces cause distortions in tubular gas lenses. A theory is derived
here which yields excellent quantitative agreement with measured dislortions
Jor various tube lengths, diamelers, and gases. It is shown that in a gas
lens of optimum design the displacement of the optical center has a maximum
al the end of the lens. The amount of displacement increases with the fourth
power of the tube diameler and with the square of the gas pressure.

I. INTRODUCTION

If a cool gas is blown into a hot tube (Fig. 1), the gas heats up first
at the wall of the tube and remains cool longer at its center. The density
therefore, is higher in the center of the tube and decreases toward the
wall. The increase in density is accompanied by an increase in dielectric
constant. In this way the gas acts as a positive lens.'"*

At the same time, however, the cooler gas tends to sink down because
of gravity, thus causing an asymmetric density profile in a horizontal
tube.® Though a simple approach already gives an estimate of this
effect,” a more rigorous theory is derived here using a perturbation cal-
culation which determines the transverse convection currents from the
unperturbed temperature profile and then uses the currents to correct
the temperature profile.

II. TRANSVERSE CONVECTION CURRENTS

The tube walls are at a temperature 7w and AT degrees warmer than
the entering gas. Heat diffuses toward the axis and determines the tem-
perature field. Using the coordinate system shown in Fig. 1, the tem-
perature field may be approximated by’

2 2 2 o\
T = T"-— ATI:]. _23: :;y _'_(CL ;';y) ]32/.; (1)
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Fig. 1 — Convection currents and temperature distribution in a gas lens.
where a is the tube radius and s a decay length given by the formula

2
av,,
5T 73 @
v., i the gas velocity along the axis and « the thermal diffusivity defined
as the ratio of heat conductivity « to heat capacity:

K
=X 3
“ Py ®)
The heat capacity is written here as the product of density p and specific
heat at constant pressure.

The temperature is related to the density p and the pressure p by
the gas equation
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p = RpT. (4)

The density determines the gravitational forces gp which drive the gas
particles in the transverse direction. The transverse components of the
velocity field v(x, ¥, 2) can be found from Newton’s Law

g0 = madp — o Vv + p O, 5)

where » is the kinematic viscosity determining the frictional forces. The
acceleration is described by the total differential dv/dt and for the steady
state takes the form

dv
T (v grad)v. (6)

In the problem under consideration the gas may be treated as a
quasi-incompressible (Boussinesq) fluid. That means that variations
of density may be neglected, except insofar as they modify the action
of gravity. Forming the curl of (5) therefore, yields

curl (gp) = —wvp eurl Vv + p curl g—:- (7

Using (4) and rearranging (7) one finds

g X (gmd T _ &Ml_p) -

1 eur 19V
T » v curl curl eurl v + curl (8)

di

Here grad p/p can be neglected compared with grad 7/T, and T in
the denominator will be replaced by the mean (absolute) temperature
T,. Finally, by inserting (6) one finds

Tl—' (g X grad T') = » curl curl curl v 4+ curl (v grad)v. (9

To solve this equation, a tentative velocity distribution is introduced
which represents the flow lines shown in Fig. 1. The unknown coefficients
are chosen in such a way that the equation

divv =0 (10)

is fulfilled, which assumes that the gas is incompressible. Then the
velocity components
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v = — i@ — 2 — y)@ — 2" — 5y)
v, 2 2 i
v, = —4 Gayla — o — v (11)

Ve :
vz — ?(az _ 3:2 _ yZ)

result which leaves only the coefficient », unknown, since the velocity
v,, is determined by the forced laminar flow in the tube. v, is the vertical
gas velocity at the tube center caused by the gravitational forces. It
may be assumed to be much smaller than the longitudinal velocity v.,.
Though v, is a function of z the variation of v in the z-direction is neg-
ligible compared to its variation in the cross-sectional plane and has
to be considered only in the acceleration term where dv,/dz occurs
multiplied with the velocity v,..

With these approximations, », can be determined by inserting (1)
and (11) into (9) which yields

AT —z/8, Ufu %.
T. e 'y = 192 oY + 18u,, % (12)

Third- and higher-order products of z and y are neglected in this equa-
tion since they are only important at the wall of the tube and contribute
little at the tube center.

Equation (12) is a linear inhomogeneous differential equation in z
with the solution

4g

_gAT @ s e e
V= 488_q(e e, (13)
where
3 d
qg= 33 5 Vo - (14)

A discussion of (13) is postponed in order to proceed with the cal-
culation of the lens disturbance by using the derived convection cur-
rents to correct the temperature profile which, in turn, gives the density
distribution and the lens profile.

III. DISPLACEMENT OF THE OPTICAL CENTER

The gravitational forces cause a continuous flow of cool gas toward
the bottom of the pipe, which distorts the temperature profile more and
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more in the way shown in Fig. 2. The growing temperature gradient at
the bottom, however, will increase the heat diffusion toward the center
and counteract the convection effect. The equality of both effects is ex-
pressed by the equation

aV'T = vgrad T (15)

which determines the actual temperature profile under the boundary
condition that T = T at the tube wall.

Considering that the temperature function for axial direction is
much less curved than the radial one, 8*7/dz° may be neglected and
(15) separated with respect to z.° This yields

T & aT oT T—-1T,
a(gﬁ+a;;)=v;*f+v,a—?j+vz——", (16)

8

where T' — 7'y is an exponential function of z as already introduced by
(1) for the undisturbed temperature profile.

