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1t is shown in this paper that the charge-control concept can be conceived
as a special form of the Linvill model for semiconductors. Instead of
mathematical tools, charge-control models become equivalent circuits amen-
able to ordinary network analysis techniques. In the simplest form, the
charge-conirol equivalent circutl for the junciion transistor is fully equiv-
alent to the Linwill and the Beaufoy-Sparkes model. For all practical
purposes, it 18 also equivalent to the Ebers-M oll model.

The charge-control junction transistor equivalent ctrcuit combines those
features of the other models that are important for electrical engineering
applications. It also permits the conversion belween the three basic types
of models. Because of tts close relationship to the physical processes governing
a device, it can readily be extended lo higher-order phenomena. This s
usually done by expressing a Linvill-type lumped model in terms of charge
paramelers. The charge-control equivalent circuit can be useful for modeling
a variety of semsconductor devices.

I. INTRODUCTION

Three basic approaches are generally used to obtain descriptive large-
signal models for transistors and diodes, the Ebers-Moll model,' the
Linvill model® and the charge-control concept® after Beaufoy and
Sparkes.

The Ebers-Moll transistor model'* is based on the idea of super-
imposing a ‘“normal” and an “inverse” transistor. Semiconductor
junctions are represented by means of diodes and capacitors, whereas
the properties of the transistor base are represented by frequency-
dependent current sources. The Ebers-Moll transistor model is the
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most popular of all transistor models since it lends itself most readily
to simple ‘“‘rule-of-thumb calculations.” The current relations are
described in the frequency domain, whereas the junction voltages are
deseribed as funections of current in the time domain, or, as in the
original paper, only at de. The model simulates only the effect which
minority carrier storage exercises on the relations among the various
device currents, but not the effeet on current-voltage relations. Since
the diode is a one-port device, no diode model of the Ebers-Moll type
exists that could simulate carrier storage.*

The Linvill model’*™'? is almost a direct representation of the con-
tinuity and diffusion equations for semiconductor materials. It uses
physical rather than circuit parameters and is superior to any other
model when it comes to incorporating second-order physical effects
or symbolizing new structures.

The charge-control concept stands about halfway between
physics and circuit considerations. It has proven in the past to be
very useful for studying storage effects in diodes and transistors, but
appeared to be entirely a mathematical tool. Certain equivalent circuits
have been presented'*''® to illustrate charge control, but, as Linvill
phrased it, “they have little more meaning than a symbolic model
useful for the purposes of visualizing only.”

Hamilton, Lindholm and Narud compared the three models for the
transistor in a well-written tutorial paper.”' They discussed the
approximations used in deriving each model from the same physical
background. [See also Ref. 34] In contrast to this parallel treatment
of the three models, the following study dwells on the interrelations
and conversions between the various models. This is illustrated sym-
bolically in Fig. 1.

We may call the Linvill model a physical model, the Beaufoy-Sparkes
charge-control model a mathematical model, and the Ebers-Moll model
an electrical model. The link between the three models is accomplished
through a modified approach to charge-control theory: instead of
deriving, from device physics by means of integration, mathematical
charge-control expressions, the charge-control concept can be treated
entirely as an equivalent circuit tool.”” The transistor model, for ex-
ample, is in such a form readily comparable with, and convertible
into the Linvill and the Ebers-Moll model, provided all of these models
are at the same level of approximation. In its simplest form, the charge-

3,14-33

* Diode models that simulate storage and use neither the charge control nor the
Linvill concept are usually extensions of small-signal models towards incorporating
certain nonlinear properties.
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Fig. 1 —Principle of derivation of transistor models and their interrelations (heavy
lines indicate main aspect of this paper; numbers refer to conversion equations in
the text).

control equivalent circuit model is fully equivalent with the standard
form of the Beaufoy-Sparkes charge-control model. But equivalency
is usually lost, as extensions to higher-order approximations are made
in each model.

In this paper, we shall review the derivation of the above-mentioned
types of models for diodes and transistors. This will be done with the
help of a differential transmission line model. The equivalent circuit
type charge-control concept will then be derived for diodes and tran-
sistors. This will be followed by a discussion of higher-order approxi-
mations, the inclusion of drift fields, and possible applications to
other semiconductor devices.

II. DIODE MODELS

2.1 Mathematical Description

As a starting point for our discussion it is assumed that the reader
is familiar with the continuity and transport equations, describing
current flow and carrier density in a semiconductor material.
Continuity equations
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—div j,() = e a?;(f) + e U] r— L (1a)

v (1) = o 20 4 MO To, (1b)
Transport equations

jn(t) = E_H.FEP(O - BD,, glad p(t) (28')

Ja(t) = ew,En(t) + eD, grad n(t). (2b)

j, and j, are the hole and electron current densities, respectively.
p and n are the hole and electron carrier densities with p, and n, being
their equilibrium values at a given temperature. E is the electric field
intensity. D, and D, are the hole and electron diffusion constants,
and g, and g, are the respective carrier mobilities. ¢ = +| e | is the
value of the electronic charge.

2.1.1 p-n Junction

A p-n junction is described in a first-order approximation by the
transport equation (2). The well-justified assumption is made that
both j, and j, are numerically small compared with the mutually
opposing diffusion and drift currents. With the help of the Einstein
relations

D,

kT
T Hp (38‘)
e

D, =%, (3b)
and the appropriate boundary conditions one obtains the Boltzmann
equations that express carrier densities as functions of the applied

junction voltage Ve :

(0, f) = Puo €Xp [E% v.u(t)} (4a)

nn(or t) = Ny EXP l:"% van(t):l' (4b)

Here, p.(0,t) and 7,(0,t) are the carrier densities on both sides of the
junctions; p,o and n,, are the densities for v, = 0 or, in other words,
at points away from the junction, previously called p, and nq in (1).
The definitions of these notations are illustrated in Fig. 2.
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Fig. 2— Carrier density distributions in the vicinity of a p-n junction and explan-
ation of notations used.

In terms of excess carrier densities, (4) transform into the following
expressions

Pexcess(D) = Pa(0,0) — poo = p"o[exp {E?T vm(t)} — 1:| (5a)

Nexoosall) = Np(0,1) — Npo = npn[exp {?c-% vm(t)} - 1]- (5b)

Together with the reasonable approximation that the hole and electron
currents pass through the junction unchanged,* (5) uniquely char-
acterizes the junction.

2.1.2 p and n Regions

The following assumptions are implied in the analysis presented
for a p-n diode:

(7) The p-region is so heavily doped that the electron current can be

neglected and appreciable carrier injection occurs only in the n-region.

(#7) The problem is reduced to one-dimensional variations along the
T axis.

(#7) Drift fields are neglected. (Their inclusion will be briefly dis-
cussed later in Section 7.3.4.)

(iv) Space charge neutrality is assumed.
% This is not quite true for silicon diodes at low forward currents and in the
reverse direction where recombination in the space charge layer cannot be neglected.
With respect to some of the diode properties, especially the current-versus-voltage

relationship, the disecrepancy can be accounted for by changing the exponent to
ev,z/2kT.1
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With these assumptions the continuity and transport equations reduce
to

_a_jg(ﬁlﬂ — apn("v!t) " pn(‘rv!} - pnn v
o = at + e - (6)

. op.(x,!
j,,(.’l,‘,f) = —BD» _:‘D_a(%_.l (7)

We shall now express (6) and (7) in terms of the excess carrier den-
sities p.,...., which we shall denote for simplicity as p, i.e.,

p(l,t) = pﬂnnceau(xit) = pn(mut) - p"” .
Multiplying by the cross section A we obtain

_Ouled) _ 20 4 o 2D -
i(et) = —eAD,Q%- ©)

These are the two equations describing the n-region.

2.2 Differential Diode equivalent circuils

Equations (8) and (9) become transmission line equations if z, and
p are taken as currents and voltages, respectively. (Mathematically,
one may think of p as an analog voltage representing carrier density.)
Fig. 3 illustrates the resulting r-g-¢ transmission line.

The currents in the network branches are true currents but the
voltages associated with the nodes are analog voltages. As a reminder,
we have labeled the nodes with encircled “p’s”. The series and shunt
elements are accordingly analog resistors, conductors and capacitors
per unit length.

If the diode is forward biased, the junction injects carriers into the
n-region. They diffuse across the n-region gradually recombining until,
at x — =, all hole current is converted into electron current. Fig. 4
shows the carrier distribution across the n-region which is equal to
the voltage distribution along the infinitely long r-g-¢ line. It can
be derived easily from (8) and (9) that, under steady-state conditions,
the shape of the charge distribution is proportional to

exp (—x/Ly),

where

L,= VD,r,. (10)
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Fig. 3 — Analog differential transmission line representation of diode model. (The
bars indicate dimension per unit length.)

L, is called the diffusion length. 7, is the hole recombination time
constant, or hole “lifetime”,

Since the analog voltage distribution on the capacitors of the r-g-¢
transmission line is identical with the physical charge density distribu-
tion, and since many engineers have a much better feel for the charging
and discharging processes of such a line than for the physical process,
the r-g-¢ line representation may be quite helpful as an illustration
of the carrier injection process. In early semiconductor work, such
r-g-¢ transmission lines were frequently used.”*******” No attempt was
made, however, to attribute the physical meaning of carrier density
to the network nodes; the junctions were represented by so-called
K-amplifiers. These amplifiers transform the internal voltage at z = 0

p (x)

--p()

T

Fig., 4 — Excess carrier distribution in diode n-region.
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to the external voltage with the appropriate exponential relationship,
while not transforming current at all.

