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Two types of self-synchronizing digital data scramblers and descramblers
are introduced and exvamined. The descramblers recover synchronization
quickly after the insertion or deletion of channel bits, and they are relatively
insensitive to channel errors. The scramblers act to increase the period of
periodic data sequences, and the periodic channel sequences produced have
approzimately half as many transitions in one period as there are bits in a
period. These circuits find application in common carrier systems where
short-period data sequences produce high-level lones in the transmission
band and, as a consequence, interchannel interference. And they have appli-
cation when receiver clocks derive synchronization from transitions in the
channel signal. A number of variations and modifications of the scramblers
which affect their cost and size are considered.

The scramblers and descramblers are similar in construction and consist
of linear sequential filters with either feed-forward or feedback paths,
counters, storage elements and peripheral logic. The counlers, storage
elements and peripheral logic monitor the channel sequence but react in-
frequently so that the scramblers and descramblers behave principally as
linear sequential filters.

I. INTRODUCTION AND SUMMARY

In this paper, we present two basic types of self-synchronizing digital
data scramblers and descramblers. A scrambler is a digital machine
which maps a data sequence into a channel sequence and, when the
data sequence is periodic, into a periodic channel sequence with period
which is many times the data period. When the source is periodie, the
channel sequence produced by the scrambler also has many transitions.

A simple scrambler and one which is often used is a machine which
adds a maximal-length shift-register sequence'"® to the data signal.

449



450 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967

The scrambled data signal is then descrambled by the subtraction of
the same maximal-length sequence. While this procedure is simple and
easily implemented, it suffers from the serious disadvantage that the
insertion or deletion of bits in the channel signal results in a deserambled
sequence which is a garbled version of the data signal. The scramblers
presented in this paper have the self-synchronizing property* and
recover quickly from the insertion or deletion of channel bits.

There are two important applications for our scramblers. In common
carrier systems small nonlinearities are present in modulators and
demodulators which are used to frequency multiplex a bank of channels.
Consequently, high-level tones in one channel may produce interference
in other channels as a result of the nonlinearities in the mixing process.
For this reason, systems engineers place limits on the levels of isolated
tones in a customer’s transmission band. Tones, in turn, are produced
in digital data transmission systems by periodic data sequences and
the limit on tone levels is then translated into a lower bound on the
period of periodic channel sequences. Thus, our first application is to
insure that any periodic source sequence is mapped by a scrambler
onto a periodic channel sequence with sufficiently large period.

The second application for our scramblers concerns the need for
transitions in the amplitude of the channel signal so that receiver clocks
can derive bit or frame synchronization from the channel sequence.
Receiver clocks often derive synchronization by passing the received
signal through a filter tuned to the spectral component corresponding
to the basic baud length and then observing the zero crossings of the
filter output. Since the amplitude of the filter output will decrease to
the background noise level if no transitions occur in the amplitude of
the received signal or if the density of transitions is small, it is clear that
in this application it is desirable to guarantee many closely spaced
transitions in the amplitude of channel sequence when the source is
periodic.

We introduce two basic types of self-synchronizing, digital data
seramblers called multi-counter seramblers and single-counter scramblers
and they are discussed in Sections IV and VI, respectively. Each
scrambler consists of a “basic scrambler” and a ‘“monitoring logic”
which consists of additional storage elements, counters and incidental
logic. We show in Section IT that the “basic scrambler,” which is a
linear sequential filter with feedback paths and tap polynomial A(z),
responds to a periodic data sequence of period s by producing a periodic

* R. D. Fracassi and T. Tammaru introduced the self-synchronizing descrambler
in a special serambler for which they have a patent pending.?
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channel sequence whose period is either s or the least common multiple
of s and p™ — 1, where m is the number of stages in the basic scrambler
and p is a prime greater than or equal to the number of elements in
the source alphabet. The basic scrambler responds in this way to periodic
inputs when its tap polynomial h(zx) is primitive over the modular
field of p elements, GF(p). The counters, logic, and storage elements
of the monitoring logic monitor the channel sequence and respond
whenever this sequence has as periods, one of the known data periods.
The monitoring logic then reacts and changes the state of the basic
scrambler, forcing it to have the long-period output.

We show in Sections IV and V that a multi-counter scrambler exists
for binary as well as non-binary sources and we find the smallest thresh-
olds required on counters in the monitoring logic of this serambler.
The single-counter serambler is considered in Sections VI and VII and
because of analytical difficulties we are only able to show the existence
of this serambler when the source is binary (p = 2) and the source
periods are all prime to 2™ — 1, where m is the size of the basic scrambler.
Mixtures of the scramblers for binary sources are examined in Sec-
tion VIII.

In Section IX we show that the scrambler output, when the input
is periodic, contains many closely spaced transitions and that there
are half as many transitions in one period as there are digits in that
period. In Section XI we perform representative calculations to de-
termine the spectrum of the scrambler output and find when the source
is periodic that the output spectrum has P times as many tones as the
unscrambled spectrum and each tone has 1/Pth the energy, where P
is the factor by which the source period is increased.

The descramblers for each of the scramblers are discussed in the
sections in which the scramblers are introduced and they are also
discussed separately in Section X. In that section, we show that the
descramblers recover synchronization rapidly after the insertion or
deletion of channel digits and we observe that the principal effect of
infrequent channel errors on the descramblers is to multiply the number
of channel errors by w(h), where w(h) is the number of nonzero terms
in the tap polynomial (x). In Section X we also note that the monitoring
logics at the scrambler and descrambler reach threshold infrequently
when the source is random and at most once when the source is periodic
so that the descrambler monitoring logic may be removed and the
descrambler considerably simplified as long as thresholding in the
monitoring logic occurs at a tolerably low rate.

An example is given in Section XIT of the application of the scramblers
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and descramblers and representative calculations are performed to
determine which scrambler configuration is least expensive. Section
XIII closes with conclusions.

II. BASIC SCRAMBLER AND DESCRAMBLER

The shift register circuit shown in Fig. 1(a) is a linear sequential
filter with feedback paths* and is an example of the scrambling circuit
which is basic to the multi-counter scrambler and to the single-counter
scrambler discussed in later sections. The linear sequential filter with
feed-forward paths* shown in Fig. 1(b) is the complementary circuit
to that shown in Fig. 1(a) and regenerates the data sequence from the
channel sequence. We assume in these two examples that data is
presented as a binary sequence, that addition is taken modulo 2 and
that the storage elements provide one bit of delay.

Examination of the circuits of I'ig. 1 show that they have the re-
quired synchronization property since the effect of a bit lost or added
in the line sequence is felt only as long as the values stored in the
descrambler disagree with those stored at the scrambler, which is five
bit intervals in our example.

A more general form for the basic serambler when the data is assumed
to be a sequence of digits from the modular field of p elements, GF(p) =
(0,1, --+, p — 1}, where p is prime, is shown in Fig. 2. Here, addition
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Fig. 1—(a) A basic scrambler; (b) a basic descrambler.
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Fig. 2— General basic scrambler.

is taken modulo p and the outputs of the storage elements are mul-
tiplied by the tap constants {c,, ¢, ---- , ¢.} drawn from GF(p).
Here, multiplication is also taken modulo p. The tap constants must
be constrained in a particular way if our scramblers are to extend the
period of periodic sequences in the desired manner. Namely, the tap
polynomial k(x) in the indeterminate z given below

h(z) = 2™ — 2" ' — -+ — Cn (1)

must be a primitive polynomial* over the field GF(p). This condition
will guarantee that the sequence generated by the basic scrambler in
the absence of input will be either all zero or a maximal length sequence,
that is a sequence which repeats but once every p™ — 1 digits. In
the example given in Fig. 1, the tap polynomial is primitive over the
binary field and it will generate a maximal length sequence of period
2° — 1 = 31. (h(z) is a primitive polynomial of degree m over the field
GF(p) if it is irreducible, that is, has no factors except 1 and itself,
and if it divides 2" — 1 for n = p™ — 1 but does not divide it for any
smaller n.)

Theorem 1: The basic scrambler described above when excited by a periodic
sequence of periodt s will respond with a periodic line sequence which
has either period s or a period which is the least common multiple (LCM)
of s and p™ — 1 (LCM (s, p™ — 1)). The period with which the scrambler
responds 1s a function of the initial values stored in the scrambler storage
elements, that s, its initial state, and there is but one such slate (for each
phase of the input sequence) for which the line sequence has period s.
For all other such initial states the line sequence has the larger period.

