Statistical Analysis of the Level Crossings
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(Manuseript received September 30, 1966)

A theoretical analysis of signal fading using an energy density antenna
is developed and compared with that from an isolropic anlenna. The
energy densily anlenna provides a signal proportional to the energy density
of the mobile radio field. The number of crossings that the signal makes of
a given signal level and the average duration of fades below a given signal
level have been derived theoretically for these two cases using a simple sla-
tistical model. Comparing the number of level crossings of the electric field
with that of the energy density, 1t is shown that the energy densily fades less
frequently than the electric field by al least a factor of two. The average
duration of fades of the electric field is greater than that of the energy density
only for lower signal levels. These resulls are in reasonable agreement with
expertmental measurements.

I. INTRODUCTION

The study of signal fading appears to be very important to mobile
radio systems. When a steady sine wave is sent out from a fixed station,
the signal received by a mobile receiver in motion fluctuates, or, in
radio jargon, fades. The received signal fluctuates more rapidly as both
the frequency of the transmitted wave and the speed of the mobile
radio inerease. For a field received by a moving isotropic antenna, the
maximum fading frequency f,, as Ossanna' has pointed out, is [, =
2V /X, where V is the speed of the mobile radio and X is the wavelength
of the steady sine wave. For instance, at 836 MHz and a speed of 15
miles/hr, the signal fades at a rate of about 40 times every second and
is a serious disturbance to the mobile radio communication.

There have been many investigations of the fading problem. Aikens
and Lacy® made a test using 450-MHz transmission to a mobile receiver
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in an urban area. Bullington® investigated radio propagation variation
at VHF and UHF. Young®* pointed out that for the test samples of signal
strength taken over a small area, the amplitude follows a Rayleigh
distribution to a fair approximation. Also S. O. Rice’ pointed out that
the fluctuations of a received radio signal have the same behavior as
the envelope of a narrow-band Gaussian noise. Recently, Ossanna'
measured the power spectra of a mobile radio fading signal. They all
treated the signal as obtained from an isotropic antenna.

In this paper, a theoretical analysis of fading using an energy density
antenna’ is developed and compared with that from an isotropic antenna.
The concept of using the energy density antenna to reduce the effect
of signal fading was suggested by J. R. Pierce.” It will be discussed in
detail later. The number of crossings n(¥) that the signal makes of a
given signal level ¥, and the average duration of fades t(¥) below a
given signal level ¥, have been derived theoretically from a statistical
model using Gaussian random amplitudes and equal angles of arrival
of an infinite number of incoming waves. The two statistical factors, n
and t, first expressed by Rice,® can describe the property of individual
signal fading very well. In this paper, n and t for the isotropic antenna
will be compared with the values for the energy density antenna. These
theoretical results also will be compared with the experimental data.

II. THE METHOD OF OBTAINING THE EXPECTED NUMBER OF LEVEL CROSS-
INGS AND AVERAGE DURATION OF FADES

From Kac's® and Rice’s® paper, a brief derivation of the expected
number of level crossings n(¥) of a given signal level ¥ and average
duration of fades below a given signal level ¥ is as follows. We assume a
random function ¢ which is statistically stationary in time, and for
which the joint probability density function of ¢ and its slope ¢ is
p(¥, ¥). Any given slope ¥ can be obtained by

)= )

1
T

where 7 is the time required for a change of ordinate dy, as shown in
Fig. 1. The expected number of crossings of a random function ¢ in
the interval (¥, ¥ — dy) for a given slope ¢ in time df is

the expected amount of time spent in the interval
dy for a given ¢ in time dt

the time required to cross once for a given ¢ in
the interval dy at ¥=¥
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. Fig. 1—The notation used in obtaining the expected number of level cross-
ings n(¥) and the average duration of fades t(¥).

E() _ p(y, Y)dydydi
r ¥
¥

The expected number of crossings for a given y in time T is

= yp(¥, Y)addt.  (2)

at y=¥

[ o, gt = dpew, hasr. ©
The total expected number of upward crossings in time T is
N =1 [ dp, vy @)
The total expected number of crossings per second is
nw) = 200 = |7 yp(e, iy, ©

Since the expected number of crossings at a particular level ¥ per second
can also be stated as

the expected amount of time where the
function ¢ is below level ¥ in one second

the average duration of fades below level ¥

n(¥) =
Py <W)
hence, the average duration of fades below level ¥ is

Py < W) @

) = "W
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Hence, the results will be derived from the joint probability density
function p(y, ¥), and the problem is to derive this probability density
function for the various signals.

III. THE EXPECTED NUMBER OF LEVEL CROSSINGS AND THE AVERAGE
DURATION OF FADES FOR A VERTICALLY POLARIZED WAVE

In order to obtain the expected number of level crossings of a given
signal level R and the average duration of fades below a given signal
level R for the three field components of a vertically polarized wave,
first we need to specify the forms of the three field components. Then a
statistical model of the field components is assumed. From such a
model, we find the joint probability density functions of amplitude &
and its slope R for the three field components. Finally, we use (5) and
(7) to obtain the result for each field component.

Following Gilbert'® a vertically polarized plane wave E, traveling
in a direction u in the (z, 3) plane is assumed. The three field compo-
nents referenced to a receiver moving with velocity vector V can be

written
E, =e, = A, exp (—jBu-Vi) exp (jwt) volt/m
H, = n(h, amp/m) = A, sin 6, exp (—jBu-Vi) exp (jwi) volt/m
H, = 3(h, amp/m) = — A, cos 8, exp (—jBu-Vi) exp (jwf) volt/m,

where § is a wave number and A, is a complex amplitude of an electric
wave propagating at a direction u. u is a unit vector related to an angle
6, between the positive z-axis and the unit vector itself. 4 is free-space
wave impedance. The time variation exp jwt can be dropped out of
three field components for simplifying the derivation. Moreover, from
now on, we will treat the units of all three components K, , H., and
H, in volt/m which will also simplify the calculation.