Linvill>****" has introduced new symbols for the network elements
which relate current to carrier density. These new notations avoid
possible confusion between analog and physical circuit parameters,
especially voltages, and hence enable us to combine current/carrier-
density with current/voltage networks. Fig. 5 shows such a Linvill
model in differential form. Again we have added bars over the letters
ag it was done with the #, §, and ¢ in Fig. 3 to denote their dimensions
as being “units per length”.

The symbols in the models are defined as follows:

dip(z,f) = —H, dz p(z,1) (11a)
di(a,l) = — 8 da 220 (11b)
dp(:.r:,t) = "(I/Hd) dz 1:11(51:101 (110)
where
H, = combinance per length = ed/r, (12a)
S = storance per length = eA (12b)
(/H) = — per length = 1/eAD, . (12¢)
diffusance
N-REGION
JUNCTION —)dx

plo,t) Lplx,t) I plx,t)
) {1 | F===->o0
\ p
\ |
AW L Aedr = | [3dx
/1’ —
v = u : .
\\‘ r dL‘PlT dL'pz
\
\\ dip ‘
—_— tnlx,t)
vt
_ kT p(o,t) )
vit) = - Ln(l + o

Fig. 5— Differential Linvill diode model. Note that, in consisbenc%r with common
transmission line notations, the reciprocal of diffusance must be used.
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This model can be extended to include majority carriers, drift fields
ete. The reader is referred to the literature.® ®™'®

2.3 Integrated Diode Models

2.3.1 Mathematical Integration

In order to arrive at an expression for the external diode current
from the continuity equation (8) we can integrate this expression with

respect to z. Choosing @ = 0 and 2 = o« as the limits of integration,
we obtain

[ gy [ Dy L
fu e = [ et PRl 4 L [Cepnar. (3
The third integral represents the total charge in the bulk material.
With the appropriate boundary conditions 7,(0) = 4, 4,(0) = 0,
() = 0, 7,(w) = 4, the well-known charge-control equation® can
readily be obtained as

i = 10 4 20, (19)

To obtain (14) from (13) the assumption must be made that A and
7, are constant. Note that no approximations or restrictions to specific
charge distributions are implied in (14). (They must be made, however,
when relating the current to the junction voltage.)

2.3.2 Lumped Linvill Diode M odel

The crudest approximation to the distributed Linvill model of Fig. 5
is to replace the “line” by just one storance and one combinance®’
as shown in Fig. 6. These two elements are obtained by summing, ie.,

lpt)=plot)

+ \‘\ I l o LHC(t] ~ eAlp
T “Cw) —IH, (s ¢ o Tp
ey L (1)
\\\ bhe Lg S—m = EALD
. ¢ O dt

L,,,___‘ -
T I D(O,t_)j
/

V(t]=?1n LH—

=

Pno

Fig. 6 —Lumped Linvill diode model showing single-pole approximation for
minority carrier storage. Chosen values: Ax = L, p(t) = p(0,1).
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integrating, all differential storances and combinances from x = 0
to some value Az. The value of Az is usually chosen to equal the diffusion
length L, . This may seem arbitrary,' but has no effect on the terminal
properties of the first-order model, as long as p(f) is chosen such as
to maintain the same amount of total charge.

The values of the circuit elements follow from (11), (12), and (5a) as

H. = H. Ax = HL, = e‘iL” (15a)
S = 8Sar = SL, = eAL, (15b)
o(t) = )—l\m (1 + ”(Ln':)) , (15¢)
where ) is an abbreviated notation, used hereafter for
A= (16)

=ﬁl

The meaning of such lumping with respect to the carrier distribution
is illustrated in Figs. 7 and 8. The solid lines in Fig. 7 present the
actual carrier distribution in a switching example in which a current
pulse is assumed. As required by the transport equation, the slope
at = 0 is, at any time, proportional to the current. Under steady-
state conditions, an exponential distribution is obtained. To assume
such exponential distributions at any instant of time (dashed lines
in Fig. 7) represents a simplifying assumption. The corresponding

p(xt) p(zt)

RESIDUAL
CHARGE

(@ (b)

Fig. 7—Illustration of the (a) charging and (b) discharging process in the neutral
bulk material. The applied signals are assumed to be forward and reverse current
pulses. The solid lines represent the actual shape for current pulse drive; the dashed
lines represent exponential model approximations.
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Fig. 8— Exponential and corresponding lumped distribution of excess minority
carriers in the bulk material of a diode. (a) Illustration of the choice of lumping
length. (b) Time variation for mm = 1; m = 1 is generally preferred in the Linvill
model, and is irrelevant in charge models or circuit applications of the Linvill model.

errors are negligible in all those applications where the switching times
are large compared with the carrier redistribution times (= diffusion
times 7, and 7, in Fig. 12).

In the lumped Linvill model, it is assumed that the carrier density is,
at any instant of time, constant from z = 0 to 2 = L, , and that it is
0 for all x > L,. Any information on the distribution of the charge,
especially of the slope at x = 0, as expressed in the transport equation,
has been lost since all series elements (diffusances) are neglected. The
only parameter of importance left is the total number of minority
carriers and hence, the total charge. The approximation used is therefore
cquivalent to the dashed line exponential distribution in Fig. 7.

As mentioned above and illustrated in Fig. 8(a), the length Az over
which p is nonzero, is most conveniently chosen to equal L, . But it
is permissible to choose Az # L, if the constant value p(z) is recognized
to be different from p(0,t) ; for Az = mL, , we must choose p(f) = p(0,t) /m
such as to yield the same total charge

7= e‘ian(Ost}' (17)

I'ig. 8(b) shows, for m = 1, the time variation of the carrier distribu-
tions for the lumped model (solid lines) and the exponential distribution
(dashed lines).

As the external voltage v(¢) varies, the carrier density p(0,{) changes
accordingly. The relation between »(t) and p(0,f) has been given above
in (15¢). We shall see below that the approximation made in the lumping
process, as discussed above, effects only »(f) but not the current. Little
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or no error is made whenever, and as long as the external driving
source impedance is large.

Since, in this and any other lumped Linvill model, all circuit param-
eters are functions of total charges in the various sections of the semi-
conductor we can transform the model of Fig. 6 into a charge-controlled
model, in which all carrier densities are replaced by charges. This will
be shown in Section 2.4.1.

2.4 Charge-Control Diode M odel

Without invoking any of the approximations introduced in Section
2.3.2 and illustrated in Figs. 7 and 8, the diode is completely described
by (14) and (5a). These two equations are the basis for the classic
charge-control theory after Beaufoy-Sparkes as applied to diodes.
Throughout the charge-control literature, only the current appears as
a function of the total charge but not the voltage. If we want to relate
the junction voltage to the charge rather than to p.(0,t) as it was
done in (5a), we must make some approximation: The simplest possible
approximation is the assumption that p(0,f) is proportional to g(?).
This is, for example, satisfied if the shape f(z) of the carrier distribution
never changes, i.e., if the carriers redistribute themselves instanta-
neously. p(z,t) is then of the form

p(xb) = [(@)g(1).

The shape of f(z) does not matter as long as the integral [ f(z) dx
yields the proper proportionality constant. Examples of this are the
exponential distribution or the lumped distribution (with any arbitrary
value of m) in Fig. 8(a). This shows the equivalency between the
postulate of instantaneous carrier redistribution in classic charge-
control theory and carrier density lumping in the first order Linvill
model.

If we now want to establish an equivalent charge-control circuit
we must first represent (14) by corresponding circuit symbols. This is
done in the n-region part of Fig. 9. S is the store originally introduced
by Beaufoy and Sparkes.''''* To account for directionality, we have
added a vertical bar to the store symbol in the manner of the standard
diode symbol. The properties of S, as defined in this paper, are:

(7) charge stored = ¢(f)
(1) current in direction indicated by arrow —’—( —

,;=_QQ2
dit



CHARGE-CONTROL CONCEPT 535

JUNCTION ' N—REGION
l
e
o= { () l q(t)/rp 1 °
| | =
} cw)
[ It __J,. _____________ -
N

_ kT q(t)
vit)="g1n (q+ Tols )
dq @)
PROPERTIES OF S: (D) Lm:T

or [(s)=s5Q(s)-Q(o*)

(2) VOLTAGE =0
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(i27) voltage across store = 0.

S is often interpreted as an infinite capacitor for which 7 = dg/dt =
d(Cv)/dt = finite, but C — « and v — 0.

It follows from (15¢) and (17) that the junction voltage is of the form
o) = 5 In 1+ Ka(t)],

where K is a proportionality factor. If we denote the steady-state
reverse current (flowing through the diode when »(f) is very large
and negative) by s we can evaluate the constant: For v — — e we
obtain

K-Q = —1
and from Fig. 9
—Is = Q/Tp
Hence,
1
=1
and thus,

o(t) = %1-. [1 + 0 ] (18)

Is7
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Under steady-state conditions where Q/7, = I, this equation becomes
the well-known diode equation.

For the possibilities of incorporating the junction capacitances see
the discussion in Section 7.3.2.