This theorem is basic to all later results. It states that for only one
starting state will the basic scrambler respond with period s to a data
* A nouprimitive polynomial may produce more than two output periods for an

input period (see Theorem 1).
T A sequence will be said to be of period s if it has no smaller period.
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sequence of that period. Thus, our objective, which is to extend the
period of periodic sequences, is equivalent to detecting whether data
preceding a periodic sequence has left the scrambler in the critical
state for that sequence. Two basic methods of detecting the presence
of the critical starting state when sequences of different periods are
expected in the data are given in later sections.

III. PROOF OF THE BASIC SCRAMBLER THEOREM

Model a periodic input to the basic scrambler with a circulating
register, as shown in Fig. 3 for an input of period 3. The initial state
of the circulating register will be the first period of the periodic sequence.
We let the vector y represent the state of the new circuit. Thus, if
the input has period s and the basic serambler has m stages, then y
has s + m components where the first s represent (in reverse order)
the first period of the periodic input and the last m components rep-
resent the values stored in the corresponding storage elements when
the periodic sequence begins. For example, y = (101101001) if the
basic scrambler has the stored values 01001 when the sequence
1101, 1101, 1101, - - - arrives.

The circuit of Fig. 3 is linear since the next set of stored values
is a linear combination of the preceding set. Thus, the state y* following
y can be found by a matrix operation on y by the matrix 7' given below,*
that is, y = Ty where y and y’ are taken to be column vectors.

(0 0 1|0 0 0 0 0]
100/00000
01 0/00000
T = . 2)
00 1/1 1101
00 0(10O0GOO
00001000
00000100
0 0 0l0 0 0 1 0

Tor the general basic scrambler and an input of arbitrary period,

* For an excellent discussion of the matrix approach to linear sequential switching
circuits see B. Elspas, The Theory of Autonomous Linear Sequential Networks,
TRE Trans. Circuit Theory, 6, pp. 45-60, 1959, which is reprinted in Ref. 13.
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Fig. 3— Model of basic scrambler with periodic input.

say s, the matrix 7 has the following form

r- |3 ®
where R is s X s and is shown below
000 -+ 1]
100 --- 0
E=1g 10 ... of ®
0 0 0|
T, is m X m and is given as
fe, e Cn |
0 --- 0
Tv=1lo 1 .. o/ ()
00 - 0|

Since the state y’ is found from y’ = Ty, all succeeding states are
found by taking powers of 7', that is, the 7th state succeeding y is

Y. = T'Y- (6)

The line sequence generated by a periodic input to the basic scrambler
is periodic of the same period as the state y; of the circuit which models
the basic scrambler and periodic input. Thus, we prove Theorem 1
by studying the cycles of (6).

There is an indirect approach® that one can take to study the cycles
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of (6). It amounts to a proof that these cycles are isomorphic to cycles
of a matrix T* obtained from T by eliminating the solitary 1 shown
in (3). This amounts to disconnecting the circulating register from
the basic scrambler and observing that the basic scrambler, which is
a maximal length sequence generator,” has period 1 or p™ — 1, m =
deg h(z), so that cycles of T+ have period s or LCM (s, p" — 1). The
proof that the register can be disconnected amounts to showing that
the minimal and characteristic polynomials of 7' are the same and equal
those of T*. Then, the elementary divisors of T' and T* are the same
and their cycles are isomorphie.

Since there is a direct proof of Theorem 1 which contains many
results important to the remainder of the paper, we present it here.
If the basic scrambler with periodic input starts with state y, then
it has a cycle of length g if 7°y = y. The basic scrambler output will
then be periodic with period g. We now ask for those values of g for
which T°y = y has a solution. We begin by writing

Yy=Y:+ ¥m: ()

where y, is such that its first s components equal those of y and its
last m components are zero. The vector ¥, is zero in its first s com-
ponents and is equal to y in its last m components. We can interpret
¥.. as the “starting state” of the basic scrambler and y, as the state
of the model for the periodically driven basic scrambler when the
starting state is zero.

If

T’y =y (8)
then
Ty, + Y. = I°Yu — ¥ )

since 7' is a linear operator. We assume that the periodic input is fixed
and has period which is strictly s. Then, the left-hand side of (9) is
fixed and we ask whether a solution y,, for it exists for a given value

of g. We note that
. _ [’ Q:l
= [ ) (0

where the asterisk indicates some submatrix. Therefore, Ty, — ¥m 18
a vector whose first s components are zero. The left-hand side of (9)
has its first s components zero only when g is a multiple of s because
in that case R° = I, , the s X s identity matrix, and otherwise " —
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I, # 0 which means that a cyclic shift of the first s components of y,
when added to y, is nonzero unless g = ks for some integer & = 1.

If we use the notation (y)’ to indicate the last m components of y
we have for (9) the following when ¢ = ks

(_Thyc + Y:)’ = [T:‘n' - I](ym)’ (l-l)
where I is now m X m. We use the following theorem on (11).

Theorem 2: The matriz T, has characteristic polynomial h(x) which 1s
assumed primitive over GF(p). Therefore, T, — I 1is nonsingular for
i=1,2,p" —2and T" = I forn = p™ — 1.

Proof: See appendix.

Since 7% = I forn = p™ — 1, we can reduce ks modulo n so that 7**
can be written as a power of 7', less than n. In particular for k < k,

where [os is the least common multiple of s and n, which we call e,
that is,

e = kos = LCM(s, p™ — 1), (12)
the matrices 7} can be written as T;* where 0 < 7, < n. We have
=T = (TH" = )" = 1. (13)

Returning to (11) we see that T** — I is nonsingularfor 1 £ k < k, .
Therefore, when & = 1, (11) possesses a unique solution y,, . That is,
there exists a unique starting state y, for each periodic sequence
(modeled by y,) having period strictly s such that 7*(y,. + ¥.) = ¥ + ¥, .
Similarly, there exists a unique solution to (11) foreach 2 £ k& < k, .
However, if 7'y = ¥, ¥ = ¥. + V., then Ty = y so that the cycles
having period ks are really repetitions of the single cycle having period s.
Also, when k = ko, , T*** = I and T*y = y for all y. We conclude
that for a prescribed input having period sirictly s, the basic scrambler
will respond with period s for only one starting state y,, and for all other
starting states will respond with period e given by (12). This proves
Theorem 1.

We have finished our discussion of the. basic serambler. We now
consider the techniques used to detect the presence of a periodic sequence
of low period on the line and present the first of two methods for altering
the starting state of the basic scrambler. This first method is more
general than the second and allows for the simultaneous detection
of sequences of several periods. The second method applies only when
the sequences expected on the line have periods which divide one of
two numbers,
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1V. THE MULTI-COUNTER SCRAMBLER

The general form of the multi-counter scrambler (MCS) is shown
in Fig. 4. (The descrambler is shown in Fig. 5.) There are N counters,
one for each period s; , 1 < 7 = N, and the 7th counter will generate
41 if it reaches its threshold ¢,, . A counter is reset whenever the
reset lead is nonzero so that f,, consecutive zeros on the reset lead
of the 7th counter will cause it to reach its threshold. All counter out-
puts are fed to the OR circuit shown so that a 1 is generated at the
exclusive OR and added to the “tap sum’’* whenever a counter reaches
threshold. At the same time, all counters are automatically reset.

P— P

€ [ C2
S Sn
—|—\ . — — — — — ¢ - —

DATA
,..( - 1) L

+ 3la>o| ! COUNTER

- T OR THRESHOLD
: ‘ =t
| Al

RESET . OR>

LINE | | COUNTER

OR THRESHOLD
=ts,

Fig. 4— Multi-counter scrambler.

The input to the 7th counter is the difference between the present
line digit and the digit transmitted s, clock intervals earlier. If the
line sequence has period s, , then these two digits agree and the dif-
ference is zero. Then, the ith counter will reach threshold, the tap
sum will be altered and the state of the basic scrambler changed.f
The line sequence will then be changed from period s; to period
LCM(s;, p™ — 1) where p is the size of the modular field GF(p) and
m is the number of stages in the basic scrambler.

* We define the “tap sum’ as the quantity added to the next data bit at the input
to the basic scrambler.