When N vertical polarized waves coming from N directions are re-
ceived by an isotropic antenna of the mobile radio, the three components

become

N N
E, Z A, exp (—jsu-Vi) = Z‘, A, exp [—j8Vt cos (6, — a)] (8)

N
H, = Y A,sin 6, exp (—jfu-Vi)

u=1

= 3 A,sin 6, exp [—i8VEcos (6, — )] (9)

u=1
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N
H, = Z — A, cos 8, exp (—jBu-Vi)

u=1

N
= — z A, cos 8, exp [—j8VE cos (6, — a)], (10)
u=]1
where 6, is the angle between the positive z-axis and the direction of
uth wave u, and 0 < 6, < 27, a is the angle between the z-axis and the
velocity V, and 0 £ « = 2. Both 6, and & are shown in Fig. 2.

In this paper, a statistical model is used as follows: The complex
amplitude A, can be separated into a real and an imaginary part A, =
R, + jS., hence N incoming waves have N real values of R, and S, .
We suppose all those 2N real values are Gaussian independent variables
with mean zero and variance one. Also, we assume the N waves have
uniform angular distribution, i.e., the kth wave u, has an angle of arrival
0, = 2xk/N. Moreover, in this paper an infinite number of multiply
reflected waves (N — =) are assumed for finding the expected number
of level crossings n(R) of a given signal level R, and the average duration
t(R) of fades below a given signal amplitude R.

3.1 Finding the Values of n(R) and t(R) from the E, Field

First of all, we need to obtain the joint probability density function
of signal amplitude R and its slope R for the electric field component
E, using the statistical model we mentioned previously. We start from
(8). The alternate form of (S) can be written as

E, = i (R. + jS.)[cos {8V cos (6, — @)} — jsin {8V cos (6, — e}].
(11)

V = VEHICLE VELOCITY

U = DIRECTION OF PROPAGATION OF
A RANDOM FIELD COMPONENT

Fig. 2— The coordinate system,
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Equation (11) can be separated into real and imaginary parts

E; = Xl + .?Yl . (12)

The real part of F. is
N
X, = X (R, cose, + S.sing,) (13)

p=1

and the imaginary part of E, is
N
= > (S.cosg, — R,sing), (14)
u=1
where

¢, = BVicos (8, — ). (15)

We assume that all N values of R and S in (13) and (14) are time in-
dependent. Then the derivatives with respect to time of (13) and (14)
are

N
X, =BV X (—R.sing, + 8. cos¢,) cos (. — @) 16)

u=1
N

Y, = BV 2. (—8,sin ¢, — R, cos¢,) cos (6, — ). (17)
u=1

The mean values, variances, and covariances of X, , ¥, X,,and Y, are
m; = (X1) = (Y1) = (Xl) = (Y,) =0
=(X})=(¥Y})=N forany N (18)

M= (X = () = @Y for Nz3 19)

and
(X,V)) = (X,.X)) = (V.X)) = (1, 7)) = (X.7)) = (X, V) = 0.

The above results are shown in the Appendix.

From the central limit theorem, it follows that X, , ¥, X,, and Y,
are four independent random variables which are distributed normally
as the value N approaches infinity. The probability density functlon
of four independent real random variables X,, ¥, X,, and ¥, is"

pX,, T, .Xl ’ Yl)

_ 1 7(X1+Y +Y“)}
g e () @

11




SIGNAL FADING 423

where the determinant |u| of the covariance matrix is
Ni
|u| = (uiph)® = ’Z‘(ﬁv)i-

We may introduce the concept of the envelope

E1=Xl+jY1=T¢L"hc

The quantity r, is the envelope and 5, is the phase, both of which are
slowly varying functions of the time. Then,

X, =r, cosnq, ; Y, =r,sin g, (21a)
Xl = 1..0 cos MNe — rl’il Sin "1- ; Il’l = i‘a Sin M. + Tlﬁl’ cos Ne (21b)

The Jacobian of the transformation from (X,, Y., X,, Y,)-space to
(Te, Mo, Fo, no)-space i | J | = 72

Therefore, the change of variables gives the probability density the
form

p(Xl ) Yl ) Xl ) Yl) = T':’]‘(r- 1 77- ‘f-l ’ ﬁ-)

= p(rd 1 nd ITI‘S ¥ 1‘16)

o {_1 (i rin. + ff)} 99

o w PP T2 + M1 @
where q(r., 7., #., %,) is the density obtained on substituting for
X,, Y,, ete., their values in 7,, 7., ete., obtained from (21a) and its
time derivative (21b). To obtain p(r,, #.), the probability density of
the envelope and its rate of change, we must integrate over 5, and 7, ,
the range of which are, respectively, (0 to 27) and (— « to 4+ «). From
(22) we obtain

p(r‘ s T", —_——

. 1 (rf i )}
ex 5 7 - 23
\/2#}1:1#“ P {2 a1 T Ky ( )

It is observed that the expression on the right of (23) is independent
of t. Hence, the expected number of level crossings n(R,) at a given signal
amplitude (r, = R,) can be obtained from (5) by using p(&. , .) in (23).