2.4.1 Derivation of the Charge-Control Model from the Lumped Linvill
Model

It represents not merely an additional proof of equivalency but also
a good preparation for the derivation of more complex models, if we
show?” that we can derive the charge-control model from the Linvill
model. A somewhat related modification of the Linvill model was more
recently proposed by Beddoes.'”” To this end we calculate the currents
through the elements H. and S in Fig. 6:

ig(t) = H.p(0,0) (19a)
is(l) = S @%%ﬁ- (19h)

Substitution of the values for H,, S, and p(0,f) from (15a), (15b),
and (17) yields
eAL, (t)

i) = 2 p0,1) = (200
is(t) = ear, 20D d‘ji(f) : (20b)

This result shows that the current source in the charge-control
model of Fig. 9 represents the current ¢y, through the combinance,
and that the store S represents the current 75 through the storance.

To find the expression for the junction, we can express p(0,t) in
terms of ¢(f) by means of (17). p., can again be obtained from the case,

where V' — — oo, and where p(0,t) = P(0) = — Pno :
AL AL,
Inly-e = —1s = G—T—"P(O)l = ==

Thus, we find

p0, 8 o) [/ Ist, _ q(t)
p..  eAL,/ eAL, T I, (21

With this we can make the transition from (15¢) to (18).

2.4.2 Evaluation of the Charge-Control M odel

The charge-control model is completely equivalent with the lumped
Linvill model in Fig. 6; in fact, it may be considered a circuit oriented
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form of the Linvill model. In almost all instances”'* where the Linvill
model is being used for circuit applications the conversion of carrier
density into charge must be made anyhow. The charge-control equiva-
lent circuit in Fig. 9 uses current and voltage sources plus one lesser
known circuit element described by the simple relations

o) =0 (22a)
i) = % (22b)

or, in Laplace notation
I(s) = sQ(s) — Q(07). (22¢)

Ordinary ecircuit analysis techniques can be used in working with
the model. No restriction exists with respect to the external waveforms.
@ appears as an additional circuit parameter with additional com-
plexity comparable to that of an additional branch current. From a
topological viewpoint it is a branch current. This is the price to be
paid for inclusion of the first-order dynamic storage properties.

Junction and n-region are clearly separated in the model. Thus, little
difficulty should arise in adding junction eapacitors (dashed in Fig. 9),
series path resistors, and leakage resistors, provided, physical knowledge
of such effects exist.

2.4.3 Charge-Control Model for Short-Base Diodes

Diodes with extremely short bases do not show the exponential
minority carrier distribution represented in Fig. 4, but rather a prac-
tically linear fall-off (like in a transistor base except that the collector
is now a nonrectifying contact). With reference to Figs. 3 or 5, this
means that the distributed ‘“transmission line”’ is so short that the
effect of the series diffusances H, dominates over that of the shunt
combinances H,. The metallic contact behaves like a short circuit
at the end of the line.

The analogy with the r-g-¢ line of Fig. 3 may help the reader visualize
the difference between the long base and the short base diode: The
first-order approximation for the infinitely long line with respect to
currents and input voltage is the parallel connection of the shuni
resistor and the shunt capacitor; the first-order approximation for a
very short line is the parallel connection of the series resistor and the
shunt capacitor. In terms of the Linvill model, the short base diode
model is obtained by replacing H. in Fig. 6 by H, = eAD,/L and
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L, by L. (Note that H, increases as L becomes small.) In the charge
control model, of Fig. 9, the term 7, which represents the recombination
time constant for the long base diode, now becomes the diffusion time
constant. The new value 7/ can be derived most easily from the Linvill
model as follows:

1 \ 7 2

~iw  p(OH,/W ~ p(0eAD,/W ~ 2D,

Apart from this numerical change, the model in Fig. 9 for the normal
diode is equally valid for the short base diode.

2.4.4 Piecewise Linear Charge-Control Diode Model

For many practical purposes the logarithmic voltage source relation
can be approximated by a switch as illustrated in Fig. 10. The switch
opens when ¢ becomes negative and closes when ¢ is able to charge
up to ¢ > 0. A threshold voltage V, is connected in series with the
forward path. If desired, the slope of the logarithmic curve

dav av T T 12 )
dl ~ d(g/1) " N Muersse M M

v=f(Q) v=f (q)
SLOPE= —Ia-.
Vih—
” ajr

a/r

(=)
N

ls

P q<o ! :

O T e o i——t ——
=KL 2) v L | .
5 R

(a) (b)

Fig. 10—Piecewise linear approximation for the semiconductor junction. (a)
Theoretical logarithmic curve. (b) Approximated curve (the dashed lines indicate the
completion of the diode model).
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can be added as a resistor, where I, is an average current, which may,
in long hand ecalculations, be assumed to be }[.... The saturation
current /s must now be represented by an external current source.

2.4.5 Application of the Model

The above discussion of diode models serves two purposes: First,
they form a basic understanding for deriving transistor models. Secondly,
the diode models can be very useful in simulating dynamic effects due
to carrier storage in diodes.

With the piecewise linear junction approximation of Fig. 10 applied
to the charge-control model in Fig. 9, storage time equations can be
derived easily using Laplace transform concepts. The model has proven
to be very useful in the analysis of step-recovery diode circuits. In the
piecewise linear form, it can be handled without a computer, whereas,
for the more complex models with various parasitics added, computers
soon become mandatory.

Switching times for step-recovery diodes are derived in Appendix A.l
as an example of the use of the charge-control model. The equations
obtained have been found by many authors to agree well with actual
measurements. The normalized storage time for recovery from an
infinite ON-pulse according to (97) is plotted in curve @ of Fig. 11 as
a function of the reverse-to-forward current ratio according to the
relation

T = +ln (1 + %) (25)
R

When applying this result to an ordinary diode with homogeneous
doping profile, one must be aware of the implied approximations:
(7) The single-section approximation in the model does not affect any
mutual relationships between currents and charges, but represents
approximations with respect to the junction voltage. As the amount
of stored charge is reduced considerably in the diode, the junction
voltage decreases noticeably. (57) As the carrier density near the junction
becomes extremely small, the voltage reverses sign and the diode
impedance, at some point, becomes comparable with the external
source impedance. The ideal current source assumed in (97) ceases
to exist, and instead of the step-recovery, as given by the model, a
long tail in the current response results.

From either one of the two differential models in Figs. 3 or 5, we can
calculate the time in which the carrier density at + = 0, and hence
the junction voltage, reaches zero. Such a calculation yields the relation
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Fig. 11 — Comparison of diode storage times as functions of the driving ratios.
(a) Single lump model; 7 = time when charge is fully depleted. (b) Differential
model; 7' = time when excess carrier density at x = 0 reaches zero.

originally derived by Lax and Neustadter'’

orf \/? — (26)

1+%’¢
F

This relationship is illustrated in Fig. 11(b). Since curve (b) represents
only the storage phase but not the very long tail of the recovery, the
values are much smaller than those in curve (a) in which some sort
of “effective total recovery” is represented. The difference is most
remarkable at strong relative reverse drives where the carrier distribu-
tions on the lines differ most from the steady-state distributions.

If it becomes necessary to incorporate the tail of the recovery into
a lumped diode model, the double m-extension described below may

prove adequate for most applications.
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2.4.6 Higher-Order Approvimations

Bearing in mind how the model originated as an approximation to
the differential transmission line or as just another form of the lumped
Linvill model we can now understand how higher-order approximations
are to be obtained.

Fig. 12 shows the example of a w-approximation for a diode. The

py 3lp
VN

pi(t)=p(O,t)

+lr—(t'l id
v =
Ch_:t) Q) gt Qa(t)
\ T2
[T .
WHERE Lg (t)= L) Q) - q(t) _aa(b)
acLp?/Dp  belp?/Dp Ta b
_ kT q,(t)
v(t)= e (H Tyls

T,
T (1—3 -1+,
CHARGE CONSERVATION CONSTRAINT ON &, b,cC:
cb(i-a)Lg?
(a+b-1)Dp 7, -

Ty (FROM DC CONSIDERATIONS) =

WHERE C IS MOST APPROPRIATELY CHOSEN TO BE C=a—;q

(b)

Fig. 12 —Higher-order, =-Approximation of diode charge-control model. (a)
Charge approximation. (b) Corresponding model.
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charge is broken up into two parts ¢, and ¢, . The diffusance between
the two stores controls the redistribution of the charge. Such a structure
provides a better representation of the junction at the higher frequencies
or at higher speeds than the model of Fig. 9, since the junction voltage
is now a function of only that part of the total charge which is close
to the junction. The model simulates recovery tails. It also permits
the simulation of variations in recombination time along the z-axis.
Fig. 12 assumes two different recombination times 7, and r.. The
7 = f(g) relation then becomes

i= (f}hd‘: ) + 'is + E (27)
T1 T2

[which reduces to (14), if one assumes r, = 7).

Three additional time constants r,, v, and r, appear in Fig. 12.
They depend on the choice of the sections aL, and bL, over which the
shunt elements are integrated and on the choice of the section ¢L, over
which the diffusances are integrated. The three degrees of freedom
reduce to one, however, if one considers that () the total charge must
be conserved by the lumped approximation, and (i) in a multisec-
tional approximation the diffusances are most appropriately lumped
over sections cL, which extend between the centers of the charge
sections. The corresponding relations are given in Fig. 12; derivations
have been omitted.

III. LARGE-SIGNAL TRANSISTOR MODELS

In complete analogy to the diode models, we shall now compare
the various junction transistor models and establish the charge-control
model in the form of equivalent circuits. The Ebers-Moll concept,
which was found not to be applicable to dynamic diode description,
will now enter the ‘“‘competition”.