1 If the starting state of the basic serambler is critical for a sequence of period s; ,

then the state after § clock intervals is eritical for the jth eyclic shift of the input
sequence. Hence, a change in the tap sum will force the next state to be noncritical.
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We observe, then, that the multi-counter scrambler for any choice
of thresholds {¢,,, 1 = 7 = N| will force the basic scrambler to switch
from a critical state to a noncritical state whenever the input has
period s, , 8., - -+, or sy or some period which divides an s; . It should
be clear, however, that it is not necessary and perhaps not desirable
to change the tap sum and the next state of the basic scrambler when
the output does not have period s;,, 1 < 7 < N, or some period which
divides an s; . The next theorem specifies the minimum values of the
thresholds ¢,, , 1 = 7 = N, so that the tap sum is changed only when
“necessary.” (Note that random data may generate line sequences
which resemble periodic sequences and in such cases it will be “necessary”’
to change the tap sum.)

Theorem 8 (MCS Theorem): The multi-counter scrambler shown in
Iig. 4 will scramble a periodic sequence of period s if s divides s; for
some i, 1 = 1 = N, and will produce a periodic line sequence of period
LCM (s, p™ — 1) tf the following two conditions are met:

(¥) The tap polynomial h(z) of degree m is primitive over GF (p) where
data sequences have components from GF (p).

e e

¢ {) CEQ (cm
)

LINE

_}_‘-a azo| ! - COUNTER
" e=0["0 | OR THRESHOLD —
== e
: A

=ts,
RESET : . OR
F b_Jb>ol1] 5 ¢ | counTeR
b=0fo OR THRESHOLD
. =ts,,
(G (=1
\ 7/ \ .
DATA

Fig. 5— Multi-counter descrambler.
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(#1) The thresholds t,, , 1 < ¢ = N, are chosen as

Ly

3%

(m — 1) + max s; .
157N
Pt

i

If all input periods divide s, , then the theorem holds when eondition (z) is
met and a threshold of t,, = m is used.

The descrambler for the MCS, shown in Fig. 5, has the self-syn-
chronization property as long as line errors do not occur. When line
errors ocecur, the counters in the descrambler may not read the same
levels as the corresponding counters in the MCS. However, as seen from
the MCS theorem, the counters must reset at least once every (m — 1) +

max s; clock intervals when the input is periodic so that counter syn-
i
chronization is easily established in this case. With random data the

situation is not quite so clear. The question of descrambler synchroniza-
tion, including the effect of channel errors, is considered in detail in
Section X.

V. PROOF OF THE MCS THEOREM

We use the notation developed in Section I1I for the proof of The-
orem 3. Fig. 6 shows the basic scrambler with periodic input of period
s and one counter. The only input to the basic scrambler other than
the data input is the lead from the counters which is used to change
the tap sum. The counter shown is assigned to the detection of line
sequences whose periods divide s; .

To prove Theorem 3 we must show that ¢,, can be chosen such that

] COUNTER
) THRESHOLD fmte = =
I =tsi

[
RESET

Fig. 6— One counter of the MCS with periodic input.
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the 7th counter does not reach threshold when the data sequence is
periodic unless the line sequence has period s; or some period which
divides s;. Before we begin our proof we introduce some notation.
In Fig. 6, we use I; to indicate the jth line digit calculated with data
from a periodic input of period s. The basic scrambler is shown and we
indicate with the vector y the state of the linear sequential filter com-
posed of the circulating register of s stages and the m stages of the
basic secrambler. Call this filter of s + m stages the driven basic scrambler.
Then, from (6) the next state of the driven basic scrambler, y’, is

y =1y (®)

provided that the monitoring logic is not active. If it is active, that is,
if one or more counters reach threshold, then

y =Ty +y. (14)

where y, contains a single one in its (s + 1)th position.
The first line digit calculated with the periodic input, I, , is

L= [Ty + wy.. (15)
where
(z], = 2,01, (16)
the (s 4 1)th component of the vector z, and

{1 monitoring logic active at first calculation,
Uy, =

(17)
0 otherwise.
In general, the jth line digit is
i l
I, = |i7”'y + Zuﬂ”‘*"y,J (18)
k=1 a
where
1 monitoring logic active at kth calculation,
Uy = (19)
10 otherwise.

Now consider the sequence {a,} calculated at point A of Fig. 6.
If a run of consecutive zeros in this sequence is large enough, the ith
counter will reach threshold unless some other counter reaches threshold
before it. When the periodic input begins, the counters in the MCS
will be at unknown levels and the (max s;) stored values will be, in
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general, unrelated to the input; thus one or more counters may reach
threshold before I, reaches the s;th storage element of the MCS.* We
now wish to show that the sequence {a; , j = s; + 1} will contain a
run of no more than max (m — 1 + s;) zeros if the line sequence is pertodic

i
with a period which does not divide s; .
We have for j = s; + 1

a; = _Zi + li—n-‘ (20)

and
a; = _[Ti_”(T”y -y + kzukT"'*Y: - kEukTi—""*yz] . (@D
=1 =1 s

If u,,,, = O then let j, be such that u; = 0,8, + 1 =j < joand u;, =1,
that is, the most recent thresholding occurs at j = jo. (The case u; = 0
for all § = s, + 1 is trivial, so we assume that u;, = 1 for some jo )
Then, if we write z; as

Jo==8i{

7, = Ty, — 2 wI* "y, (22)
k=1 k=1
and if we ignore all counters except the 7th, we have
a; = — [T {T"y — y} + 2], (23)
for jo < j < jo + t.. — 1. For this range of j the a; can be viewed as

the values appearing in the (s + 1)th storage element of the driven basic
scrambler with starting state y*

yh=T"""{T"y —y} + 2. (24)

Now, assume that input period s does not divide s; . Then, the first s
components of T"™**{1"'y — y] are not all zero. Since z; is zero in
its first s components, the starting state y% is nonzero in some of its
first s components. Consequently, the state of the driven basic scrambler
(of s + m stages) can never be completely zerot so that the sequence
{a;, j = j,} cannot contain more than s 4+ m — 1 consecutive zeros
if s does not divide s; .1 We shall now show that, in fact, the sequence
{a;, ] = jo} cannot contain more s + m — 2 consecutive zeros if s f s; .
We shall also show that there exists an input of period s if 5, = ks &= 1

* Note that the lead from the counters will be active at most once during the first
s; caleulations if s; < min ¢,; .

t Note that the matrix operator T' just circulates the first s components of y*.
t We will use the notation s } s; to mean s does not divide s; .
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for some integer £ = 1 such that the sequence {a;, j = j,} will have
this many consecutive zeros.

In (24) the first s components of y* are a cyclic shift of the first s
components of 7'’y — y. Recalling the definition of T from (3) we see
that these s components are the components of the vector (R** — I)(y,)"”
where R is s X s and is given by (4) and (y,)” is the vector containing
the first s components of y, . The vector (R** — I)(y,)” cannot contain
a single nonzero element if s } s; as seen below by example: Let s = 4,
s; = 5 and (y,) have components y, , ¥., ¥z, s . Then, we have

-1 0 1 olwn b
e A I e e T2
1 0 —i 0| s 0
0 1 0 —1]ly. 0
where b is the single nonzero element. Thus,
—th+ys=b=0
Yty =0 26)
+y —y: =0
+y: — ¥ = 0.

It is clear that two equations, the first and third, cannot both be satis-
fied. This will be true regardless of the location of the single nonzero
element. Hence, there must be at least two nonzero elements in the first s
components of y*% . Consequently, {a;, j = j,| cannot contain a run
of more than s 4+ m — 2 consecutive zeros. If y, contains a single non-
zero element and if s; = ks & 1 then (R — I)(y,)” will contain two
consecutive nonzero elements. Also, since y,, is in general arbitrary,
it can be chosen so that the first s + m — 2 digits generated with y*
as the starting state will be zero.

At this point, we have shown that a periodic input of period s, where
s | s;, some j # 7 but sfs,;, will not cause the 7th counter to reach
threshold more than once after the s;th line digit is transmitted if
we choose ¢,, to be

t, = (m — 1) + maxs; . 27

bE)
This is true since the sequence generated at point A of Fig. 6 will not
show more than {,; consecutive zeros after the first time the monitoring
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logic is active following the transmission of the s;th line digit. We
also note that a threshold of the size given above may be necessary
if there exists an s such that s, = ks & 1, some k = 1, where s | s;,
some j.

