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This paper analyzes different methods of adjusting the sampling time
for detecting synchronous binary dala, based on properties of the random
data signal itself. The static error and the variance of the jitter of the
resultant sampling instant are calculated where the effects of frequency
offset, additive noise, signal overlap, and jitter of the reference source
are included.

The threshold crossing timing recovery system adjusts the sampling time
in response to the times at which the data signal crosses the amplitude
threshold. The sampled-derivative system uses the time derivative of the
signal at the sampling time lo adjust sampling phase. It is shown that
both systems lead to approximately the same amount of fitter in the presence
of noise and signal overlap for a given bandwidth of the control loop.

An improved timing recovery system ts presented which is constructed
by adding correction signals to the sampled-derivative system. This system
accounts for intersymbol interference in a manner that lends to set the
sampling time at the point of maximum eye opening, where the error
probability is minimum for the most adverse message sequence.

I. INTRODUCTION AND SUMMARY OF RESULTS

In synchronous polar binary data transmission, information is sent
by serially transmitting either a basic signaling waveform or its negative
at fixed time intervals. Modulation may be used to better fit the signal
to the channel. At the receiving end, the signal is demodulated and
filtered. The resultant baseband signal is sampled periodically, and
the polarities at the sampling instants determine the output data.
The choice of sampling time is critical for minimizing the error prob-
ability due to intersymbol interference and noise, particularly when
the signal has been subjected to sharp cutoff filtering. The sampling
time is best set by using some properties of the data signal itself.
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The problem of timing is particularly acute in pulse code modulation
(PCM) systems, where the accumulation of jitter in a long chain of
regenerators frequently limits the allowable length of such systems.
For this reason, previous studies of timing recovery have concentrated
on PCM applications.'™ The use of a tuned circuit as the memory
element is generally assumed, since this is commonly employed in
PCM repeaters.

This paper will concentrate on timing recovery for data transmission
applications. The effects of multiple regeneration will not be considered.
The recovery of timing will be accomplished by a feedback control
system, such as a phase-locked loop. Different methods of generating
the error signal for the control loop will be compared.

The received signal, after demodulation and filtering, is of the form

o0

s(f) = kZ af(t — BT — kT) + n(l) 6y
where {a,] is a set of independent random variables, each equal to
41 or —1 with equal probability. This may be assured by the use
of a scrambler if the data source is itself not random. The basic signal-
ing waveform is f(£). The abscissa of (1) will be adjusted for each system
to be studied so that the desired sampling time of f(f) is ¢ = 0. The
quantity 8 is an unknown fractional time delay. Since we are not
concerned with absolute time delay between transmitter and receiver,
we will assume | 8| = 1. The additive noise is n ().

The sampling wave which determines the times at which s(f) is
sampled may be represented by

o0

gty = 22 o(t — nT — 1), @)

n=-—o0

where v is a phase that is generally time varying.
The output data is determined by

d, = sgn s(nT + +T'), 3)

where sgn v = v/| ¢ |. Then
i = 50 [0fGT = BT) + X adf (7 + 91 = BT) + ()] (@)
For simplicity, the argument of the noise term is not made explicit

since it is of no consequence. Assuming that f(yT' — gT) is positive,
then d, will agree with a, provided that

—a.[2 a (kT ++T — BT) + n(1)] < 6T — BT). (5)

k=0
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It is readily seen that the probability that (5) holds depends strongly
on v — B. For each timing recovery system, f(¢) is defined so that the
desired value of v — S is zero.

The principal part of a timing recovery system is a phase detector
which examines s(f) and ¢(f) and attempts to generate an error signal
proportional to 8 — +. It is not possible to determine § exactly from
s(t) since the signaling waveform and the noise are unknown. This
paper will consider different methods of forming this estimate of § — =.

Another essential component of the system is the reference source
which is used to generate the sampling wave. Its phase or frequency is ad-
justed by the error signal in order to form a sampling wave of the proper
phase. The error signal may be filtered prior to its use in shifting the
phase of the reference source. The reference source may be a local
oscillator whose natural frequency is set as close as possible to the
bit rate. The reference source may instead be derived from transmitted
pilot tones, in which case its frequency is exact, but it might have
phase jitter of its own due to channel noise.

Section II describes and analyzes a timing recovery system which
uses a threshold crossing phase detector. This detector generates an
error signal each time the signal crosses zero. The amplitude of this
signal is proportional to the difference between the time of occurrence
of the zero crossing and the time of the nearest sampling pulse, dis-
placed by half a bit period. This system tends to choose a sampling
instant which is midway between the mean transition times.

The sampled-derivative phase detector is discussed in Section III.
This device generates an error signal during each bit interval which
is proportional to the time derivative of the signal at the sampling time
multiplied by the signal polarity at that time. The sampled-derivative
timing recovery system attempts to set the sampling time to coincide
with the peak of f(¢).