In order to dwell on the philosophies underlying each concept we
shall, at first, limit ourselves to diffusion type junction transistors,
neglecting again drift currents and secondary effects such as base-width
modulation. All derivations will be carried out for pnp transistors;
but, of course, everything will be correspondingly valid for npn tran-
sistors.

3.1 Differential Transistor Model

The most rigorous of all the equivalent circuits describing a junction
transistor, as defined by (5), (8), and (9), is the differential model shown
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Fig. 13 —Differential Linvill model for the transistor with drift fields neglected,
pnp version shown.

in Fig. 13. Linvill notations comparable to the diode model in Fig. 5
were chosen. (If so wanted, the model could also be drawn with the
notations used in Fig. 3 resulting in an r-g-¢ line and two K-amplifiers
at both ends.)

The base section of the transistor model is only a very short ‘“trans-
mission” line when compared with the “infinitely long” diode n-region
of the normal diode. Instead of 100 percent recombination, as found
in the diode, the transistor must have as little recombination as possible
in order to achieve high gain. I'ig. 14(a) shows a steady-state charge
distribution under normal forward operation, and I'ig. 14(b) shows
the distribution for the case where both junctions are emitting, i.e.,

p(o,t)
p(o,t)

plxt)

p(Wt)

T
w o W

(a) (b)

Fig. 14 —Excess minority carrier distribution in the transistor base under (a)
normal and (b) saturated operation.
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in saturation. Under normal operation the collector acts as a ‘‘charge
short circuit” for the line. For high-gain units, the slope is almost
a straight line; at = 0 it is proportional to Iz and at x = W propor-
tional to I .

The general case is that of Fig. 14(b) where both junctions are
emitting and p(W) # 0. Any section of the base region can be de-
scribed analogously to a four-pole using the definitions given in Fig. 15.
Note that there are no nonlinearities in the base section.

Iz(s) = A Pi(s) + A.P.(s) (28a)
Ic(s) = AEIPI(S) + A22P2(8)- (28b)

By using complete analogy to standard transmission line theory, it
can be shown that with the use of (10) and (11) one obtains for a
homogeneous section Az

Te(s) = 7( coth v Ax — sz(s) cosech v Ax (29a)
le(s) = ( ) cosech v Ax — P}(s) coth vy Az, (29b)
where
1 T 1
Z = AND,NT + o (30)
(1
¥y = ¢D,,'r V1 + sr. (31)

In the general case, the base is not homogeneous, which means that
Z and y will vary along the line.
The junctions are described by the time relations

p:(0,t) = pwlexp (M. (D)} — 1] (32a)
p(W,1) = pulexp (hoe(f)} — 1]. (32b)
O—'I"E— Ay Az _I'c_‘:"
pgT sz
O Az Azz —

Fig. 15—Symbols and polarity conventions defining the four-pole description of
the transistor base.
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Fig. 16 — First-order lumped Linvill transistor model.

IV. THE LUMPED LINVILL w-MODEL

In the literature, any lumped approximation to the transmission
line model presented in Fig. 13 is referred to as a “lumped Linvill
model” or simply “lumped model”. The most common form is the
m-model. With respect to its current properties and steady-state voltages,
this form will prove to be equivalent to the commonly known “Ebers-
Moll model”, if both models are taken to be in the form of first-order
approximations.

By integrating all differential diffusances over a length Az = W,
all emitter sided differential combinances and storances over a length
Ax = W, , and all collector sided differential combinances and storances
over a length Az = W,(= W — W,) one obtains the circuit shown
in I'ig. 16. Nonsymmetry has been taken into account by using different
recombination times 7, and 7, and different cross-sectional areas A,
and A, on the two sides. Note that the latter represents an extension
from the one-dimensional carrier flow and as such an example for the
reduction of multidimensional effects to a one-dimensional model.
Area A is some average cross section effective for the diffusion process.
H, is the diffusance, the H./’s are the combinances, and the S’s are
the two storances.
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The four-pole equations describing the transistor base are obtained as

Iz(s) = GAD’ Py )[ A WWI (1 + Tl)] @‘{)jpz(s)

w w
= H,,P,(s)l:l + - (1 +s ):l — H,P,(s) (33a)
o) = “ADapy) — ALep o] 1 4 ATy |
= H,P\(s) — H,,Pg(s)l: (1 + s S;):I (33b)
The junctions are described as
pi) = p0,) = pulexp Do) — 1] (34
po(t) = p(W,t) = puolexp {M(f)} — 1] (34b)

A constraint has to be satisfied: Under equilibrium conditions, the
total charge in the base must equal that in the two sections, i.e.,

w
eA WP, + eA,W,P, = cA f P(z) dz &~ 3eAWIP©) + P(W)]. (35)

The approximation holds for high-gain units. For this case the base
volume sections are equal, i.e., 4, W, = 4, W, = 3AW. For low-gain
units (34) must be modified: The terms p,(t) or p.(t), or both, must
be replaced by p,(f)/m, and p,(t)/ms, respectively, whereby the m'’s
are constants > 1, similar to m in Fig. 8.

Equation (33) represents one of several possible approximations to
(29) with the additional property of nonsymmetry being added.

Higher-order approximations of a lumped linear model are obtained
by representing the base of width W by more than the two sections

W, and W,.

V. THE EBERS-MOLL TRANSISTOR MODEL

The focal point of the Ebers-Moll model is the two-port description
of the base. Such a description has been given in (28) and (29), and
is permissible because of the linearity which exists between currents
and carrier densities in the base. Nonlinearity exists, however, in the
relationship between carrier densities and external voltages according
to (32). Since linearity allows the use of the superposition principle,
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the total current can be conceived as consisting of the superimposed
contributions of the currents injected by the two junctions.

When put into the form of an equivalent circuit, the Ebers-Moll
model shows the superposition of a normal transistor (subseript N)
and an inverse transistor (subscript ). In Fig. 17(a) the lower diode
and current source represent the normal transistor and the upper
elements represent the inverse transistor. Each junction is represented
by a diode, a fraction of the diode current is collected by the other
electrode. The ratios of collected currents to emitted currents are called
ay and a; for normal and inverse operation, respectively. The general
frequency behavior of the o’s can be calculated for a homogeneous
base from (29), (30), and (31) as

) eve (L
aylep (© Lep (D= ICFD[EXP (_ti(T_)")]
‘\_j LeF
T’ c c e T
Eo W\I Le ____“__-_T..e.---qh-—lc——-“- ————— _I;C_/\/if\,_oc
Ler )
evett) + aniEr (s
LEF(t')=IEF0|:EXP( kT _')} %rb e
B @)
—aylc(s) 'Lc’(t)zlml:ExP(e‘ﬁ.l(_t)—l)]
(<) €
S/ - L
re' LE Cre Cre -LC Ie’
Eo—AN—=—p—-——- e H6---- VN—oC
L' 0\
e
Le(t)=1g, [EKP(EV:_(rt)—l):I %rb ENIE
' B
a
WHERE ay(S)= —s—  ay(s)= a[5° (b)
" oan Wl

Fig. 17— The two forms of the Ebers-Moll transistor model: (a) direct representa-
tion of the idea of superimposing a normal and an inverse transistor, (b) collecting
current sources as functions of the electrode currents. The junction saturation currents
in (b) are identical with the open-electrode diode saturation currents.
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als) = uutput(s)] _ cosech vy Az _ 1
n:mut(s) Poutput=0 cotlh Y Azx cosh Y Az
1 2D,r

T 4 2 A Aa: " 2D,r + A2® + st ArF (36)

But symmetry does not exist in a practical transistor. The constants
in (36) are therefore, different for ay and for «;. Equation (36) can
be rewritten under this consideration in the well-known form

ay (S) = m (378.)
Qo
al(s) = TF s/mns (37b)

The relations between the constants in (37) and the physical param-
eters (corresponding to the constants in (36) modified for the non-
symmetrical case) will be derived in Section 5.1.

On account of their nonlinearity, the junction diodes must be de-
seribed in the time domain. In their original paper, Ebers and Moll
defined only a dec relationship between voltages and currents. This
would restrict the use of their model to piecewise linear analysis.
But the model can be made more general® by postulating that the

= f(3) relation be valid at all times, as indicated in Fig. 17.

In either case, an important property of the semiconductor junction
is lost: Voltages and currents appear as being directly related instead
of being related indirectly through current density or charge. This can
best be illustrated by anexample. If a forward current through a junction
is suddenly replaced by a reverse current the voltage actually does not
reverse sign until the excess carrier density at the junction is reduced
to zero. According to the Ebers-Moll model, voltage and current always
change polarity together. As mentioned before, it is for this reason that
for a diode, no dynamic model of the Ebers-Moll type exists that
would represent charge storage effects. In addition to this shortcoming,
the feature of mixed time and frequency domain characterization is
undersirable if the model is to be used in its nonlinear form, say on
a computer.