Consider next the case where s | s; . If the line sequence is periodic
of period s (see Theorem 1) at any time after the periodic sequence
begins, the sequence at point A will contain an indefinite number of
zeros so that the 7th counter will definitely reach threshold (unless
s|s;,somej = 1 and {,; < &, , in which case the jth counter may
reach threshold first). Since there is only one critical state for each
periodic sequence, the change in the tap sum resulting from the detection
of the period s line sequence will cause the output to have period
LCM(s, p" — 1). In this case the vector y*% in (24) cannot be entirely
zero (its first s components are zero, however) because it would then
result in an all zero sequence at point A. Thus, the last m components
of y* must contain at least a single nonzero component. But [T oy%],
(which generates {a; , 7 = j,}) then is just the output of a maximal
length sequence generator (see appendix) so that no more than m—1 con-
secutive zeros will be seen at point A if s | s; and the output has period
LCM(s, p™ — 1).

In conclusion, if s | s; but the oulput does not have period s or if s & s:
but s | s; some j #= 1, then the ith counter will reach threshold at most once
after the transmission of the s;th line digit if the ith threshold t,, is chosen
as

f,, = (m — 1) + maxs; . (28)

PRt
Of course, the same is true for any threshold larger than ¢,, .

VI. THE SINGLE-COUNTER SCRAMBLER

The single-counter scrambler (SCS) is shown in Fig. 7 (and the de-
scrambler is shown in Fig. 8). This scrambler is designed to scramble
periodic binary sequences whose periods divide either s, or s, or both.
It has a single counter and for some applications may be less costly
to build than the multi-counter scrambler. And while we consider
the SCS when the input periods divide either s, or s, or both, one may
be able to design for the case of many more input periods.

The SCS has two circuits for detecting periodic sequences. If either
or both of the two detecting circuits produces 0 at any one time, one
cannot with a single measurement determine whether the line sequence
has period s, or s, . On the contrary, if both circuits produce a nonzero
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Fig. 7—S8ingle counter scrambler.

output, it is clear that the line sequence does not have period s, or s,
and that the counter should be reset. A 2-input AND gate has a non-
zero output only when both inputs are nonzero, consequently, we use
it as input to a counter, as shown in Fig. 7. This counter will reach
threshold after ¢ line transmissions if each of ¢ consecutive pairs of
outputs of the detecting circuits contains one or more 0’s.

The major design problem of the SCS is the choice of the counter
threshold. This is not an easy problem, unfortunately, and all that we

e

LINE

RESET| COUNTER
_’_L AND THRESHOLD
I ) =t

Fig. 8—Single counter descrambler,
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have been able to say about it is that counter thresholds do exist when
p = 2 (the source is binary) and the input periods are relatively prime
to 2" — 1 and then to only give a gross upper bound on the smallest
permissible threshold. The following theorem states what is known about
the threshold for the SCS.

Theorem 4 (SCS Theorem): A single-counter scrambler which will
scramble all periodic binary sequences with periods which divide s, or s
(s, < 82, 818, exists if

(i)  the tap polynomial h(x) of degree m is primitive over GF (2),
(i) s, and s, are relatively prime to 2" — 1, and
(#i7) a counter threshold, t, t < s,(2" — 1) — 2"7" + 2 is chosen.

This theorem does not rule out the possibility that an SCS exists
when s, and s, are not both relatively prime to 2" — 1 nor does it
rule out an SCS for nonbinary data. It simply states that when condi-
tions (i) and (ii) are met, one can show that a counter with threshold
t,t < s(2" — 1) — 2""' + 2, will not reach threshold when the output
of the basic scrambler has period s X (2" — 1) where s divides s,
or s, or both. In fact, the bound on the threshold required to prevent
the counter from reaching threshold prematurely is many times larger
than necessary. In the example given in Section XII the bound is
more than 35 times too large.

VII. PROOF OF THE SCS THEOREM

For the proof of Theorem 4, we recall the proof of Theorem 3. In
particular, it is instructive to review the discussion surrounding equa-
tions (20) through (24). We recall that a; of (20) is the jth digit cal-
culated (after the arrival of the periodic data sequence) at the input
to the ith counter of Fig. 6. We argued that if the ¢th counter reaches
threshold on the j,th calculation, j, = s; + 1, then a; could be cal-
culated from

a; = —[T"7""y*], (29)

for j = j, and until the next time the ith counter reaches threshold.
Here [y.] indicates the (s + 1)st component of y and y% is given by (24).
Thus, the sequence generated at point A of Fig. 6, namely @;, , @41, * "
can be viewed as generated by the basic scrambler with periodic input
and y* as starting state.

In Theorem 4 we assume that the data sequence is binary so that
the above equations apply if we interpret subtraction as addition since
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they are equivalent on the binary field. In Fig. 7 the sequences {b,}
and fe;| are generated at points B and C, respectively. We wish to
show that the largest run of consecutive zeros in the logical AND of
1b;1 and {c;| after a certain transient period cannot exceed s,(2™ — 1) —
2" + 1 when s, < s, and s, and s, are both relatively prime to 2" — 1.

Consider-the sequences (b, , j = s, + 1} and {¢;,j = s, + 1}. Then,
if the counter reaches threshold at* j, , j, = s, + 1, these two sequences
will cause the counter to reach threshold only once more if the line
sequence has period s, s | s, or s | s, or both. If the line sequence has
periodf s X (2" — 1), then neither {b;, j = 4,} nor {¢;, j = j,| can
be all zero since this would imply that the line sequence has period
§ Or s, .

We now consider two cases, case I when s divides both s, and s,
and case IT when s divides s, but not s, or vice versa. From (24) it
is clear that in case I both {b;, j = 4,| and {c;, j = j,] are the outputs
of basic scramblers with no input and with nonzero starting states
so that they repeat with period 2" — 1. In case IT when s | s,, say,
but not s, , {b;, 7 = j,} is the output of a basic scrambler with nonzero
starting state and has period 2" — 1 while {¢; , j = 7,} is the output
of a driven basic scrambler with input period s. (The input may not
be strictly of period s, however, as we shall see later.)

The logical AND of the sequences generated at points B and C
of Iig. 7 can be interpreted as the sequence generated by the normal
arithmetic multiplication of b; and ¢; . Thus, the sequence at point D
of Fig. 7 has period 2" — 1 in case I and period s X (2" — 1) in case I1.
Let B, and C, be n component vectors with B, = b,,,, and C; = ¢;,.; .
Then, at point D, the vectors B, and C, generate the n-vector D, = B,-C,
where multiplication of B, and C, is term-by-term, i.e.,

D" = (B]C] |B202 y Ty BHC“). (30)

Let w(y,) be the Hamming weight” of the n-vector y, , that is,
the number of 1'’s in y, . Then we have®

wD) = u(,-c) = HEIFLCI 0B C) )

where addition is modulo 2. We now wish to use this| last equation to
find a lower bound on the number of 1’s D, . From this we can obtain
an upper bound on the number of consecutive 0’s in D, and an upper

* It may indeed reach threshold for 1 £ j, < s.but this does not affect our mlaly:sis-
f 51 and s. are relatively prime to 2" — 1 so that the line sequence has period
8 X (2" — 1)if 5| s, or 5 | s as seen from Theorem 1.
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bound to the threshold required to prevent the counter of Fig. 7 from
making unnecessary changes in the tap sum.

In case I we let n = 2™ — 1, which is the period of the sequence
generated at point D. Thus, D, is one period of this sequence. B.and C,
are each one period of the output of the basic scrambler (which is a
maximal length sequence generator). Thus, B, can be obtained from
C. by a eyclic shift and they both have the same Hamming weight.
Then, we have the following result.

Lemma 1: If n = 2" — 1 and B, and C, are periods of a maximal length
sequence with B, = C, , then w(D,) = w(C,) = 2"7". If B, # C,, then
w(D,) = w(C,)/2 = 2",

Proof: We need only show that w(C,) = 2"7', From the comments
at the end of the appendix we have that the state of the autonomous
basic serambler, as a binary m-tuple, ranges through all 2" — 1 nonzero
binary m-tuples. Since the first digit of each m-tuple is a line digit,
there will be exactly 2"~* 1’s in one period of the line sequence generated
by the autonomous basic serambler. (Note that the scrambler does not
start with the zero state.) Q.E.D.

In case I, then, the number of consecutive zeros in the sequence
at D eannot exceed 2" — 1 — 2"7% and a threshold of 2" — 2"7* will
guarantee unnecessary tap sum changes in this case.