7
Hia Ra e

o0 R2
k., =f rp(R, |, T)di, = \|— —F——— & (——*) 24
n( ) 0 p( ?‘) " M1 ‘\/2—11-;1:8‘(}) 2un ( )
Now the variance of 7, is

<Tf> = (Xf> + <Y?> = 2u,, = 2N.
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Let
B, = R/VG) = R/reemsy = R/ V2N. (25)

Substituting the values of variances p;, and uf, from (18) and (19) into
(24), also applying the relations in (25), we obtain

8V
\ 2

Equation (26) is plotted in Fig. 3 where the abscissa is £, in dB (20 log
R.) and the ordinate is (v/2r/8V)n(R.).

The average duration of fades t(R.) of E, can be obtained as follows:
The probability that the envelope r, is less than a given amplitude level
R,is

n@) = PR, exp (— ). (26)

Pe) <R = [ p()ar), @1,
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Tig. 3 — Comparison of the level crossing rate of the electric field with that of
the energy density.
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where p(r,(1)) is the probability density obtained from p(X,, ¥,). By
changing the variables, we obtain p(r,(f), 7.(t)) from p(X,, Y,). Then
we integrate p(»,(t), 7.(1)) over from 0 to 2 to obtain"

r,(t ri(t

) = "0 exp | 20 28)
M1 Hi1

where g, is obtained from (18). Substituting (28) into (27) we get

PG.(l) <R) = 1 — exp (—R/2u) = 1 — exp (—F).  (29)

The expected number of times per second that r,(f) passes upward (or
downward) across the level R, is obtained from (24). The average dura-
tion of fades during which r,(t) < R, may then be obtained by sub-
stituting (24) and (29) into (7)

Per.() <R) _ PE() < R) Vorl

t(R,) = () nB) " v [exp (R?) — 1] (30)

which is shown in Fig. 4.

3.2 Finding the Values of n(R,.) and t(R;.) from the H, Field

Tollowing the same steps as above, we are going to find the joint
probability density function p(r;, , #..) of the envelope 7, and its slope
42 of the H, field component first. From (9) we find the real and imagi-
nary parts of H, which are expressed in the Appendix. The means,
variances, and covariances of four real Gaussian random wvariables
shown in the Appendix are

my = (Xo) = (V) = (X,) = (Ys> =0

o=

U = Xi = Vi = for any N

.0 . N a
uh = X; = Y§=§(BI)'
‘[ecos® @ + 3sin*a) for N =3 and N=5

(X.Y,) = (X2X2> = (Xz?z} = (YzXz} = (YzY2} = (Xz?z} = 0.

The probability density of the envelope of H, field and its rate of change
p(rsz , ™) is then obtained by following the same procedure used in
deriving p(r, , #.).

. 1 . { 1 (riz ﬁ,)}
x99 Tha) = — — €X] -9 7 ' 31
p(rh i) \/27”.122 Moz exp 2 \ptpy T #52 ( )
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Fig. 4— Comparison of the duration of fades of the electric field with that of
the energy density.

Hence, the expected number of level crossings n(R,.) at a given signal
amplitude (r,, = R,.) can be obtained from (5) by using p(Rs: , 1)
in (31)

= . w( R R,
nR,=fr,R,.',d,=1’@(-——— ,__) (— ) 3
( b 1] h p( A Th) T Moo 21”_:22 exp 2#22 ( 2)
The variance of r,, is

{rie) = (X2) + (Y2) = 2p2 = N.

Let

= 2. (33)
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Substituting the values of the variances u,, and u, into (32) and replac-
ing N by {r;,) we get
BV [eos’ @ + 3sin’ a o
‘n(R.u) = m 9 R,. exp R;.

Vv ~
= % V1 — 2 cos 2a B,. exp — K. . (34)
Equation (34) is the same form as (26) except for a multiplying factor
which is a function of « shown in Fig. 5. Hence, n(R,.) is also a function
of angle «. Thus, when the mobile is moving along the z-axis & = 0 or
T, and

gV 1 )
n(R,) = ——R,.. . 34a,
(R ‘\/ﬂ \/E hz €XP h (34a)
which is the minimum value of n(&,.). When the mobile is moving on
+y-axis @« = +x/2, and

ni) = 2 N (340)

which is the maximum value of n(&,,). The ratio of level crossings for
these two cases is

n(B,)(a = 0°, 1809) 1

= —= 34c

n(Br) (@ = £90°) V3 (@40)

m
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Fig. 5 — The effect of the angle & on the ratio of level crossing rates of the
electric field to the z-component of the magnetic field.
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For & = +45° and £135°,
8V
ﬂ(Rk:) = \/—th exp Rim (34d)

which is the same expression as (26) for R, . However, although (34d)
and (26) are the same form, the magnitudes £, and R,. are different,
since (%) in (25) is equal to two times (r3,) in (33).

The average duration of fades t(R,.) of H, can be obtained without
difficulty. It is easy to prove that the expression for the average length
of the intervals during which r,. < R,. will have the same form as
t(R,) in (30), except for a multiplying factor that depends on «, as
follows:

() = 2 L
ﬁV Vv1-—-1 cos2ou?i’;.r

When e = 0° and 180°:

[exp (B3 — 1]. (35)

\/ﬂ\/—

t(R,.) = B [exp (B — 1] (352)

which is the maximum value of t(R,.), and when a = +90°:

\/27r 2

t(f.) = xp (B) — 1] (35b)

which is the minimum value of t(&,.). The ratio of level crossings for
these two cases is
t(B1.) (e = 0°, 180°) _
t(Ru) (e = 90°)

(35¢)

which is the inverse of (34c). This tells us that when n(&,,) reaches a
maximum value, the average duration of fades reaches a minimum value
and vice versa.