The Ebers-Moll model was originally presented in a form, shown
in Fig. 17(b), which differs slightly from that in Fig. 17(a). Both ver-
sions have been used throughout the literature over the past years
and very few authors®’** have clearly pointed out the difference between
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them. In Fig. 17(b) the collecting currents are a times as large as the

total emitter and collector currents, respectively. A simple calculation

shows that the two versions are formally equivalent, if the relations
&(s)

Iep(s) = 1 = ay()ar®) (38a)

and

_ I¢(s)
ICF(S) - 1 — O,'N(S)CB;(S) (38b)
are satisfied. A glance at the equations for the voltage sources in I'ig. 17
reveals that the two versions could not be completely equivalent,
unless either Tgpo and I¢py or I, and I, would be considered frequency
dependent. Due to the approximative nature of both models, this is
normally not done.
From both Fig. 17(a) and (b) the respective four-pole equations,
on which the model is based, can readily be derived in terms of elec-
trical parameters:

IE(s) — ar(s)IE(s)
1 — (IN(S)C!;(S)
an($)I5(s) — It(s)
1 — ay@arls) (39b)

After substituting the expressions for the junctions one obtains for
the steady-state case the well-known Ebers-Moll equations

Ip(s) = Ige(s) — ar()lcr(s) = (39a)

Io(s) = an(®Igr(s) — Icp(s) =

Iy = 7= fexp V) — 1] = 720 fexp V) — 1] (400

1 — Qyolro 1- Qxol&ro

_ ayol go _ _ Ieo _
Ie = 1 — ayarn [exp V) 1] 1 — ayeero [exp (AV') 1. (40b)
5.1 Comparison Between the Ebers-Moll and the Linvill M odel

Comparing (40) with (33) and (34) for the steady-state solution
leads to the following relations:

EAD@ — ayol ko _ arod co . (41)

W 1 — Qoo 1 - ANolro

A corresponding comparison for the ac case would yield the same
expression as in (41), except that ay, and a;, would have to be replaced
by their frequency dependent forms. Since the left side term of (41)
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is frequency independent, no rigorous equality exists between the
Linvill model and any of the two versions of the Ebers-Moll model
under ac conditions. In the Ebers-Moll model, the junction voltage
is a function of the total diode current [being different in the two
versions of Fig. 17(a) and (b)]; in the Linvill model it is only a function
of the resistive component of the diode current in Fig. 17(a); this
component equals the current through the combinance which is propor-
tional to the carrier density p. It can be shown that the correct solution
in which the junction voltage is a function of the carrier density directly
at the junction, lies between these two cases but much closer to the
lumped Linvill simulation. The discrepancy, mentioned here, affects
only the junction voltages and does not appear in many analyses
that use piecewise linearity.

ay(s) and a;(s) can be expressed in terms of the physical parameters
by comparing (39) and (33) separately for the normal operation (Tep=0)
and for the inverse operation (Izr = 0). Subsequent conversion of
the o's into 8's yields

ayl)  _ Bw _ AnD,/JAWW,
rBN(S) 1 - OCN(,S) - 1+ 8 - 1+ 87y (42)
wan
. O:'I(S) — Bm = ATQD,,/A2WW2
Bi(s) = 1 — ayls) 1+ s 1 + s7. (43)
war
where
_ Wan — _1_
wy = T g T T (44)
and
—_ War — 1__ (45)
“r = 1+.3m_7'z
By definition we shall call in later sections
T1 = Tan (46)
and
T2 = Tar (47)

5.2 A Better Approzimation for the a Frequency Dependence in the Ebers-
Moll Model

Pritchard** has first suggested that a better approximation for the
3-dB cut-off points of the a’s or ’s are obtained if one inserts a factor
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1.22 into the corresponding equations, i.e.,

1 1
T ooshy Az | 129 (48)

Weut-of f measured

This can readily be calculated from the fall-off behavior of the cosh
expression while assuming By, >> 1.

The same factor 1.22 appears in the corresponding expressions for
ar, By and B; . It is evident from (48) that this problem can be reduced
to a matter of defining w.y . For less ideal transistors the factor is
usually between 1 and 1.22,

Higher-order approximations to the hyperbolic function commonly
use two pole expressions or delay-producing excess phase terms,

VI. THE CHARGE-CONTROL TRANSISTOR MODEL

In analogy to the diode charge-control model we can establish a
charge-control equivalent circuit for the transistor. To that end, we
want to express all parameters in terms of the charge in the base.

Three approaches appear feasible: A lumped Linvill model can be
labeled in such a way that all elements appear as functions of charges
rather than integrated charge densities of the form pAxz . The two are
proportional; the proportionality factors are of the form *“electron
charge times area”. Most of the special circuit components of the
Linvill model become current or voltage sources in the charge-control
version. This procedure of converting a Linvill model into a charge
control model can readily be applied to higher-order Linvill models.

A second approach is to use the Ebers-Moll principle of superposition
whereby two charge-control diode models plus the corresponding col-
lecting currents can be joined to form the transistor model. This ap-
proach is essentially limited to the first order of approximation. Two
seemingly different, but fully equivalent and easily convertible models
result.

The third and classic approach to charge-control theory, originated
by Beaufoy and Sparkes,” is basically mathematical. Through integra-
tion of the continuity equation the carrier density as a variable is
replaced by the total charge in the base. Certain simplifying assump-
tions have to be made to obtain a relation between currents and charges.
In essence, these assumptions are equivalent to the approximations
implied in the first-order Linvill and Ebers-Moll models as well as in
the first-order charge-control equivalent circuits to be described below.
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Some equivalent circuits have been presented in the literature, but
they were less rigorous than the circuits described below in the sense
that they cannot be used as complete networks. Additional knowledge
of the physies of the device is required to use these models. Extension
to higher-order models in the Beaufoy-Sparkes approach is accom-
plished through increased physical and mathematical complexity and
not through more complex network topology as in the Linvill model
or the charge-control model to be described.

6.1 The w-Version (Base-Controlled Version) of the Charge-Conirol
Equivalent Circutt

In the lumped Linvill =-model of Fig. 16, the base charge distribution
is approximated by two levels of carrier density. This is illustrated
in Fig. 18. p,() is constant over the length Ax = W,, and p,(¢) is
constant over the length W,, where W, + W, = basewidth W. The
total charge in the two sections follows with (34a) and (34b) as

() = p(DWed, = p.oWied [exp {M.()} — 1] (49)
g2(D) = p(OWoeds = paoWaeeds[exp (M (9)} — 1]. (50)

Using the definitions of the elements given in Fig. 16, one can calculate
from the Linvill model in Fig. 16 the currents through H, , H..,
and H, and obtains

o) = Hopi(t) = AV - 6l _ anl) (51)
T T1 TBN
i) = Hopa(t) = AWz = 20 _ 20 52)
Ta T2 TRI
P - P
PO -l - —p,=p(o)
G
W~
% ql\ \"‘\
\ ﬁ —P2=P(W)
W, W, W Wa ’
@ (b)

Fig. 18 —Excess carrier distribution in the transistor base as used or implied in all
first-order transistor models. (a) General case p1 # p(0), p» # p(W). (b) Commonly
used choice p; = p(0), p» = p(W). '
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5(t) = Halp:(t) — p.()]

= EA; =) = pa(t) = DI‘%,A (g;ﬁ)l - 1?/’2(22). (53a)

Using the more familiar Ebers-Moll notations and the relations found
earlier in (42) through (47), 7; can be expressed as

i(l) = B—— an(t) — 3— ar(t). (53b)

Thus, the three current sources in the charge-control model are found
and related to the Linvill model by means of (51) through (53).

The remaining two branch currents 7, and %, are obtained from
Tig. 16 as

i(t) = eA,W, @T}SQ = % (54)
i) = e Bt = SR (55)

These equations describe two stores Sy and 8;, whose properties have
been described in Section 2.4.

The conversion between the two models will be summarized and
further discussed in Section 6.4.

The voltage sources for the junctions follow from (34), (51), and
(52) as

AU.(!) = lll (l + p,,n - hl ]- + p”nIV]eA] (Ob)
M (f) = In (1 + o) = In {1+ .Y 2) (57)

With the help of (41) through (47) that link the constants used in
the Ebers-Moll model to those in the Linvill Model, (56) and (57)

can be rewritten as

B agn(l) 1 + Bwo ]

A (f) = In [l + - X Tro/(1 — ayotss) (58)
_ Q‘I(t) 1+ B :|

M () = In [1 + o1 Toa/(1 = yoctro) &9

(The reader may prefer to derive the constants directly from the
steady-state Ebers-Moll model in (40) by considering the limiting
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cases v, = 0 and v, = 0.) With the addition of (58) and (59) the equiv-
alent circuit in Fig. 19(a) is completely defined.

It is customary and useful in charge-control work to define additional
parameters rgy , Tox , Ter, Ter - We define their relationship as follows:

Tan _ TEN _
IBN(J A no Ten (60)
TBI Tcr
= =—"= . 61
Bro & TEI ( )
Since, as usual,
Bxo
= —— 62
= TF B @
and
~ Bmn
= T4 (@)
it also follows that
11, 64)
TEN TBN ToN
and
i — i + —L (65)
Ter TBI TEI

(The classic definition of these time constants after Beaufoy-Sparkes
will be discussed in Section 6.5.) The subscripts B, E, and C stand
for base, emitter, and collector, respectively. The subscripts N and 7
on the time constants and on the charges have been chosen to indicate
the normal and inverse transistor operation. Many authors’'*''" use
F (forward) and R(reverse) instead of N and I. Since F' and R are
commonly reserved for diode forward and reverse currents, and since
such currents can flow in each of the two junctions, the different nota-
tions N and I, as proposed by Ebers and Moll, appear more appropriate.

In Appendix B, the notations for the stored charges and the time
constants used in this paper are related to those used in a recent book
published by the Semiconductor Electronics Education Committee;"
they are also compared with the notations and definitions used by
Beaufoy and Sparkes.