No straightforward solution of (16) is known. Assuming, however,
that the gravity effect, to first order, tilts the temperature profile in the
x-direction as shown in Fig. 2, the amount of this disturbance ecan be
calculated. The assumption implies that by transforming T'(z, y, z)
into new coordinates

E=x—-Tw—-1); 2=y, =2 (17)

the undisturbed profile can be regained, which in the following is denoted
by 8(¢, », {). Since this is symmetric with respect to £, the corresponding
transformation in (16) must generate a differential equation for 6
which contains only even terms in £, The requirement that the odd terms

T £

+a

f Tw

R L——— (Tw- 6); =c‘__’i

Fig. 2—The temperature function 7'(z) and its transformation into a sym-
metrie funetion 6(x — &7).
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cancel yields the following equation for é:

@)’ 1_, 90 6 — T 30
20:6(65 Pl PR Ty (18)

The locus of the minimum of the temperature 7'(z) is of particular
interest, for this is the optical center of the distorted lens profile. Fig.
2 shows that this center occurs at a distance

d=8Tw — 0)i-o (19)

below the tube axis. Using for # the undisturbed temperature profile
given in (1) and solving (18) for 8(Tw — 6) at ¢ = 0 yields

d = U_"a_..__. (20)
2% 4 85
8§ a

By inserting (2) and (3) into (20) one finally finds

4
-y == 1 —z/s __ —z/q
d 750 & T, s — q(e ). (21)
The diffusivity e and the viscosity » for perfect gases are related by
Eukens formula’
a 1 c,
=il-s2), @
¢, being the specific heat at constant volume. As Table I shows, the
decay lengths s and ¢ given by (2) and (14) differ very little. Since (21)
is not defined for s = g it is more convenient to use the following ap-
proximation for (21):

_ 1 ga' ATz ..
d=70a T,5° ° (23)

which is valid for z < 2sq |g — s|.
In Fig. 3 the displacement of the center of the lens profile is plotted

TasLE I
‘ ep/ey alv q/8
He 1.66 1.55 1.03
N, 1.41 1.35 0.93

CO, 1.31 1.30 0.89
CH, 1.31 1.30 0.89
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Fig. 3 — Displacement of the profile center in a tubular gas lens of #-inch i. d.
for flow rates of 0.5, 1, and 3 liters per minute using air. (e« = 0.22 em?®/s). Meas-
ured data by DeGano.*

versus the distance from the tube input for flow rates of 0.5, 1, and 3
liters per minute. A tube of 3-inch diameter and 100°C wall temperature
is assumed. The gas enters at room temperature. The mean temperature
during the process is assumed to be T, = 50°C. The gas is air with a
diffusivity @« = 0.27 cm®/s.

All ecurves show a linear increase of the displacement at the tube input,
determined by the transverse acceleration of the gas. Further from the
input the displacement follows the exponential decay of the temperature
profile. The maximum displacement occurs at z = s. Measurements at
the end of a 16-cm gas lens using the mentioned parameters are in fair
agreement with the theory.®

In Fig. 4 the displacement is shown for a tube of }-inch diameter
and two different gases: CO, with & = 0.125 em’/s and N, with & =
0.25 cm®/s. The temperatures are the same as in Fig. 3. The flow rate
is 1 liter per minute. In this case, data are available for various tube
lengths.® They show an excellent agreement with the predicted behavior
of d versus z.

The focal length of the tubular gas lens has a minimum if the flow
rate is chosen in such a way that s equals the tube length. The maximum
displacement occurs at the end of such a lens and has the value

1 ga® AT )

dlll:ll = -

2040 & T

(29

A more useful measure for the gravity effect is the distance D by
which a light beam has to be displaced off the tube axis to pass the lens
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without deflection. Integrating at x = D over the tube length L one
finds D from the requirement that the total deflection cancels:

[ %
o Jox
The development of the (disturbed) temperature field 7' about the axis
yields for small distortion

dz = 0. (25)

z=D

L
f [D — d@]e" dz = 0; (26)
0
and finally, by using (23) one has

1 gat 1 (s + 1je .
3000 o 1 — e ™

D (27)

In Fig. 5 the displacement D is plotted versus the flow rate for CO.
in a 7-inch tube assuming the same temperatures as in Figs. 3 and 4.
Data measured by Steier® show good agreement with the theory. For
L>s

4
D1 9% (28)
23

is a good approximation. According to this formula, the optical center
of a CO, lens of optimum design would occur outside the tube if the
tube diameter is larger than 1 em.
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Tig. 4 — Displacement of the profile center in a tubular gas lens of %-inch i. d.
for a flow rate of 1 liter per minute using CO: (@ = 0.1 em*/s) or N: (« = 0.2
em?®/s). Measured data by Steier?
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Fig. 5— Displacement of the optical center of a tubular gas lens using CO:
and a tube of 7 inches long and %-inch diameter. Measured data by Steier®

IV. CONCLUSIONS

The calculations show that the temperature distribution in a gas-
filled tube undergoes a distortion which increases with the fourth power
of the tube radius. A square law dependence on pressure is predicted for
the range of 0.05 to 50 atmospheres where the thermal conductivity is
independent of the pressure and therefore, the diffusivity e« « 1/p.

As a measure of the distortion, the displacement of the effective
optical center in a tubular gas lens is calculated. Using CO, at room tem-
perature and a tube of 10-mm diameter at 100°C wall temperature the
optical center oceurs at the bottom of the tube.
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