For a = +45°, £+135°

t(R) = ﬁ; ET [exp (Br) — 1] (35d)

which is the same form as the expression for t(£,) in (30). We may say
at these angles @ = +45° and =135°, the E field and the H. field have
the same average duration of fades below the level R, =R, .
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3.3 Finding the Values of n(R,,) and t(Ry,) from the H, Field

Similarly, we obtain n(R,,), the expected number of level crossings of
a given signal level R,, from the H, field. It is very easy to see that
n(R,.) and n(R,,) are the same forms of distribution as expressed in
(34), except for the multiplying factor that depends on «. The average
duration of fades t(R,,) during which r,,(t) < R,, is also of the same
form as t(R,.) in (35) except for the multiplying factor depending on «.
The variances usy and u}, are given in the Appendix. We may thus write
directly

nB,) = m;r V1 + } cos 2a B, exp —F}, (36)

o

~ 2 1 1 -
tR = _ — —— b, Rv -1 , 37
() BV A1+ % cos2al?y, Lexp (Fh) ] (87)

where

E — JR-‘iu R-’in .
hv \/ <?‘iv> Tﬁy(rmsl

It is obvious that
AR om0t 150 = B2 o ooe
1(Rhy) a=s00® = N(B1)azo°.150°
when B,, = F...

IV. THE EXPECTED NUMBER OF LEVEL CROSSINGS AND THE AVERAGE
DURATION OF FADES OF THE SIGNAL FROM AN ENERGY DENSITY
ANTENNA

J. R. Pierce” has suggested utilization of the energy density concept
as a possible means for reducing the signal fading in mobile radio. If
we pick up the electric field e and the magnetic field 4 in free space and
amplify the two fields by their appropriate relative gains, square and
add these two fields, we obtain a signal proportional to electromagnetic
energy density

W = i(e’ + uh?), (38)

where ¢ is dielectric constant, and g is permeability. This idea can be
realized by using a special antenna® which receives three field compo-
nents e, , h., and h, simultancously. The three signals enter separate
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square-law detectors, and the three detector outputs are added to obtain
the energy density,

W = 3 le.] + w [h]* + u [B]).

We may express W in a different form

s [(JB,F’ + % [h.|* + Ee |h.,[2) voltz/m"’:l

=3

£ (1. (volt?/m®) + |HLI" (volt®/m) + |HL (volt?/m)]

Il

5 [ (volt?/m?)] = *7 Joules/m®. (39)

We define ¢, as a normalized energy density
Vo = B[ + |H.]" + |H,[" volt’/m’
Vo + ¥+ ¥ (40)
= X1+ YD)+ (X: + Vo) + (X5 + Y3). (41)
Gilbert'® has done some work on finding power spectra in energy re-

ception for mobile radio. His work provides very useful background

for this paper.
In this section, we are attempting to derive the number of crossings

n(¥,) at a given level of signal magnitude ¥, using (5) in Section II.
First of all, we need to find the joint probability density function
oY, , ) of signal ¢, and its slope ¥, . Since ¢ is a function of
(X,, Y, X, Yo, X5, ¥3), and ¥, is assumed to be a function of
(o , ¥hs, ¥ay), we will find out that the variables (X,, ¥, X,,Y,,
X,, Y,) and ($., ¥, ¥u) are two independent Gaussian variable

groups. Then,
plX,, Vi, Xo, Vo, X, Ya), ¥e(du s ¥ae s )]
=plY(X,, ¥V, X2, Vo, X Y] X pldu(de s ¥ae s Y]
= p(¥)p(¥). (42)
A brief sketch of the method of finding p(¢,) and p(,) is discussed below.

4.1 To get p(¥.)
Since we know from (41) that

=X+ N+ X+ +E+T)



SIGNAL FADING 431

and since X, , ¥, --- are independent Gaussian variables, it is easy
to get p(y,) from the Fourier transform of the characteristic funection
M, (v), where M, (v) = My .My .My .My, --- ete., and we can get
these M’s very easily.

4.2 To get p(y,)

All the terms in the summations of equations (79), (80), and (81)
which represent ¢, , ¥, and y,,, respectively, in the Appendix are
statistically independent. Then by the central limit theorem these
three variables ¢, , ¥u., and ¥, are Gaussian distributed. Hence, the
joint probability density function p(¥,, ¥4, , ¥.,) can be established.
Since ¥, = ¥, + ¥u. + ¥, We can get p(¢,) from the Fourier transform
of the characteristic function M, , but M ; must now be obtained from
the general definition

w0 = Bl = [[[ o, b dddbadbdds,  @3)

since we have no simple way of getting M, , M;,, and M, separately.