The additional time constants do not add any additional degree
of freedom. But it is advantageous to use ‘‘base” notations when
controlling base current, i.e., in common-emitter or common-collector
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Fig. 19— Charge-control equivalent circuit for transistor in first-order approxi-
mation, shown in two equivalent and convertible forms: (a) =-version, Linvill type,
(b) T-versnon Ebers-Moll type.
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connection, and to use “emitter” and ‘“collector” notations when
emitter and collector forward currents are injected, such as in common-
base connection.

The model obtained in Fig. 19(a) maintains the most valuable
property found in the Linvill model, namely the close relationship
between the physical processes and the circuit elements. For example,
rax and 7y, are the recombination times on the emitter and collector
side, respectively, and rcy and 7, are the diffusion time constants
for the charges injected from the two junctions. Junctions and base
are represented by individual sections within the equivalent circuit.
This separation makes it easy to expand the model and to take other
effects into account.

6.2 The T-Version (Emitter-Collector Controlled Version) of the Charge-
Conirol Equivalent Circuil

In complete analogy with the derivation of the Ebers-Moll model
in Fig. 17(a) we can take two diode charge-control models back to
back and add current sources on the collector and emitter side, which
are ay, and aj times the diode currents.

For the simulation of the junctions, we are left with two alternatives:
One is to convert the corresponding expressions in the Ebers-Moll
model in Fig. 17(a) into charge functions; the other is to use the expres-
sions in the charge-control m-model (which are equivalent to the Linvill
model), but replace the S-notations by a-notations according to (60)
through (63). The first-mentioned alternative for simulating the voltage
sources would amount to simply substituting the diodes from I'ig. 17(a)
for the voltage sources in Fig. 19(b). The property of charge control
would not be simulated. The second procedure is therefore chosen;
it yields

vll) = 71\ n (1 T TFN'IE(I/EIf’(i) Ot.vnﬂfm)) (09
Uc(t‘) - % In (1 + Tc;Icwf(gl'I(t—) ﬂxoﬂfn)). (67)

Thus, the equivalent eircuit in Fig. 19(b) is obtained.

As far as the current relations in the models are concerned, the
main difference between the charge-control 7-model and the Ebers-Moll
model is that the frequency dependence is simulated by a mathematical
expression in the Ebers-Moll model, and by an additional network
branch in the charge-control model. This is analogous to the option
existing in small signal models where one can represent the frequency
dependence either with an appropriate RC circuit, holding a, frequency
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independent, or alternatively, with a frequency dependent « in the
collecting current source.

The equivalency of the charge-control model with the Ebers-Moll
model exists only for the relations between the currents. It can be
shown readily that the following relations must be satisfied to establish
equivalency:

. 1 ‘
(1) Tev = O N (68)
.. 1

(v2) Ter = w—, (69)

(”'7') Tun = *1* = M (70)
Wy Way

(i!') Ty = ,.L — _1 + Hm_ 1)
War War

All w's must be replaced in these equations by the corresponding
w/1.22 if the w’s correspond to the measured 3-dB gain fall-off points,
and if the better approximation mentioned in Section 5.2 is to be
included in the Ebers-Moll model, provided the particular transistor
follows the underlying theory well enough.

6.3 Conversion Between the Two Proposed Charge-Control Models

The identity between the two charge-control models, presented in
Figs. 19(a) and (b) can best be proven by converting one model into
the other.

To convert the m-model into the 7T-model one first adds a branch
current 7; both into and out of the base point B’ and splits 4, up into
its two components. The resulting circuit diagram is shown in Fig. 20.
The two parallel current sources proportional to gy(¢) on the left side
can then be combined into one current source. Likewise, the two current
sources proportional to ¢;(tf) on the right side can be combined. If
with the help of (60) through (63), one now relabels all current sources
in terms of ay and «; instead of 8y and 8; and extends the upper current
sources beyond the voltage sources, one obtains the model in Fig. 19(b).

6.4 Summary of the Conversion Equations between the Linvill and the
Charge-Control M odel

6.4.1 Conversion Equations for the First-Order Transistor Model

In (49) through (59), the charge-control r-model was derived from
the Linvill model. With the help of the defining equations for the
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Fig. 20 —Intermediate step used in the conversion from the = to the T' charge-
control model, demonstrating equivalency between these two models.

Linvill model elements, the constants in the charge-control model can
be calculated as a function of the Linvill combinances, storances, and
diffusances. For the relation between the Linvill m-model of Iig. 16
and the charge-control =-model of Fig. 19(a), such calculations yield

= (72)

" =i @)

rox = g (74)
:

Ter = }i (75)

Loy = pyo Halle: ;rl (H+ }—; H.)H, )

Loy = pg Hertlea & (Ho + Ho)lly, n

Hrl + Hd

Note that (72) through (75) reveal that the five parameters in
the Linvill model lead to only four parameters in the charge-control
model. The one degree of freedom that is lost in the charge-control
model is the conversion factor from current to carrier density; con-
version of the charge-control model into a Linvill model is only possible,
if one of the five Linvill parameters is known. This is tantamount to
saying that one needs some information on the geometry of the device
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such as the value of one, or in low-gain units, both of the two base
volume sections A, W, and A, W, .

6.4.2 Conversion Between the Linvill and the Charge-Control Model for
an Arbitrary Number of Base Sections
In higher-order approximations for diodes or transistors, the param-
eters of the Linvill and the charge-control models, as defined in Fig. 21,
are related by the equations

S, S, S
e Hcl ! T Hr'.‘ TI-' B E:: (78)
-5 = S
Ti2a = Has Tuva = Hdp- (79)
S v
Tize = H":q Tuvh = H‘f (80)
o = S:Pnn (81)
qmo = Smpntl . (82)
- P p
V—L)‘L”(”p_n‘o) y V='Tln6+ﬁ)
R di2 Hdpv
£ ol Py i P2 _J__ P ‘ v o _Pm | oc
He Hea 7"'(:;1. _Hcv
SIL[J 52\_1_‘ SI-'-L‘J Sy, Sm

q dz Qu Qv

. ~ T12aC-\""|zb o 7.ll“ad#vb .
+— - Sl
q N Qe A N gy D

= EQ FORDREAOXNE ¢

1 9 I ‘ QAm
v=—ulun(1+=— ’ =1 —_
( B v ALHG+Qmo)

A Qo

Fig. 21 —A Linvill and a charge-control equivalent circuit for a junction and part
of a multisectional n-region, with indication of the notations used in converting one
model into the other.



560 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1967

6.5 The Transistor in Saturalion

In all lumped transistor models (Linvill, Ebers-Moll, or charge-
control type) the charge in the base is explicitly or implicitly broken
up into the charge gy injected from the emitter under normal operation
and the charge ¢; injected from the collector under inverse operation, e.g.,
in saturation. This was illustrated in Fig. 18.

When the transistor is overdriven into saturation with a base current
larger than I¢ ,../Byo , the two stores gy and ¢, do not change by exactly

equal amounts, i.e.,

dgn dqr
diB excess ?s (h'ﬂ excess
where, by definition,
. . Toane
TR excess — g — ;—' (83)
NO

This is illustrated in Fig. 22. It can be calculated from any of the two
models of Fig. 19 that, under steady-state conditions, the excess charges
in the two stores are related to the excess base current by the expressions

AQr = Qi = 7 Ly e (84)
— QN
AQN = ey B IH EXCORE ! (85)
1 — awyoaro
plx) p(x)
,-8aN, TeN
L-80N,TaN
/}}NSAT’TBN-‘.:' ar .’TBI
7 7 / !
7 ///.,,., A %’ | T il!” [
e s\l 77 ‘ “Ailil|
% '/////'7'7/"' ’ ZAl| 1 |
s /7////, ’///4’,// - s L Ei . '1E .
° W 0 W

(a) (b)

Tig. 22— The transistor in saturation. (a) Actual distribution of excess minorit
carriers. (b) Lumped approximation. The r and the T models use gy and gy W’it{
lifetimes rpy and rg;; the Beaufoy-Sparkes model uses Qn sar and ggs = Agqy + qr
with lifetimes 7gy and rg, where 75 is as defined in (88).
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From this it follows that

AQy — Tex _  Ten  __ War = 1 (86)

Qr AnoTer ApoTEr ANWa N

Since a;y < 1, the charge-up ratio is somewhat larger than the ratio
of the diffusion times of the normal and inverse transistor.

The rate at which the two stores charge and discharge in saturation
because of external step disturbances is described by the eigenfunction
of the system

82+S[1+3.\'n+1+ij|+1+.61vu+'8m

ToN TrI

= 0. (87)
TeNTiI

If Byorsr/7ey > 1, the two poles are far apart in frequency. Further-
more, the high frequency pole contributes in most nonoscillatory cases
little to the overall response. The higher pole or, alternatively, the s*
term can then be neglected and a single time constant results deseribed
by

— (1 + B.\'n)fu: + (1 + .Bm)TB.\' _ TEN -+ Ter |
1+ 51\'0 + Bro 1-— QA yolpo

Using w-notation, one obtains the expression given by Ebers and Moll

Ts

(88a)

ry = —Qan T @ar (88h)

wu.\'w:rl(l - a.vuam)

Tor large By and small 3, , 75 is approximately equal to

T R r,,;(l + fﬂ) (88¢)
Ter

If gy < 7¢r, Le., if the carriers diffuse more easily from the emitter

to the collector than vice versa, then the recombination rate 75, on

the collector side is mainly responsible for the overall decay of the

excess base charge.