Consider now case II where {b;, 7 = 7] has period 2" — 1 and
{c;, 7 = ji} is the output of a driven basic scrambler characterized by

¢; = [T"7"y4l,, (32)
where y*% is an (s + m)-vector which from (24) has the form
yi =T {T"y +y} + z (33)

where y is an arbitrary (s + m)-vector, except that its first s components
model a periodic sequence of strictly period s, and z is zero in its first
s components and arbitrary in its last m components. The first s com-
ponents of T**y -+ y cannot be all zero if s } s, . It may model a periodic
sequence of period s, , however, where s, < s and s, | s. In particular,
we may have s, = 1 in which case the first s components of y% may
be 1’s and {¢;, j = j,} may have an output of period 1 consisting of
the all 1 sequence. If this is true D, = B,-C, = B, and D, will have
no more than m — 1 consecutive zeros. If {¢;,, j = 7} has period
so > 1 it will contain no less than a single nonzero component in each
period nor no more than s, — 1 nonzero components in each period.
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Thus, if n = s,, s, > 1, and C, represents one period in the output
of period s, , we have

I =wC,) = (sy — 1). (34)

When {¢;, j = j,} has period s, X (2" — 1) let n = s, X (2" — 1)
in (31). We now show that for this case

52" = 1) = w(C,) £ 8 X 277, (35)

The state of the driven basic scrambler with input of period s, can
be represented with an (s, + m)-vector. There are s, X 2™ admissible
state vectors since the last m components are arbitrary and the first s,
components must be a cyclic shift of the first s, components of some
other state vector. The last m components of these s, X 2" vectors
range through each of the 2" m-tuples s, times. Since the (s + 1)st
component of each state vector is a line digit w(C,) < s, X 2™ ' which
is the number of 1’s shown in these positions. We also have w(C,) =
8y X 2"7" — s, since the components of C, are generated by only
sp X (2" — 1) of the s, X 2™ admissible state vectors and the missing
state vectors may all contain 1 in the (s + 1)st components.

Returning to (31) we see that the vector B, + C, appears. It represents
the first n components of {b; + ¢;, j = j,}. This is the output sequence
of a driven basic serambler driven with period s, and which has as
a starting state the state which produces {¢; , j = j,} and which is
modified by the addition in its last m components of the starting state
of the autonomous basic scrambler which produces {b; , j = j,}. Since
this last state is arbitrary, B, + C, can be expected to have period
Sp or 8o X (2" — 1) and the bounds on the weight of C, for these two
periods apply to B, + C, .

We now combine our bounds with (31) to obtain a lower bound
to w(D,) for case IT. Remember that n = s,(2" — 1).

(©) Let C, have period s, , then B, + C, has period s, X (2" — 1) and

m=1 m _ m—1 om __
wpy g 2XEFE D on X2 T o1 g,

where w(B,) = s, X 2"7" from Lemma 1.

(1z) Let C, have period s, X (2" — 1) and B, + C, have period s, .
Then

80 X 2" @7 = 1) — (s — DE" —1) _ 2"

w(D,) = 2

-1
5+ (37)
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(#it) Let C, and B, 4 C, have period s,(2" — 1). Then

S0 X 2m—1 + so(zm—l . 1) — S X 2m—|.
2

Therefore, the number of 1’s in the sequence D, of n = 8, X @ —-1)
components for case II must exceed (2" — 1)/2 — 3 and the number
of consecutive zeros cannot exceed s, X (2" — 1) — (2" — 1)/2 + 3.

Combining the results for cases I and II we find that the number
of consecutive zeros at point D of Fig. 7 when s, < s, , s, { s, and the
input has period s, s | s, or s | 5, or both, will not exceed s,(2" — 1) —
(2™ — 1)/2 + % unless the line sequence has period s. The threshold
then need not be any larger than s,(2" — 1) — 2""! + 2 to prevent
unnecessary changes in the tap sum. Q.E.D.

w(D,) = z25@E - 1. (8

VIII. MIXTURES OF THE SCRAMBLERS

The two types of scramblers given above are distinguished by the
structure of their monitoring logics. The MCS has one counter for each
of the input periods s,, s., --- sy and the SCS has a single counter
to detect the presence of one of two periods, s, or s, . We have found
the smallest threshold required on each counter of the MCS so that
they change the tap sum only when necessary. Also, we have shown
the existence of a finite threshold on the single counter of the SCS
when the source is binary and input periods are relatively prime to
2" — 1, where m is the number of stages in the basic scrambler.

Since the monitoring logic for both counters acts to detect the pres-
ence of periodic sequences of known periods in the line sequence,
it should be clear that a monitoring logic containing a mixture of the
MCS logic and the SCS logic may be used. We know of an SCS monitor-
ing logic only when the source is binary, however, so that the mixture
must be restricted to the binary source case. Thus, we may now con-
sider a scrambler with a monitoring logic, a portion of which has counters
detecting the presence of one of a pair of periods and another portion
consisting of individual counters for single periods. The outputs of
all counters are fed to an OR gate which in turn is added modulo 2
to the tap sum. The output of the OR gate is also used to reset all
counters.

IX. TRANSITIONS IN A SCRAMBLED SEQUENCE

The basic scramblers described above may have applications in
situations where bit framing at the receiver is derived from transitions
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in the line signal. In this section we show that transitions occur fre-
quently in a scrambled periodic sequence and that in one period of a
serambled sequence there are approximately half as many transitions
as there are digits. These results are shown when the source is binary
and the scrambler input periods are relatively prime to 2" — 1, where
m is the size of the basic scrambler.

Let I represent one period of the line sequence generated by the basic
scrambler when the input has period s. If the source is binary, if the
basic scrambler has m stages and if s is relatively prime to 2™ — 1, then
lis an s(2™ — 1) component vector. If we assume that the binary line
sequence is converted into a line signal by the mapping 1 — 10 — —1,
and if it is linearly modulated, then transitions in the channel signal
occur whenever transitions in the line sequence appear. Thus, we should
like to know the number of transitions in I and the maximum separation
between transitions.

Theorem 5: The binary vector 1 of length s(2™ — 1) representing the
response of a binary scrambler to an input of period s, when s and 2™ — 1
are relatively prime, has at least one transition every s + m digits and has a
total of Tr(l) transitions where

1(2" —2 Tr (1) 1( 2" )

2(2’"—1)53(2'"—1)52 o — 1 (39)
We begin by showing that every set of s + m consecutive line digits
must contain at least one transition. The scrambled sequence is the
response of the basic scrambler of Fig. 2 to an input of period s. We
note that if the basic scrambler is in the all zero state then the tap
sum (which is added to the data bit) is zero. Similarly, if it is in the
all 1 state the tap sum is zero because if not, (1) = 0 and h(z) is
divisible by £ — 1 which is impossible since h(z) is irreducible. Then,
if s + m consecutive outputs of the scrambler are identical, the last s
of the (s 4 m) corresponding tap sums are zero so that s consecutive
data bits must be identical. This cannot happen if the source is periodic
with period greater than 1. When s = 1, the line sequence must have
period 1 if s + m consecutive line digits are identical, which also cannot
happen since the line sequence has period 2" — 1 in this case.

We now bound Tr (I), the number of transitions in one period, I,
of the line sequence. We use the notation of Section V so that the jth
digit of I, namely I, is written

L = [Ty]. , (40)

where T is given by (3) through (5) and y is the state of the driven
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basic scrambler at the beginning of a period of the data sequence.
Let us now observe that a transition occurs in between two digils in 11f
they sum to 1 modulo 2. Thus, the number of 1’s in 1 + I’ (where lis
one cyclic shift of I and addition is term-by-term) is the number of
transitions in 7. For example, if I = 10110, ¢’ = 01011 and 1 4 I' = 11101
then the number of transitions in I, including the implicit transition
at the first digit is the Hamming weight of I + I'.

In the process of proving Theorem 4 we have shown (see (35)) that
the Hamming weight of one period of the output of the basic scrambler
when the input is binary of period s, and s, and 2" — 1 are relatively
prime lies between s,(2"™' — 1) and s,2""'. Hence, if we can show
that 7 + ' is one period of the output of the scrambler with input
period s, , we will have established Theorem 5.

We note that

L+ = [Ty + Tyl (41)
so that we now examine 77*'y + T’y. We have
Ty + Ty = T YT + Iy. (42)

As in (7), let y = y, + ¥.. where y, is zero in its last m components,
y., is zero in its first s components and they represent the periodic
input and starting state of the basic scrambler, respectively. Then,

T+Dy=y,+y.+ 0w, Q_)1 + Vo + TYm s (43)

where ¥ is a single cyclic shift of y, in its first s places and 0, y,,0
is a vector with a single component , in the (s + 1)st position. If we
use (z)’ to represent the last m components of z, then

Y + Tya)" = (Tn + L))" (44)

In the appendix it has been established that T, + I,,1s a nonsingular
matrix. From this we deduce that the last m components of (T + I)y
range over all 2" m-tuples as y,, ranges over all m-tuples.