Let us introduce a new variable ¢ which can be any one of the above
Gaussian random variables. It has a zero mean and variance g. Then
the probability density function of the square ¢ is'

oy = ) = Ao (-9) (1)

fory > 0. The characteristic function corresponding to this probability
density is

MG = [ pldy = (1~ 2wy (45)

From the Appendix we know all six variables X, , ¥, , X, , ¥, , X3 and
Y; are independent Gaussian variables. It is not hard to see that the
Xi, Yi, X3, ¥i, X3, Y] are independent variables by obtaining
p(XT, Y, X2, Y;, X7, Y3 from the Jacobian of the transformation'®
of p(X,, Y,, X,, ¥», X;, ¥;). Then X} and ¥? have the same char-
acteristic function (1 — 2ju,,») . Also X2, Y2, X2, and Y73 have the
same characteristic function (1 — 2 u,.0) 1. Thus, by the addition theo-
rem'® the sum vy, which is defined in (41) has the characteristic funetion

1
(I - 2].#“1))(1 - 2]'#221:)2. (46)

M, (v) =
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Then the probability density function p(y.) can be obtained from the
Fourier transformation of the characteristic function

1~ - .
p(¥,) = o f_wc O, (de

ot e () - e (-2)]+ i”_i"_(i)

2(#22 - .‘111)2 2#11 2.'-‘22 4#22(_”22 - Mu)
(47)

The joint probability density p(¢., ¥4, ¥») has been derived in
the Appendix

p('ibs L] z1LJ'1z ' 'J/Jm)
- Gt A A [ [ [+ K|

+ 2 I Al'.’ 'ﬁaﬁbh; + 2 | A13 | \Ls\l’hv + 2 I A-’!H | \l’hz\!’hv)}: (48)

where [A] is the covariance matrix of ¥, , ¥u: , ¥», and the | A, are the
cofactors of |Al, given in the Appendix. From (40), ¥, is the sum of
the three random variables ¥, , ¥4., and ¥, . Then the characteristic
function for ¥, is

My, @) = Elexp [ + di= + dl]

— [[] e 1. + b + DD e s D)l
- (49)

The details of this computation are given in the Appendix with the
result (92)
My (iv) = exp {—3p"}, (50)
where
pl = pli + phe + pla + 2pl2 + 2p1a . (51)
The probability density of total ¢, is then
o) = o [ 3y e = A e (—p v1) 62

TP

The joint probability density p(¥. , ¥.) of ¢, and ¢, can now be ob-
tained by substituting (47) and (52) into (42).
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The expected number of crossings n(¥,) at a given signal level ¢, =
¥, made by the total energy density signal in one second can be ob-
tained from (5)

n(¥,) = j;w Vi’tp(‘l’c , Yodg, = p(¥,) j:u J’lp(‘lbl)d\i’t

N (e () - oo (32)]

v, exp —‘I'./Q.uzz} =
, n3
4#22(#22 = pn) ( )

where p! is given by (51) and g, = N, g, = N/2 as shown in the Ap-
pendix.
Also we know from Gilbert'’

(i) = 22N°.
In addition, p; = p{, + pi. + pis + 2pl. + 200, = -)NQ(IBV}: and
letting
~ ' v,

W, =
VD Veome

we can simplify (53) as follows:

n(¥,) = f};; {2\/§|:exp (—%2_—2-‘1},) — exp (— V?Z\fﬁ)}

— 24/11%, exp (— \/2_2@,)}- (54)

Lquation (54) is a distribution which is independent of the angle
a. When ¥, = 1, it means that ¥, is equal to its rms value. Equation
(54) then becomes

n()i., = % X 0.1839.
&

Also let £, = 1in (26):

nB)r.- =

It is shown that the expected number of crossings of the total energy
density is one half the expected number of crossings of the envelope of
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E field at their rms levels (¥, = £?). In other words, the energy density
fades less frequently than the Z field by at least a factor of 2.

n(¥,) = in(R.)

for ¥, = R® with respect to their rms values. The theoretical values
of n(¥) and n(R,) are in Fig. 3.
The average duration of fades below a given level ¥, is given by (7)

Py.(f) <¥,)
n(¥,) ’

where P(y.(t) < ¥,) is the probability function obtained from p(.(t)).

t(¥,) = (55)

Py <) = [ ' p(D)AY()

= 1—4 exp (—-——\/_‘If ) + 3+ \/22\11.) exp (— \/_2\11,) (56)
where
— ‘yl .
‘i" N y‘jt(rma)

Substituting (54) and (56) into (53), we obtain the average duration
of a fade below a given level ¥, :

t(‘i},) = }R/T?-W%
1 — 2exp (—@‘i, +) exp (—V/22%,)
. — —1
2[exp (——‘% qf) —exp (— V22¥,)]— V22%, exp (— V/22%))
(57)
When ¥, = 1, (57) becomes
. V2r

When B, = 1, (30) becomes

o
14

It is shown that the average duration of fades of the energy density
below a level ¥, is larger than the average duration of fades of the E

t(R.) =
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field below a level B, where ¥, = B? = 1. The curves of t(¥,) and
t(R.) have been plotted in Fig. 4 for comparison.
V. DISCUSSION OF THE THEORETICAL RESULTS

TFrom the above derivation we know that ¢, and ¢, are two independent
variables as shown by (42):

p(¥ ¥ = p(¥)p(¥),

and therefore (5) can be written as follows:

n(¥,) p(¥,) ﬁm Yp(d)dy,

p(¥,) (¥ (58)

where {y,] represents an integral. Equation (58) simply shows that
the expected number of crossings n(¥,) at given level ¥ can be obtained
from the probability density of level ¥, times the integral {y,} . The
average duration of fades, then, turns out to be

Py, < ¥,
n(r,)

1 P(Y < W),
(1 p)

We emphasize that (58) and (59) are valid only when y, and ¢, are two
independent variables.