6.5.1 Storage Time Calculations

For first-order storage time calculations with the transistor driven
into a steady-state saturation condition by means of an excess base
current Iy oxeens , one can simplify the charge-control model to the one
shown in I'ig. 23. Storage time is the time it takes to deplete the store
which is charged to a value of

QRS = QI + AQN = IB excess TS — IB excess M (89)

1 — ayyag
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Fig. 23 —Single-pole equivalent cireuit for saturated transistor after Beaufoy-
Sparkes.

while, at the same time, this charge is exposed to an effective recombina-~
tion time of 75 as given in (88). In this form the model is identical
with the classic Beaufoy-Sparkes model for the saturated transistor.

In the general case one must refer to the complete model.

6.6 The Beaufoy-Sparkes Charge-Control Model

In the classic approach to charge-control theory, the starting point
is, like in the diode case, the integration of the continuity equation (8).
In comparison with the integration performed for the diode in Section
2.3.1, the upper limit of integration has to be changed to 2 = W. The ex-
pression

. . [}
(0, ) — 4,(W, 1) = ‘1%(2 + 20
TBN
obtained from the integration becomes that for the base current under
normal, nonsaturated operation:

iat) = 100 4 20 (90)
TBN
qn(?) is the total charge in the base. The next step being made is again
the approximative assumption that the carriers redistribute themselves
so quickly, that we can always assume steady-state distribution.
(See also Section 2.4.) Mathematically, this means that in normal
transistor operation both p(0,¢) and i.(t) are proportional to the base
charge gy(f). It can be seen from Fig. 19 that the same assumption
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is implied in the two charge-control models presented there, despite
the fact that they were derived through entirely different procedures.
(Instantaneous redistribution is, however, not implied in models that
use more than one m or T section for representing the base.)

The time constants are defined in the classic charge-control theory
on the basis of the above-mentioned assumption of instantaneous
carrier redistribution, i.e., in steady state

Qv Qv

Tpy = r” ’ Teny = Tow Ten = IT}: (91a)
and dynamically

Tay = — + %ﬁ ) Toy = S ’ ipy = igy + ton - (le)
TaN ¢ Ten
The remaining three time constants can be defined likewise for the
inverse transistor. Narud, et al’ have used such definitions in an equiv-
alent circuit for the charge-to-current relations in the transistor. Beaufoy
and Sparkes discussed this possibility in their original paper® but chose
to present two separate charge-control models, one for the normal
active operation and one for saturation. In normal operation, the
charge gy called “gp”" is bounded by the value reached at the edge
of saturation:
Teau

78 = Qvear, where Qy... = _—

Buo

In their saturated model, all excess charge which exceeds Qy gir IS
lumped into one store rather than two; this charge “qzs” has a lifetime
Ts = qps/tB excess Which is identical with 75 as defined in (88).

By lumping Agy = gy — Qu sar and ¢r into ¢as, the Beaufoy and
Sparkes arrangement provides only a minor short cut for calculating
storage time, while sacrificing not only some of the physical under-
standing, but also the possibility of mutual conversion with the other
models. No relations have been given that would express the junction
voltages in terms of the charges in the stores, and recourse must be
taken to the Boltzmann equation to find expressions for the voltages.

Throughout the literature the charge-control concept has been used
primarily as a mathematical-physical tool. Extensions to higher-order
effects are usually made by improving the simple continuity and
transport equations stated in (S) and (9) and then carrying out the
corresponding integration for the specific application.
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VII. SOME REMARKS ABOUT THE EQUIVALENT CIRCUIT TYPE CHARGE—
CONTROL APPROACH

7.1 Use of the Charge-Control M odels

It is believed that the first-order approximation to a charge-control
model in the form presented for the transistor in Fig. 19, combines
the main advantages of the three basic approaches to modeling. The =
and the T-models are as easy to handle from an equivalent circuit
point of view as the Ebers-Moll model. Instead of frequency dependent
o’s and B's, one additional current branch exists for each side of the
transistor. Circuit problems are solved in the usual way by means
of loop and node equations. The charges gy and g, appear as circuit
parameters which can either be calculated, if so desired, or else, elim-
inated in the algebraic process. The store elements in the circuit are
clearly defined by the circuit properties given in (22).

The model provides all the features that have made the charge-
control concept attractive in the past: quick estimates of switching
times by integrating the base current and equating with the charges
needed to fill and deplete the stores. The general base current equations
of charge control are directly read from Fig. 19(a) as

d()‘I + CTF dve + CTF d’-’ (92)
dt '

. d
ig = qN + qf\ + f]r +
T8N
Of course, there is no restriction to step inputs. The chore of cal-
culating responses to a nonstep input is transformed through the model
into a cireuit problem. In complex cases the help of a computer will

be required.
Due to its direct relationship to the Linvill model, the charge-control

model lends itself quite readily to extensions based on the physics
of the device. This will be discussed in Section 7.3.

7.2 Piecewise Linear Approximation of the Logarithmic Voltage Function

The logarithmic voltage functions for the junctions are of the form

1 __q/f__]
v =5 In [1 + T/ — conars) (93)

For most practical cases, this can be approximated by piecewise linear
functions, like in the diode case of Fig. 10. Except for small values
of ¢/7, i.e., g/t not >I,/(1 — ayoayn) , one obtains

dv _ T
d(g/7) M

(94)
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Thus, the slope can be represented by a resistor r/Ag, which may,
like in Section 2.4.4, be taken as the average value
T T 1

A{_ %Aanx %Imaxh ’

(95)

where I, is the maximum forward junction current.

It can be shown that in models which use the exponential relation-
ship, the expressions of the form In(1 4+ z) can be replaced by just
In z if one simulates the majority carrier currents by special current
sources as follows:

l —a .
L JTeo (=Ic) from internal base to collector
1 — ayoar

and

1= aw Iz (=0)  from internal base to emitter.
1 — ayar
This transformation is rigorous only at de. However, in a piecewise
linear analysis, as disecussed above, the addition of one current source,
namely .o, becomes mandatory if the model is to be valid at very
small collector currents.

7.3 Kxtensions of the Model

7.3.1 Path Impedances, Leakage Resistors

Like in the Linvill model, junctions and base material are clearly
separated in the charge-control model. Therefore, it is a straight-
forward procedure to add series path resistors, series inductances, or
leakage resistances to models like the ones in Figs. 9 or 19.

7.3.2 Junction Capacitors

It has been indicated by the dashed lines in Figs. 9 and 19 how the
junction capacitances are to be incorporated into the model. They are
properties of the junction, but their currents flow as majority carrier
currents through the bulk material. Hence, in Fig. 9, for example, they
must be connected across the whole n-region. (Connecting directly
across the voltage source would have no effect on the external prop-
erties.) In Fig. 19 they lead to the internal base point.

7.3.3 Higher Order than = Transistor Models

Another desirable expansion may be to replace the = structure of
I'ig. 19(a) by a double 7 or by some other higher-order approximation
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to the original differential “transmission line”. This is of special im-
portance, if emphasis is to be placed on charge redistributions in the
base. By extending the model in such a way, the restricting assumption
of instantaneous carrier redistribution is no longer implied. A qualitative
example of an elaborate planar or mesa transistor model is given in
Iig. 24.

LORIET=F (Ve,q,+05) L DRIFT = (V¢,Q2+Q3)

I
I\ LA
Cee |

Fig. 24—Example of an elaborate high-frequency planar or mesa transistor
equivalent circuit.

7.3.4 Drift Fields

If the charge-control model under consideration is being developed
on the basis of physical phenomena such as in the model of Fig. 19(a),
the contribution from drift effects may be represented in the same way
as has been proposed by Linvill [Ref. 7, Sections 2, 3]. As a direct con-
sequence of the transport equation (2), drift can be represented by a
current source added in parallel to the diffusion current source. In terms
of the r-g-c¢ transmission line representation, discussed earlier, drift con-
sideration amounts to a resistor in parallel with the series diffusance
resistor r. This was used in a recent paper by Bloodworth.*

Alternative methods of representing drift effects in conjunction with
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conductivity modulation are presently being investigated; results will
be published later.

7.3.5 Base Width M odulation

Base width modulation can be taken into account by replacing the
basewidth, especially the collector section W,, by an expression
W,(1 + A), where A is some function of the junction voltage. Equa-
tions (52) and (53) show the dependence of the branch currents on W, ,
from which we can readily derive the required modification of the
charge-control model in Fig. 19(a).

7.3.6 Multiple-Layer Devices, Multiple Storage

In accordance with Linvill's proposal, storage in more than one
region can be simulated by considering that the minority carrier cur-
rent on one side of a junction becomes the majority carrier current
in the adjacent region. An example is shown in Fig. 25. This figure
represents the charge-control model for an npnp device. Avalanche

Jy . Jz T NEY
N|P|N|P —o
L ELECTRON
VJ|=f(qu) i_=+‘(qu,qPI_M} VJz=f(qp[) \\\ fATE
v (~)- (~) X :
- j /
3 /
: /
[
- q —. 7N FE 1 7~
pl qn1
C qpN M—< Mqpr M=2L(4 YMant
P Dras | [ (Da /(D
/
N L ()
l L HOLE M/ 7—)
GATE Vi=F(qn1) 1=F(qnnqnM) Vy,=F(qnN)
j-— /\ 7\ N y
JUNCTION J, P-REGION JUNCTION Jj N-REGION JUNCTION Js

Fig. 25 — Charge-control model for npnp device. The model for an npn-transistor
with storage in the collector can be obtained from this model by omitting the part
to the right of the dashed or the dotted line.
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multiplication may be considered by adding a multiplication factor M
to all hole and electron currents flowing through the junction of interest
(usually the center junction J,), as indicated in Fig. 25. M is a function
of the voltage across the junction.