The analysis shows that the performance of these two systems is
very similar for a given open loop gain function of the control system,
(f(w). Approximations are made based on the assumption that the
phase error is small and that G(w) is a narrowband low-pass function
compared with the bit rate.

The systems fail if G(0) is finite and the reference source does not
agree exactly in natural frequency with the bit rate. If the reference
source has the correct frequency and a phase 8, then a static phase error

86— 8
1+ G0 ©)

é:

results in the sampling wave.
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Much better performance can be achieved if G(w) has a pole at the
origin. In this case the system is insensitive to the phase of the reference
source. In the presence of a frequency error, Af, the static error is

i . d 1
= —iAg, [1 ¥ G(w)],,-o' @

In addition to any static error, the sampling time will also jitter
about its mean value. The variance of this phase jitter is the sum of
several components, each due to a different cause. Jitter is produced
by jitter in the reference source, by additive noise and by signal overlap.
In the case of the threshold crossing system, jitter is also introduced
whenever there is a static error.

If the reference source has a jitter whose power spectral density is
S, (w), then the output fractional jitter will have a variance equal to

1 8w
tnzs—' f |1—|—G()|2dw (8)

This indicates that high-frequency noise components must be removed
from the reference source prior to its use for timing recovery.
The jitter produced by the additive noise is

o 2AR0) = R(D)]
¥ = TI(=1/2) - [ @/F

for the threshold crossing system. R,(f) is the autocorrelation of the
noise and w, is the noise bandwidth of the closed control loop.

(9

_ G
T+ G@) do. (10)
For the sampled-derivative system, the noise leads to jitter variance
2 R0 (11

T TTo ™

In typical data transmission systems, (9) and (11) are similar in
magnitude, and not very sensitive to the shape of [(¢) if the noise is
similarly filtered.

The jitter variance due to signal overlap is of the form

ot = Aw T + Ax(wT), (12)

SH

where
2

_G@ g, (13)

1 + Gw)
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If w,T and w,T are comparable and much less than unity, then the
first term is usually much larger than the second.
For the threshold crossing system,

A\ = =7 = FaraT , VAT + 1/2) = G = 1/2)
RIGT + T/2) + [(~T + T/2) = [(=KT = T/2] (14
and
Ay = g 4@
2 (=1/2) — [ /)]

+2 E (T + T/2)f(kT — T/2) — Z FH&T + T/2)

— (T = T/2))[[(—=kT + T/2) — f(—kT — T/2)]}° (15)
For the sampled-derivative system,
1
Ay = g 1 EDIRT) + 1/(=kT)] (16
and
4: =57 jfr2(0) _Z_:m E*f (kT)f'(—kT). amn

In both cases, A, = 0if f(¢) is an even function, so the timing recovery
systems are very sensitive to asymmetry of the basic signaling wave-
form. The jitter variances are again comparable for both systems.
As may be expected, the jitter increases considerably as the filter used
to shape [(t) is made sharper.

There is an additional jitter component for the threshold crossing
system whenever there is a static error. Its variance is given by

af = nglT. (18)

An example is provided in Section IV. A typical data transmission
system using a distorted signal is studied so as to illustrate the mag-
nitudes of the above quantities and to indicate the narrowness of loop
bandwidth required for satisfactory performance.

In this example it is also seen that necither the threshold crossing
timing recovery system nor the sampled-derivative system chooses a
mean sampling time which is very near to the time at which the eye
pattern has its maximum opening.
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Section V describes an improved timing recovery system whose
mean sampling time coincides with that of the maximum eye opening.
This system is constructed by adding correction signals to the sampled-
derivative system in order to account for the effects of intersymbol
interference on the mean sampling time.

Finally, an outline of some extensions and modifications of these
timing recovery systems is presented in Section VI.

II. THE THRESHOLD CROSSING SYSTEM

Most timing recovery systems make use of the instants at which
the data signal crosses the threshold to alter the phase of the sampling
wave. A block diagram of a typical threshold crossing timing recovery
system is shown in Fig. 1.

The principal part in this system is the threshold crossing detector.
This device generates an error pulse each time the signal crosses zero.
The amplitude of the error pulse is proportional to the difference
between the time of occurrence of the threshold crossing and the time
of the nearest pulse of the displaced sampling wave. The displaced
sampling wave is

@) = ot = T/D) = 3 8t —nT — T/2 —T),  (19)

where v is the phase measured in fractional signal periods. If the axis
crossing following the mth sampling time is displaced by a,.T,

s(mP +T/2+a.T) =0, |eaat+v|<% (20)
DELAY
T2
qd(t)
s(t) | THRESHOLD LOW—-PASS PHASE qlt)
m b o B o I
REFERENCE
SQURCE

Fig. 1 —Threshold crossing timing recovery system.
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then the error signal is
e(t) = 2 Kilan — v) 8¢t — mT), (21)

where K, is a gain constant. The error pulse has been represented in
(21) as an ideal impulse function. Since the error signal will be passed
through a narrow low-pass filter, the response will be virtually identical
to that when a more realistic pulse of the same area is used. Similarly,
the effects of variation of the position of the pulse within the interval
may be neglected, since the low-frequency components of the error
signal are substantially uneffected.