Now consider y, + y/, which represents the first s components
of (T + I)y. While y, models one period of a data sequence with period
exactly s, y, + y, may model a sequence with period so , 8o | s. For
example, let y, = (1001000), then y, + yi = (0101000) and its first
4 components represent two periods of a period 2 sequence. Thus,
we must view (7' + I)y as the starting state of a driven basic scrambler
with input period s, where s, | s. We then ask if the sequence generated
by this state has period s, or (2" — 1). Since y is noncritical, the
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sequence generated by (7' + I)y must have the larger period because
if y were critical (7% + I)y = 0 for some 7, 1 < 7 < 82" — 1) — 1
and (7" + I)(T + I)y = 0 as well for some 7 in this range so that
(I'" + I)y is a critical state. But we have shown in Theorem 1 that
there is only one critical state for each periodic input. In the last para-
graph we have seen that there is a one-to-one mapping between the
last m components of y and the last m components of (T + I)y, hence
if y is noncritical, (7 + I)y is noncritical and the line sequence gen-
erated by (T 4 I)y has period s,(2™ — 1) where s, | s.

The vector I 4 I’ contains s/s, periods of a sequence of period s, .
Let C, represent one such period. Then from (35), the number of 1's
in C,, w(C,), is bounded by

5(2"" — 1) = w(C,) = 2™ (35)
Then,
Tr () =wl+T)
and
s = 1) £Tr(l) < s2m! (45)
which gives the desired result after division by s(2" — 1).

X. THE SELF-SYNCHRONIZING DESCRAMBLERS

In this section, we show that the descrambler for each of the scramblers
given above has the self-synchronizing property, that it is relatively
insensitive to channel errors and that in some applications it can be
considerably simplified by removal of the monitoring logic.

Each scrambler is of the form shown in Fig. 9. Each descrambler can
be represented as shown in Fig. 10. The output marked “data” in
Fig. 10 is indeed data if the scrambler and descrambler are both started
in the same state and no channel errors occur since (z) the line sequence
will then pass through both basic scramblers and (i7) the modulo p
sum of a data bit, tap sum, line bit, and monitoring logic output is
zero at both the scrambler and descrambler.

If there are no channel errors we would like to show that the de-
scrambler will synchronize itself should it ever lose synchronism. The
descrambler will be said to be out of synchronism with the secrambler
if either the values stored in the basic scrambler and the delay elements
differ from those stored in corresponding sections of the scrambler
or if the counters in the monitoring logic are not at the same levels as
those at the scrambler or both. It is clear that the sy stages (if the largest
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Fig. 9— Block diagram of the scrambler.

expected period is sy) of the basic scrambler in the descrambler and
delay section will be purged after sy clock intervals and replaced with
accurate information if there are no channel errors. Then, after sy
clock intervals the monitoring logic at the serambler and deserambler
both are fed the same information. The monitoring logics will then
reach synchronism when either (i) counters at the scrambler and de-
serambler reach threshold together in which case all counters are reset
simultaneously or (77) the last sy + 1 digits of the line sequence is
found to be inconsistent with a periodic sequence of period s, , 85, ***
or sy and the counters at the descrambler are reset individually but
in synchronism with those at the scrambler. When the data sequence
is periodic of period s,, s», --- or sy the ith counter of the MCS is
reset (following the transient interval associated with the arrival of
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Fig. 10— Block diagram of the descrambler.
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the periodic sequence) at least once every {,, = m — 1 + max s; clock

i#d
intervals. With the SCS the single counter is reset at least once every
5,(2" — 1) — 2"7" + 2 clock intervals when the input has period
8§, 0T S5, 8; < 85 . Should the input sequence be random, the monitoring
logics may be brought into synchronism because one of the counters
reaches threshold and all counters are reset, which is unlikely, or because
the counters are reset individually in synchronism with the scrambler
counters, which is very probable and increases in probability very
rapidly to one. (If the source is binary with independent, equiprobable
outputs, the 7th counter of the MCS descrambler is resynchronized
in the second manner after n clock intervals with probability 1 — 27";
similarly, the counter of the SCS descrambler is resynchronized with
probability 1 — ()".)

Channel errors can affect the process of resynchronization. However,
if we assume that they are relatively few in number, say, occurring
once in every 10° transmissions, there will be long intervals during
which resynchronization can take place. Since the deserambler re-
quires at most sy + max {,, (which equals 2sy 4+ m — 1 in the MCS
case when s; = sy and is at most s,2" — 2"7' 4+ 2 in the SCS case)
clock intervals to resynchronize when the source is periodic, resyn-
chronization will not be a problem with periodic inputs if m and sy
(or s;) are reasonable in size. When the source output is random and
is a sequence of independent, equiprobable binary digits, the average
number of clock cycles required by the ith counter of the MCS de-
serambler to resynchronize (in the second way described in the preced-
ing paragraph) is two so that the MCS descrambler will resynchronize
on the average in sy + 2 clock intervals. The counter of the SCS de-
scrambler will require four clock intervals on the average to resyn-
chronize so that the SCS descrambler will be resynchronized on the
average in sy + 4 clock intervals. Hence, we may conclude that re-
synchronization in the presence of channel errors which are relatively
few in number will not be a problem when the source is random. In
fact, it may be easier to resynchronize when the data is random than
it is when the data is periodic.

Now assume that the scrambler and descrambler are operating in
synchronism and consider the effect of channel errors on the descrambler
output. If we neglect the monitoring logic for a moment, it will be
be seen that an isolated channel error, as it passes through the basic
scrambler, will cause w(h) output errors, where w(h) is the number of
nonzero terms in the tap polynomial 2(x). The monitoring logic, however,
may fail to act when it should or act when it should not and thereby
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introduce additional errors. If we consider the effect of a single channel
error on the monitoring logic, we see that this error has a direct effect
on the 7th counter of the MCS at two occasions, when it enters the basic
scrambler and when it reaches the s,th storage element. A single channel
error has a direct effect on the counter of the SCS three times, once
when it enters the basic scrambler and again when it enters the s,th
and s,th storage elements. When the channel error effects a counter
of the descrambler, it may cause it to reset when it should not, which
will not cause any harm if the counter is about to be reset before
reaching threshold, as is the case for the known periodic inputs or as
frequently happens with a random source. A channel error which
causes a counter to continue to count when it should reset may indeed
be harmful since it may result in its reaching threshold and introduce
an unnecessary change in the descrambler output. This event is un-
likely to happen for the known periodic source sequences since the
counters reset frequently, and the number of clock intervals between
a set of three normal counter resets is often less than a given counter
threshold. It is also unlikely that a channel error will eliminate a reset
and cause a counter to reach threshold when the source is random.
For example, when the source is a binary, equiprobable, independent
letter source the average separation between three resets on the MCS
counters is four clock intervals and is eight clock intervals on the SCS.
We may conclude then that channel errors have a small effect on the
monitoring logic and thus affect the descrambler primarily by producing
approximately w(h) as many output errors as channel errors.

The descrambler can be considerably simplified, the problem of
synchronization loss in the descrambler monitoring logic eliminated,
and the problem of output errors due to the monitoring logic solved,
all by the removal of the monitoring logic at the descrambler. This
is not the drastic solution that it might seem for the monitoring logic
reacts infrequently on random data and at most twice on known
periodic inputs (if counter thresholds all are larger than the largest
expected input period). With a binary, independent, equiprobable
letter source, one or more of the N counters of the MCS reaches thres-
hold in n transmissions with a probability, P, (n), which is less than
or equal to

Pnr(n) = i (’n - L+ 1)28“ ) (46)

where ¢ is the threshold on the 7th counter and ¢; = {,, . The single
counter of the SCS reaches threshold ¢ in n transmissions with prob-



DIGITAL DATA SCRAMBLERS 477

ability Pg(n) where
Psn) = (n — 1+ DD (47)

Hence, if the thresholds are large enough so that Py (n) or P,(n) is
less than 0.1, say, when n equals the average number of transmissions
between channel errors, then we may safely say that the monitoring
logic at the descrambler is not necessary on random data inputs.

‘When the source is periodic of period s however, one of the p™ starting
states* of the basic scrambler will result in a line sequence of period
s which subsequently will require at least one and at most two outputs
from the monitoring logic. Thus, if the data preceding a periodic input
is random, the monitoring logic at the descrambler will with probability
1/p™ change at least 1 digit in the descrambler output. Hence, if a
customer can tolerate such an error rate and if the thresholds are
large enough, the monitoring logic at the descrambler can be removed
and the descrambler will then simply consist of a basic scrambler.