The two curves, n(R,) and n(¥,), are plotted in Fig. 3, normalized
by the common factor \/2—«/,81/. Both curves are plotted as functions of
the signal level normalized to their own rms values. The value of n(R,)
is, as shown, always higher than the value of n(¥,) for any signal level.
Trom these two curves, it may be said that the fading of the energy
density is less frequent than the fading of the envelope of the electric
field. The maximum expected numbers of crossings of both n(R,) and
n(¥,) are at the —3 dB level, which means for signal level at 1/ v2 and
1 of their rms values, respectively, we will count the most fades. The
curve of n(\¥,) has dropped faster on both sides of 0 dB than the curve
of n(R&,), which means that the range of the signal amplitude ¢, is
less than the range of the signal amplitude r, .

The average duration of the signal below a given amplitude level
is another way of looking at the fading problem. Fig. 4 shows that the
average duration of fades of the energy density t(\¥,) is always larger

t(r) =

(59)
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than the average duration of fades of the electric field t(R,) when the
given signal levels are above —3 dB with respect to their rms values
(¥, = B > —3 dB). The value of t(¥,) is less than t(#,) when the
given signal levels are more than 3 dB below the rms values ¥, = E. <
—3 dB. When the given signal level is at —3 dB (¥, = R} = —3 dB).
the average duration of fades t(—3 dB) of both the energy density and
the electric field are the same.

VI. COMPARISON OF THE THEORETICAL PREDICTION WITH THE EXPERI-
MENTS

The three field components E, H. , and H, have been received by a
special antenna’’ mounted on a mobile van moving at a speed of 15
mile/hr. All the figures shown in this section were taken on Common-
wealth Avenue, New Providence, New Jersey, from a transmitting
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Fig. 6 — Comparison of the predicted level crossing rates to the observed rates
for the electric field on Commonwealth Avenue, New Providence, New Jersey.



SIGNAL FADING 437

103
O  EXPERIMENTAL
== THEORETICAL

/

)

~

[
v

|

w

>

w

-

S

o

-

w

M

i

o /
& = /‘//
w (o] ] -
ol 10

. /r//

% '] ’/

-1

g )/O/,--""/

g

] 10

w

(L]

<

o

Y

X 1072

w

I

E
Se——

I
—~| 1073

[=]
K
-

1074
-20 -15 -10 -5 0 5 10

Re IN dB wiTH RESPECT TO RMS VALUE

Fig. 7— Comparison of the predicted average duration of fades to the observed
average duration of fades for the electric field on Commonwealth Avenue, New
Providence, New Jersey.

antenna at 836 MHz at Bell Laboratories, Murray Hill. After adjusting
the appropriate relative gains of the three fields, the energy density
can be obtained by squaring and summing these three fields by computer

ve=|EPP+|H. "+ |H,|*, volt®/m’.

Sinee the distance between the transmitting antenna and the mobile
unit is relatively short, the angle swept out by the radius vector from
the base station to the mobile unit varies considerably over a typical
length of run. To reduce the variation of this angle the data for the
entire run were cut into sections 8 seconds long, corresponding to 175
feet of travel, for computer processing. Each section, either the en-
velope r, of the E field or the energy density ¢, , was used to obtain the
number of level crossings n and the average duration of fades t by com-
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puter program. However, since the experimental curves of n and t were
almost all alike for all sections, we used only one for comparison with
the theoretical curve.

Fig. 6 shows a comparison of the curves of the expected number of
crossings n(R,) at any level &, for both experiment and theory. The
shape of the experimental curve is in fairly good agreement with the
theoretical curve. Since the receiving antenna on Commonwealth
Avenue is in line of sight with the transmitting antenna at Bell Lab-
oratories, a small direct wave component may be introduced. This
small direct wave component is not considered in our theoretical analy-
sis, hence the values n(%,) from the experiments should be less than the
theoretical results as we would predict.

Fig. 7 shows a comparison of the curves of the average duration of
fades t(f2,) for both experiment and theory. They are quite alike. Since
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a small direct wave component does exist, the average duration of fades
for the experimental data should be higher than the theoretical results.

Tig. 8 shows a comparison of the curves of the expected number of
crossings n(¥,) at any level ¥, for both experiment and theory. The
shape of the experimental curve is very much like the theoretical curve.
It shows that the theoretical model used in this paper is quite acceptable.

Fig. 9 shows a comparison of the curves of the average duration of
fades t(¥,) for both experiment and theory. The difference between the
experimental curve and the theoretical curve may be caused by the
small direct wave component. A small direct wave component intro-
duced into our theoretical model may cause a little higher average dura-
tion of fades than it might expect, but does not affect the number of
level crossings.
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Fig. 9— Comparison of the predicted average duration of fades to the observed
average duration of fades for the energy density on Commonwealth Avenue, New
Providence, New Jersey.
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VII. CONCLUSIONS

Comparing the expected number of level crossings and the average
durations of fades of the energy density with that of the E field, we see
that the fading of the energy density is much less severe than the fading
of the envelope of £ field.

Referring to Fig. 5, which shows the fading rate related to the orienta-
tion of the energy density antenna and the direction of vehicle motion,
we see that when the two orthogonal loops are at 45° to the direction of
motion, the fades of all three field components are the same. When one
loop is lined up with the direction of motion and the other normal to
it, the H field component received from the loop normal to the motion
has less fading than either of the other two field components.

The expected number of crossings/second of fades at a given signal
level, n, for both R, and ¥, is proportional to the carrier frequency f.
and the mobile speed V, as shown in (26) and (54). They have the com-
mon factor, (8V/V 2r = V2x(V{./c), where ¢ is the velocity of light.
Hence, if either V or f, goes higher, n becomes greater.

The average duration of fades, t, is inversely proportional to the
carrier frequency f, and mobile speed V, as shown in (30) and (57).
Hence, if either V or f, goes higher, t becomes smaller.