By omitting the last electrode, an npn transistor with charge storage
in the collector is obtained.

7.4 Establishment of a Large-Signal M odel

The question naturally arises as to how one arrives at a numerical
model. There is no clear-cut answer to this question, since the procedure
to be taken depends on whether the informations available are pre-
dominantly physical or electrical in nature, whether a computer is
available or not, etec. The following outline can, therefore, only be
considered as a typical example.

() Obtain de measurements which yield information on junction
characteristics and electrode resistances. All measurements must be
made under widely differing drive and load conditions.

(1) Add information from device manufacturer to establish first-
order de model. (If necessary, convert to Linvill model.)

(i77) Add dynamic parameters, such as capacitances, as far as they
are known and establish first-order dynamic model.

(iv) Use computer to improve numerical parameter values by
matching frequency response curves or switching data in the active
region with the model.

(v) Use computer to match large-signal nonlinear switching data.

(vi) Check model with switching measurements under different con-
ditions, such as extremely low, extremely high and medium input and
output impedance levels for various drive conditions. Improve model
basically and numerically as necessary.

For purposes of device design, more emphasis is generally placed on
the simulation of higher-order effects than in model building for circuit
design where, especially in the case of integrated circuits, it is necessary
to trade accuracy for simplicity.

VIII. CONCLUSIONS

The differential Linvill model stands out among all models as the
most perfect one. Whereas the lumped Linvill model is the most suitable
model for the device physicist, the circuit engineer usually prefers a
more cireuit oriented approach. It is felt that the charge-control equiv-
alent circuit approach is well suited to combine the main advantages
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of the various models: It is as easy to handle as the Ebers-Moll model,
yet bears the close relationship to the physical phenomena of the
device inherent in the Linvill model. It can also be extended easily
to include higher-order physical phenomena.

Despite the difference in basic philosophy underlying the creation
of each of the three classic modeling concepts (such as lumping, super-
position, and integration), they are equivalent with respect to their
current relations and to all de properties. When compared at the same
level of complexity, equivalency with respect to time dependency of
the junction voltages exists between the two charge-control models
and the Linvill model, but not between these models and the Ebers-
Moll model.

In the Ebers-Moll model the effect which storage exercises on voltage
cannot be included. The hydrib use of both time and frequency domains
in the model may also be felt as a disadvantage in some applications.

At the first-order level of approximation, the charge-control equiv-
alent eircuit can be converted into the Ebers-Moll model, the Beaufoy-
Sparkes model, and into the Linvill model (in the latter case the base
volume is a constant which must also be known). Thus, the charge-
control model serves as a bridge between the various models. This can
be very useful in establishing a model, since both physical and electrical
information can be incorporated easily into the model.

The diode charge-control model has been found very useful for
analyzing storage effects in diodes.

Because of the close relationship to the physical phenomena in the
device, extensions to larger complexity can readily be accomplished.
We may interpret the charge control equivalent circuit as simply a
circuit-oriented form of the Linvill model. The basic ideas and pro-
cedures that are used in converting diode and transistor linear models
into equivalent charge-control models can be applied to many other
semiconductor devices.

APPENDIX A
Switching Time Calculations for Ideal Charge-Storage-Step-Recovery
Diodes

(Example for use of charge-control model)

A1 Equivalent Circutt (See I'ig. 26)

A.2 Generator Source Current (See I'ig. 27)

A3 Diode Model (See Fig. 28)
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Fig. 26— Equivalent circuit for charge-control model.

Lolt)

= t

Ig—
Fig. 27 — Generator source current.
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i(t)

q/T
SWITCH CLOSES AT t=0
OPENS WHEN q =0

Fig. 28 — Diode model.

A.4 Forward Operation
Ir
I(s) = QES‘_) + sQ() = <

From this follows

I
Qs = 7
(s+3)
q(t) = 7Ix[1 — exp (—1/7)]
Q(t,) = Il — exp (—1,/7)]

A.5 Reverse Operalion

For simplicity of writing, ¢ = ¢, will now be referred to as ¢ = 0:



CHARGE-CONTROL CONCEPT 571

In

8

19 = 99 4 50 - Q) = -
From this follows

0 = 20 = L

o+3)
q(t) = Q(t,) exp (—t/7) — 7Ix[l — exp (=1/7)].

Step recovery occurs at ¢t = T, , when g = 0

exp (_Tr/f)[Q(iv) + TIR] = TIR
T.=rln |:1 +%%l] = 7ln (1 +%[1 — exp(—-t,/r)]). (96)

A.6 Graphical Representation (See I'ig. 29)

q(t)

——
—
—-—

Q(tp) -

Fig. 20 — Graphical representation.

A.7 Special Cases

(i) tn_) o Q({p) = IPT
T.=rln (1 + %) 97)
R
G) Ie> I T, =% 98)
R
@) Ip>1Ip and f,— w: T, = Ir T. (99)
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APPENDIX B

Comparison of Notations

Table I lists comparisons of the notations used in this article. The
first column lists the notations used in this article while column A
lists those used by Beaufoy and Sparkes.® Column B lists the notations
used in Physical Electronics and Circuit Models by P. E. Gray, et al;"
SEEC Series, 2.

TABLE I —CoMPARISON OF NOTATIONS

A B
This paper Beaufoy-Sparkes SEEC
av gn(for gy < Qysar only) qr
qr qr
Agy + ar
B3
where Agy = qv — Qnsar
TBN T'p TR
TCN Tc TF
1 1
TEN T'g 1 / (— + —)
THF TF
TRI THR
1 1
1/ (_ * _)
TBR R
TET TR
s Ts TSL

LIST OF SYMBOLS

Lower-case letters are used for time variables, capital letters are used
for steady-state values or Laplace transforms of values.

A, A, A, cross-sectional areas

Ay, Ay, Asy, Ao four-pole parameters

a, b, c, K constants

¢; € analog capacitance; same per unit length

Cre, Cre emitter and collector junction capacitance,
respectively

D, hole diffusion constant

D, electron diffusion constant

e magnitude of electronic charge

E electric field intensity

a;7d analog shunt conductance; same per unit
length
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H. H.,H. lumped combinances

H, combinance per unit length

H, lumped diffusance

1/H, reciprocal of diffusance, per unit length

Ty, a2, ta, Ty, U5 network branch currents

in base current

13 excosa 3 LB oxoons excess base current in saturation

te, le collector current

ig, Ig emitter current

Ie, In forward and reverse diode switching current,
respectively

1, electron current

2, hole current

I diode saturation current

ih, Ié, ih, Ih }network branch currents as defined in

ier, Ler, ler, {ErF Figs. 17(a) and 17(b)

Iy, Ico, Ino, Tepo, Tero  de junction saturation currents

Io sue collector current in saturation

Ty s Ty s s currents through combinance, diffusance
and storance, respectively

Igx y Low s Lon base, emitter, and collector current in normal
transistor operation

In electron current density

In hole current density

k Boltzmann constant

L, diffusion length for holes

m, My, M, constants relating lumped carrier density
to carrier density at junction boundary

n electron density; excess electron density

7, excess electron density in p-region

Ny, Mo values of n and n, in thermal equilibrium

p, P(s) hole density or excess hole density

Pn excess hole density in n-region

Doy Pro value of p and p, in thermal equilibrium

q, @ charge

Ty Q25 Qm lumped charges in base region

Gy > Qn charge in normal store

qr, Qr charge in inverse store

Aqy , AQy , Aqr, AQ;, Qzs additional charges stored due to saturation

Oy sar limiting value of @y, reached at edge of

saturation
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105 Gmo

T T

Te

8

8, 81,8z, 8a
S

t,t., T

T

v, V

vext

Ve, Ve
Wy, W,
w

xT

Z

Qy , Oy

Qyg y Qo

ﬁN:Bl

.BND L] .Bfo

Y
A

Hn y Hp
T, TP

!
Tpy Tay Toy Tiz

Ta

Ty = TBN
To = Tpr
Ten y TEI
TEN » TCI
Wan ] War

Way 5 W

total minority carrier charge in equilibrium
analog resistor, same per unit length

small signal junction resistance

Laplace operator

stores = storances

storance per unit length

time

absolute temperature

voltage

externally applied junction voltage (ex-
cluding resistive drops)

collector and emitter junction voltages
lengths denoting sections in neutral region
base width

neutral region length variable
characteristic impedance

normal and inverse ac current gain in
common-base connection

de values of ey and o,

normal and inverse ac current gain in
common-emitter connection

de values of 8y and 8;

transmission line propagation constant
short for e/kT

electron and hole mobility, respectively
recombination time constant in p-region
diffusion time constants

approximative effective recombination time
constant for excess charge in saturation
recombination time in base under normal
operation

recombination time in base under inverse
operation

normal collector and inverse emitter diffu-
sion time constants, respectively

normal emitter time constant (=1/w,y) and
inverse collector time constant (= 1/w,.;),
respectively

common-base angular cut-off frequencies
common-emitter angular cut-off frequencies
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