XI. THE SPECTRUM OF THE SCRAMBLER OUTPUT

In this section, we perform representative calculations to show the
effect of secrambling on the spectrum of a linearly modulated carrier.
Assume that the source is binary and that a binary sequence is con-
verted into a waveform by the mapping 0 — —1, 1 — +1. Let T, be
the time interval alloted to each binary digit and let I(¢) be the wave-
form generated by the binary sequence I. Then, we have

X A
L) L) = = + L)(®) (48)

where addition is taken modulo 2 and multiplication is on the reals.
The autocorrelation function of a waveform I(¢) is defined as

T
Ri(7) = lim =, f i + 7) dt. (49)
o 20 Sy
If 1 is the output of the serambler when the input is an equiprobable,

independent letter source, then ! is a sequence of independent, equi-
probable, binary digits. Then, we have

_L‘l) :
Ri() = (- s (50)
0 7] >1T,.

* p is the input alphabet size and m is the number of stages in the basic scrambler.
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The power density spectrum of [(f), which is the Fourier Transform
of R,(r) is for the random binary source
_ sin rfT0)2
sip = ey’ 51
Now let the source be periodic and assume, as an example, that
it has period 8 and that the following sequence is one period of the
source output: 10110010. Then, if I represents this sequence and if
it is transmitted without scrambling, we find using (48) that it has the
autocorrelation function, R,(r), of Fig. 11. The power density spectrum
of (), S.(f), is given below and shown in Fig. 12.

_ sin 770\ (sin 2rfT,\* | ~ 1 _ ( j )

8:0) = QT“[( T, ) - 2afTs ) :| 281, \ ~ar) Y
Here (-) is the Dirac delta function. Thus, S;(f) contains isolated
tones spaced by 1/T,, T, = 87T, , the period of the data sequence.

If the periodic data source of period s is now scrambled, the line
sequence has period 7'(LCM (s, 2" — 1)). Assume now, as an example,
that s and 2" — 1 are relatively prime so that the line sequence has
period PT, , P = 2™ — 1, the scale-up factor, and T, = sT, , the
source period. Now let ! represent one period of the binary line sequence.

Then, if I, represents k cyclic shifts of I we have
PTy/2

ry - L A
R = L ol a. (53)

When k = =1, &2, .-+, (P — 1), we have
R,(ET,) = —If;,ﬂ (No.1'sin (I + 1) — No.0'sin I + 1). (54)

1
Since R,(r) is linear in 7 for (k — 1)Ty = r = kT, we need only have
Rir)atr = kTy, k = 0, =1, =2, --- . We note that R,(kPT,) = 1,
rRunf
"'-'—'ITo :'I'o To 2Tp

VA4 NV = N+

Fig. 11— Autocorrelation function of period 8 sequence.
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sun
+0.25
B B e L L T
-1/T, posd 1/ To fe—>
1/8T,
Fig. 12— Spectrum of period 8 sequence.
k=0, &£1, &2, --- . To further evaluate (54), however, we must

return to Section IX.

We have seen in Section IX that I 4 1, represents several periods
in the output of a basic scrambler driven by an input of period s, , o | 5,
and started with a noneritical state y. The proof of this result amounted
to showing that the operation (7' 4 I) on y mapped the last m com-
ponents of y one-to-one onto the last m components of (T + I)y.
Thus, if y is critical so is (T + I)y and since there is only one critical
state for each periodic input (7' 4 I)y is noncritical if y is noncritical.
We can show in a similar manner that (T° + I)y is noncritical when
y is noneritical as long as & is not a multiple of 2" — 1. Thus, I + I,
which is produced by the starting state (T" + )y when y generates
1, is the output of a basic scrambler with input period s, and output
period (2" — 1) when k is not a multiple of 2" — 1 and s, | s. Then,
invoking (35). we have

—1/P = R,(kT,) = 1/P, k not a multiple of P = 2™ — 1. (55)

We note, however, that R,(kT,) for such £ may not all be equal.

Next consider 1 + I, when k is a multiple of 2" — 1, If I 4 I, represents
an output which has period which divides s, then (T° 4 I)(T* + I)y = 0.
We now show that (7" + I)(T* + I) = 0 for all y when £ is a multiple
of 2" — 1. We observe that

. _|o] 0 ]

T+I‘[Q. 7+ 1., (56)
and

N P _g]

T+I_[ Q: |0 (57)
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since Ty = I. Because T* + I and 7% 4+ T commute, we have

T+ DT+ 1) =T+ DI+ 1) =0. (58)

Thus, ! + 1 represents a scrambler output of period s, , where s, | s.
It is clear then that the number of 1’s in one period of I + 1, is greater
than or equal to 1 and less than or equal to s, — 1. Also, I + I is the
same sequence for all multiples of P = 2" — 1 which are not multiples
of sP. Thus, for & a multiple of P which is not a multiple of sP, we have
from (52) that

=2 _(iig) < R(kTy) < (30; 2) <=2 (59)

S S

when s, = 2.

To caleulate a representative spectrum of the scrambled data sequence,
we assume that R,(r) has the following form, where u, 2 = u = 2g,
is a function of the serambler input (the number of I'sin I + &, k a
multiple of P, depends on the input):

1 k=nsP, n=0, &1, £2, ---,
Rkl = 5=% L =nP, n=0, s &2s, -, (60)

1 all other &

P er .

The power density spectrum S;(f) then is

Su(h) = 5 5(f) + T"(Si:f;:{Tn)?{S;Tl Z o1 - ij)

U 1V 1 ¢ ]

+ (1 T8 1_3) PT, ,-;m a(f - P_Tu)} (60)
When u is of the order of s we see that the second term in curly brackets
has amplitudes which are proportional to 1/P® and are thus much
smaller than terms in the first sum. We show R, (r) withu = s, R, (T) = ¢
in Fig. 13 and S,(f) in Fig. 14. The assumption that u = s is equivalent
to the assumption that I + I, contains an equal number of 1’s and 0’s
when k is a multiple of P.

We deduce from this discussion of spectra that the principal effect
of scrambling when the scrambled sequence is converted to a signal
waveform in the manner given above is lo increase the number of tones
in a given bandwidth by a factor which is approzimately P and to decrease
the level of each tone by approximately the same factor.
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|
-PT, -PT, T T PT, 17— PT,

Fig. 13— Autocorrelation function of a serambled periodic sequence.

XII. AN EXAMPLE

We shall now consider an application for the scramblers and we shall
compare the relative cost and effectiveness of the MCS and the SCS.
We will report on a computer simulation directed at the determination
of the smallest SCS counter threshold for our example.

Assume that the source is binary and that it may occasionally contain
sequences of period 1 (there are two—the all 0 sequence and the all
1 sequence), period 2 (there is only one—the 1010 - - - sequence, known
as dotting), period 7 or period 8. Assume also that a line sequence of
period less than 100 is undesirable from spectra considerations. Since
the least common multiple of 1 and 2" — 1 is 2" — 1, we will require
that 2" — 1 > 100. The smallest value of m for which this is true
is m = 7 for which 2" — 1 = 127, a prime. We next require a prim-
itive, degree 7 binary polynomial for the tap polynomial. The poly-
nomial (x) = 1 + 2* + 2 is one such. Given h(z) our basic scrambler
is fixed. We next observe that 1 divides 7 and 8 and that 2 divides 8
so that we may build a scrambler which detects two periods s, = 7
and s, = 8.

We next consider whether the MCS or the SCS should be used
for our problem. We see immediately from Theorem 3 that the threshold

syt
1/Ps
—T T T T —— | | s S N N S e PO
-1/T, ';;T /T, £ —

Fig. 14 —Spectrum of a serambled periodic sequence.
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on the first counter of the MCS, ¢, , must be at least 14. Similarly,
t., of the MCS must be at least 13. Since a 4-stage binary counter will
count to 16, we see directly that 8 counter stages, 8 shift register stages,
3 OR gates and some peripheral logic will suffice to build an MCS
for our problem.