The foregoing theoretical analysis is based on a Gaussian model and
does not include a direct wave component. Fven so, this analysis is
compared with the experimental results in Section VI with fairly good
agreement.
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APPENDIX

A.1 Finding the mean values, variances and covariances of nine variables

(Xll Yl ] X21 YErXﬂr Y:;,\{/.,'l}i/h,lpp.,)-
From (8), (9), and (10) we may express in the following forms

E. =X, +jY,
H: = X2 + jye
Hy = Xﬂ +j‘,:t '



where

also

SIGNAL FADING

=
I

¥
> R, cos ®, + S, sin @,
u=1

N
Y, = Z S, cos &, — R, sin &,

u=1

N
X. = 2 (R. cos ®, + S.sin &,) sin 6,

o
Il
M=

(S, cos &, — R, sin ®,) sin 6,

Il
=

u

N

X, = — 2 (R, cos ®, + S,sin d,) cos 6,
u=1

N
Yy = — 2 (S, cos &, — R,sin &,) cos 6,

u=1

®, = 8Vt cos (6, — a)

441

(60)

(61)

(62)

(63)

(64)

(65)

(66)

and the angles 6, and « are shown in Fig. 2. The time derivatives of
X,¥V, ,X,,Y,, X;,and Y, are

X,
Y,
X,
Y,
¢

Y,

II

BV X (—R,sin &, + S, cos ®,) cos (6, — a)
BV 3. (—S.sin &, — R, cos ®,) cos (6, — a)
BV Z (=R, sin &, + S, cos ®,) sin 6, cos (6, — a)

BV 3> (—8.sin &, — R, cos ®,) sin 6, cos (6, — a)

(67)
(68)
(69)

(70)

—BV 2. (—R,sin ®, + S, cos ®,) cos 6, cos (6, — a) (71)

—BV 3 (—8,sin &, — R, cos ®,) cos 6, cos (0, — a). (72)

The mean values of all above random variables are zero (X,) = (V) =
(Xo) = (¥3) = (X3) = (V3) = (Xi) = (Y1) = (X2) = (Y2) = (Xy) =
(Y3) = 0. The variances of all above random variables are
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M1 = (Xf) = (Yf) =
Ha2 = (X;) = (Yg) =
Haz = (X'az') = (Yg) =
B = (X'ﬂ = (Y?) =
Bi = (X.f) = (Y;) =
Mis = (X;) = <Y§> =

TECHNICAL JOURNAL, FEBRUARY 1967

N (73)
%r forany N (74)
N

3 (75)
%(.&}V)2 for N,= 3 (76)
N 2 2 2

*"S-(,BV) [cos® @ 4+ 3 sin” a] N =377

for
%(,BV)zB cos® a + sin® a] N = 5.(78)

Remark: The values of p/, for N = 3 is derived as follows: The sum-

mations of sine and cosine

N
> sin kx
k=1

N
> cos kz
k=1

Then in (67)

and

functions can be expressed

T x
~ cos 5 — cos (2N + 1)2
2sin§
) x . X
_ sin (2N + 1)2 —smE.
2sin§
2mu
6, = N

- 1 % 4
S eos’ (0. = ) = § 32| 1+ cos (u 47 — 20)
u=1 2 u=1 N

_N
T2

+

N .
4 . sin 2a
‘; cosu 3+ g

cos 2a
2

4

N

N
> sinu

u=1l
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But,
N 31n(41r+2—r) 5112—"1r l
Zcosu£’-r= Al N=0
u=l N 23in2£
N
and Tfor N = 3.
2 _ ( 2_1r)
f:sinuél_”—cosN cos 41r-|—N o
vl N 9sin21 B
- N

Thus, the average value of X; or Y; is

N
§ cos” (QW_W - a)>uv = % for N = 3.

Following the same derivation, we obtain the valid range of N for uf,
and g, . Later on we will obtain the range of N for pf, , pi2 , pia , P2, Pis

and p}; in the same way.
QED.

Now we are going to find the relations between all the six variables
X, X., X,, Y,,Y,, Y, and their time derivatives. Since we know
if two variables ¢ and b are Gaussian, and also uncorrelated, (ab) = 0,
then @ and b are independent.'® Therefore, the covariance of X, , ¥, , X,

and Y. are
(XIY1> = (XIXI) = (XIY1> = (YlXi> = (YIYI) = (X1Y|> =0

hence, the four variables X, , ¥, X,,and If', are statistically independ-
ent. The covariances of X,, V,, X,, and ¥, are

(XY, = (X2X2> = (XzYz} = (Y2X2> = (Yzl}z) = (X2Y2> =0
hence, the four variables X, , ¥, Xz , and f’, are statistically independ-
ent. The covariances of X3, ¥V, , X3, and Y, are

(X, V) = (X, X)) = (X, V) = (VoXy) = (YVu¥y) = (X, V) = 0
hence, the four variables X, , ¥, X, , and Y, are statistically independ-

ent.
Also we may show that

X, Y,)=0 for all m and n
(X, X,) =(Y,.Y,)=0 for m = n,
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where
m} =1,2,3,
n

hence the six variables X, , X,, X3, ¥,, Y., Y, are independent. The
rate of change of energy densities of three fields E,, H., and H, are

d d iy 2
Eba=a a=a(X1+Yl)

=BV X [—(R.R, + 8.8,) sin (&, — ®,)

+ (S.R, — R.8,) cos(®, — ®,)] X [cos (8, — a) — cos(8, —a)], (79)
; d d 5
Yo = d_f #‘h: = EE(XE + Y:')