From Theorem 4 we see that the threshold on the SCS need not be
any larger than 954 or require more than 10 stages of a binary counter
since 2'° = 1024 > 954. A computer simulation of the SCS, however,
shows that the bound of 954 is more than 34 times larger than the
smallest required threshold, which was found to be 28. The results
of this simulation are tabulated in Table I. The largest run of con-
secutive zeros at counter input was found for all period 7 and period
8 sequences when the line sequences had periods 7-127 and 8-127,
respectively. In Table I we list the fraction of the 384 periodic sequences
which have the gap lengths (maximum run of zeros) shown. (We note
that it is only necessary to simulate the SCS with one starting state
of the basie secrambler when 2™ — 1 is prime since all 2" — 1 nonecritical
starting states appear as states of the basic serambler. Note also that
we can neglect the first eight inputs to the counter following the argu-
ment of the third paragraph of Section VII.)

The SCS will seramble our periodic inputs if we choose a counter
threshold of 32 which can be realized with a 5-stage binary counter.
It will also require eight shift register stages, an AND gate and periph-
eral logic.

As far as random data is concerned, we see from (46) that the MCS

TapLeE I—Gap LENGTHS FOR PERIODIC INPUTS

Period 7 Period 8
Gap length No. % No. %
13 14 10.92 0 0
14 28 21.84 16 6.25
15 14 10.92 16 6.25
16 0 0 16 6.25
17 0 0 16 6.25
18 28 21.84 60 23.41
19 14 10.92 18 7.04
21 0 0 56 21.85
22 2 1.56 2 0.78
24 0 0 24 9.38
25 0 0 16 6.25
26 14 10.92 0 0
27 14 10.92 16 6.25
128 256
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for our application reaches threshold at least once in % transmissions
with probability

Py(m) = (n — 15)(3.06)107° (61)
and we see from (47) that the SCS reaches threshold with probability
Psn) < (n — 31)107°. (62)

Thus, the MCS has a slight edge on the SCS when it comes to scrambling
random data since it is desirable to keep the frequency of threshold
crossings low.

In sum, it is safe to say that the SCS has the edge for our problem
primarily because it is simpler and less expensive. Also, we note that
the addition of a single-counter stage will reduce Ps(n) to (n — 31)107%.
The autocorrelation function of the scrambled data sequence will be
like that of Fig. 13 with | ¢ | = 0.008.

XIII. CONCLUSIONS

We have introduced two major classes of self-synchronizing, digital
data scramblers called multi-counter scramblers and single-counter
scramblers. We have shown that these scramblers and combinations
of the two will map a periodic sequence of period s into a periodic
sequence of period LCM (s, p" — 1), where p is the size of the source
alphabet (the SCS results require that p = 2 and that s and 2" — 1
be relatively prime), if the basic scrambler tap polynomial h(z) of
degree m is a primitive polynomial over GF(p). We have found the
smallest values for the counter thresholds in the MCS and have shown
the existence of finite thresholds for the successful operation of the SCS.

We have shown that there are many transitions in the serambled
sequence and that they are well distributed. We have shown that the
descramblers possess the self-synchronizing property and we have con-
sidered the effect of channel errors on the descrambling process. We
have seen that the principal effect of infrequent channel errors (occurring
at a rate of one in 10° transmissions, say) is to cause approximately
w(h) as many output errors, where w(h) is the number of nonzero
terms in Ah(x). Channel errors were shown to have a relatively small
effect on the output of the descrambler monitoring logic.

We have found the power density spectrum of the waveform gen-
erated by the serambler output for a representative case, namely, when
the source is binary and the scrambled sequence is mapped onto a
=+ 1 sequence. We have seen that scrambling does not affect the spectrum
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of the line signal when the source is random and that its principal
effect when the source is periodic is to introduce P times as many
tones each having 1/Pth as much energy where P is the factor by which
the source period is increased.

It has been shown that the counters in the serambler and deserambler
reach threshold infrequently when the source is random and at most
once each time the source becomes periodic. Thus, it has been argued
that the counters at the descrambler might be removed if the rate
at which the counters at the serambler reach threshold is less than
the rate of occurrence of channel errors, and if the customer can tolerate
occasional output errors when his data is periodic.
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APPENDIX

Proof of Theorem 2

Let 7, be the matrix shown below where the coefficients ¢, , c.,
are elements of the modular field GF(p) of p elements, p a prime

e
(e, €2 -0 Cma en | T
1 0 .- 0 0
T, = 01 - 0 0 m. (63)
00 - 1 0¥

Let A(z) be the polynomial shown below in the indeterminate 2 where
coefficients are those appearing in (63).

hz) = 2™ — @™ — o — G . (64)

Then, one can show by direct calculation that the characteristic poly-
nomial of 7, , o(x), defined by

o(x) = det (T, — zI), (65)
is related to h(z)®'° by
e(x) = (—1)"h(z). (66)
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The matrix T’ is called the “companion matrix” for the polynomial (z).
We assume that A(z) is a primitive polynomial over the field GF(p).
A polynomial A(z) is primitive if

(7) h(z) is irreducible over GF(p), that is, if there is no polynomial
with coefficients in GF(p) which divides h(x) except 1 and h(z), itself,
and

(%) h(z) of degree m divides 2" — 1 forn = p™ — 1 but for no smaller
integer n.

If we replace the term ¢, in h(z) given in (64) by the matrix ¢,.7,
where I is the m X m identity matrix and replace z by T,, where
powers of T, are defined as successive matrix products, then we have
the well-known Cayley-Hamilton theorem®

¢(T) =0, (67)

where ¢(z) is the characteristic polynomial of T, . Thus, a matrix T,
satisfies its own characteristic polynomial. There is a smallest degree
monic polynomial (coefficient of the highest degree term is 1), called
the minimal polynomial, m(x), such that

m(T,) = 0. (68)
Since A(z) is irreducible, we have
m(x) = h(z). (69)

We now wish to prove the following theorem.

m

Theorem 2: The mairices Ty, — I are nonsingular for 1 < k < p™ —2.
We first prove the following two lemmas.
Lemma 2: If0 = 4,7 = p" — 2,7 5 j, then T, = T} .
Proof: If T* = T’ for the 1, j given above and 7 < j then
T —1) =0
implies
7" ' —1=0

since det 7, = ¢(0) # 0. (If ¢(0) = 0 then o(z) is div.isi_ble by x and
h(z) is not primitive.) Consider now the polynomial 2’~* — 1. Using
the Euclidean division algorithm we have

27— 1 = h@gl@) + s(x)
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for unique ¢(z) and s(z) and degree s(z) < degree h(z). Therefore,
=1 =0 = Tq(T) + s(Th)
which implies that
s(Ty) = 0.

But m(z) = h(z) is the minimal polynomial of T so that s(z) = 0.
Therefore, h(z) divides 2" — 1, n = j — 1 < p" — 1. Contradiction.
Hence, T = T',1 # j,0 < 1,j < p" — 2. QED
Lemma 3: All nonzero polynomials in T, with coefficients in GF(p)

and of degree m — 1 or less are nonsingular.

Proof: Let p(z) be a polynomial of degree m — 1 or less with coe-
flicients in GF(p). Then, using the Euclidean division algorithm, we
have that the greatest common divisor, d(z), of p(z) and h(z) is given by

d(z) = a(@)p(x) + b)),

where a(z) and b(z) are unique polynomials. Since h(z) has degree
m and is irreducible d(z) = 1 and

1 = a@p@) + b(@)h(z).
Taking these polynomials in T , we have
I = a(Twp(Ts) + b(THR(TY)
or since A(T,) = 0 we have
I = a(Tp(Ty) = p(Twa(Ty),

where the latter equality follows since the polynomials a(z) and p(z)
commute. Thus, the polynomial p(7,) of degree m — 1 or less with
coefficients over GF(p) in the matrix 7, has both a left inverse and
a right inverse and is nonsingular. QED

Proof of Theorem 2:
Since h(T,) = 0 we have
Tr =T + eI 4 - + el

Thus, every power of T, , such as Tj can be written as a polynomial
in T, of degree m — 1 or less. Hence, T — T can be written as a
polynomial of degree m — 1 orlessin 7', . From Lemma A1, T} — T} # 0,
i#3j,0=13j=<p" — 2sothat T} — T} as a polynomial in T, of
degree m — 1 or less is nonzero. From Lemma A2, Ti — Tiis nonsingular
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and it follows by choosing j = 0,7 = k with 1 < £ = p" — 2 that
Ty — I is nonsingular. QED

Theorem 2 in effect says that if y is some arbitrary, nonzero column
vector of m components chosen from GF(p) then Ty runs through all
p" — 1 nonzero vectors y as k ranges between 0 and p™ — 2. Thus,
the linear sequential filter with feedback paths described by T, is a max-
imal-length sequence generator. Elspas® comments that these results
were noted by Zierler® and Golomb."
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