= BV X [—(R.R, + S8.8,) sin (&, — ®,)

+ (SuR'u - RuSv) CcOos (‘Du - ®n)]
-sin @, sin 8,[cos (8, — @) — cos (8, — )], (80)

d d 2 2
‘»l'hv = a ‘Phu = E(Xa + Ya)
= 8V X [—(R.R, + 8.S.) sin (&, — ®,)

+ (SuRv - RuSw) cos (Qu - ¢-)]
-cos 8, cos 8,[cos (6, — a) — cos (8, — a)]. (81)

The only terms that exist in (79), (80), (81) are those for which u # ».
There are N(N — 1)/2 different terms which are all statistically in-
dependent in (79), (80), and (81). Hence, by the central limit theorem,
Vo, ¥ay , and ¥, are Gaussian random variables.

The variance of , , ¥». and ¢, are

= () = BV) ANV — 1) for N z3 (82

o = (923 = (67 YL feos'a + 3sin’ o {N —3 &
for

N

1%

M);D [3 cos® @ + sin® @] o (84)

piz = (l”v) = (31’7)2
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The covariances of . , ¥u. , and ¢4, arc

pla = ph = (Yot = —BV)2NW = Dsin’ el \o o (89)
ply = phv = (Yutbny) = —(BV)'2N(N — 1) cos’ & (86)
pha = phs = (Yastn) = 0. (87)

It is very easy to show from (60) to (66) and (79) to (81) that the covari-
ances of the variables between two groups (. , ¥u:, ¥a,) and (X, , ¥y,
X,,Y,, X,,Y,) are zero. We may write

($uX,) = ($.Y.) =0  foralln and m (88)
m} =1,2,3
n

hence (Y, , ¥4z, ¥ay) and (X, , ¥V, , X, , ¥, , X3, ;) are two independent
variable groups."®
A.2 Derivation of M,(jv) in (50)

The mean values of all three Gaussian random variables ¥, ¥u. ,
and ¥, we observed from (79) to (81) are zero. Also (87) gives the
covariance (Y,.¢s,) = 0. The joint probability density function of three
variables ¥, , ¥a: , ¥ay can be obtained"

; 1 2
'p('»be , ‘l’h: s ) = (é?}ill—l\—ﬁ exp {"z_m (I Ay I ‘L. + | Ass I l‘Lhz
+ l Ay, [ IJ/:., + 2| A | Vot + 2 I Ais I Vb

+ 2 | Aea l 'JLh:‘Lhu)} ’

where

[A] is a covariance matrix, and

| A, is & cofactor of p,, in the covariance matrix [A]
pl1 Pz Pla

[Al = |pl2 p22 O (89)

P{:z 0 .053
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|A| = determinant of [A] = ply(pliple — pl3) — Phopls’

| An | = pi2pis

| Ase | = phipis — ols”

| Asa | = pliph — plo’

| Az | = | Ae | = —plapis
[ A | = [ Aa | = —piapls
[Ass | = | Asa | = plspiz .

From (38), ¢, is the sum of three Gaussian random variables ¢, , ¥s. , ¥u, :
‘Lt: 9’;:+¢ﬁz+ ¢-’W'
The characteristic function for . is then

MG = Blewp (g, + due + dun]
= [ e b + e + o e b i,

i et ¥hs)

. -

~ranr L
.exp {—5—1{—\—, (A |2+ | Awo | ¥ + 2 Awe | xb,ybh,)}

X fw ¢ exp {—M (ﬁu + 2 s | e & | Aan | o) \Lhu)}

24| | Ass |
'dijbhud\bhzd\bc . (90)
The last integrand of y, is

oo (it linite, i L))

X f " e [—jv(v;,.,, [ A | ¢| = IA“ | ¢)]
exp {_2 f\ﬁ | ( | A | aﬁl lema | .ph,) }d%
( (lAmw +|Am|¢,.,)
As
A

= exp f A33 l

3{(IA:xl¢+|Azsl¢h,)}

+ ™

l
2
X f: exp (JUE—_E)dE
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From Cramer,'® p. 99 we obtain
" e (36— B = A ey =
>[—no exp (JUE 2 E df - hl exp 2h] y

Ags |
| A

Then following the same techniques we find

where

. 1 ® . ha 0
My () = (21r)* I A F f_w exp (Jvafa Y Ea)dfa
* . e . o
[_ exp (]”252 - ]9 Ea)d& f_ exp (.7”151 - fl)d£1

VBl l-1 22
= @ TA T Nkt &P [ 720, T, T/ lfe OV

where
B
b = TR 2w
hy = L BC — A7
| A || A [ B
V=0

b= (1 - 4122 l)”
vy = [I—JLJ (I—ME’—[)%})

| Asa | | Ass |
A=A [An| = Aa||An]=—p]|A]
B =|Aw||An|—|As|"=ph|Al|
C=JA11||A33|_IA13|2:P52|A|
BC — A* = | Ay | | A .

The constant value outside the bracket of (91) is

1 [@m® _ 1 LA P As | _
@m | A P Nhhoh, | APN BC — A7
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and the expression inside the bracket of (91) is

exp _2[h1+h2+h3

— _ (l Aasl_ IAzu |)2
=ew [~ t B

IAaaf_|A13|—(’Asa]—|Aza|)ézB (
+[ BC — A® B] ”Ef

= exp [—3(pli + 032 + pis + 2p12 + 29;:1)1)2} = €xp _%vazn

Thus,

M, () = exp —§plt”. (92)
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