We will now determine the threshold crossing time «,, as a function
of the signal overlap and noise. Substituting (1) into (20) yields

o0

2 audf (6T + T/2 = BT + ) + n(t) = 0. (22)

If
1@/2) +4(=1/2) > X 6T +T/2) | +n0) (23
then a crossing will occur following the mth bit, if and only if a,, = —@p+1 -

When a,, = —a,., and (23) holds, (22) may be written as
anlf(T/2 — BT + anT) — [(—=T/2 — BT + anT)]
+ 2 @u (kT + T/2 — BT + @, T) +n() = 0. (24)

k#0,—1

If @, — B is small, we may approximate (24) by the first terms of its
Taylor series expansion,

an[f(T/2) = {(=T/2)] + awlan — BT (T/2) — {(=T/2)]
- Zl Uil KT + T/2) +n() = 0. (25)

k#0,—

Let the abscissa of the function f(f) be adjusted so that

(T/2) = [(—=T/2). (26)
Then define

b=1(=1/2) — {(T/2). 27)

We may now solve (25) for a,, .

an B+ 35 [ 3 an (T + T/2) + n(). (28)
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If we let

dn — {Ol ]-f a‘n = an+1 (29)
11 if a, = —0nn1

then the error signal (21) becomes

o) = K, Y. dﬂ{ v B (T + 172

+ n(t)]} 8(t — nT). (30)

The error signal is passed through the filter Gi(w) and then shifts
the phase of a reference source. The reference source may be a local
oscillator whose frequency is tuned as closely as possible to the signaling
rate. Alternatively, the reference source may be derived from pilot
tones which are transmitted along with the data. In the latter case,
there is no error in the average frequency of the reference source, but
its phase may be poorly related to that of the data signal and may
also be perturbed by noise. In either case, the reference source generates
a signal of the form

r(t) = >, 8t —nT — T). (31)
n=-—03
When a local oscillator is used,
r & Aft + 6, AT K 1 (32)
where Af is the frequency offset of the oscillator and 4 is an arbitrary
constant. When the reference source is derived from pilot tones,

=0+ () (33)

where 7(f) is a zero mean random variable.
The sampling wave is formed by shifting the phase of the reference
source by an amount proportional to the value of the filtered error

signal.

o) = 3 8t — nl — T — Kal), 34)

ne=—o0

where v is the filtered version of e(t) and K, is the proportionality con-
stant. Comparing (34) with (2),

=1+ Ko =1+ K [ .t — Deta) d. (35)
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In the phase-locked loop type of control system, the frequency of
the reference source is adjusted rather than its phase. This, however,
is completely equivalent to integrating the error signal prior to phase
adjustment. The block diagram is therefore valid for the phase-locked
loop provided that the filter includes a pole at the origin. As will be
shown, this pole is highly desirable and, in some cases, absolutely
essential,

Substituting (35) into (30)

e(t) = K, i d,.{ﬁ —7—-K, f gi(t — x)e(z) dx

+ ;'_% [k#nZ;l a.f (kT + T/2) + n(t)]} 8t —nT).  (36)

Let
alt) = 3ot @7
Qz(‘) = 'Kl% gl(t) (38)
e(t) = i e(n) §(t — nT) (39)

and normalize the time variable so that 77 = 1. Then (36) can be
written as

ex(n) = 2d,,{,8 -7 — ‘i ga(n — ke, (k)

+ LY ek +1/2) + n(m}- (40)

A model of the threshold crossing timing recovery system which con-
forms with (40) is shown in Iig. 2. This is not a time-invariant linear
system because of the presence of the multiplier.

J\_ 2.l Ga(w) 20
T

2dp T

=~

B+ %[kfo lan_kf'(kﬂ/z) +n(t)]
. ,_

Fig. 2 —Model of threshold crossing system.
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In Appendix A, it is shown that

exln) = B — 7 — g(0)es(n) — kz ga(n — K)es(k). (41)
This system may be readily analyzed either by means of the z-trans-
form, or equivalently, by discrete Fourier analysis.” The discrete
Fourier transform is given by

X(w) = Y, z(n) exp (—jun). (42)
If G,(w) is bandlimited to | @ | < , which is approximately true in
all cases of interest, then these transforms will coincide with the true
Fourier transforms.
The solution of (41) in terms of Fourier transforms is

= Bl — )
Ez(w) 1 + 92(0) + Gz("’)’ (43)

where
0:0) = 5 f_ " Gie) do. (44)
The static error can now be found from
Y(w@) = B) = Ga(@)Eaw) + () — B@) (45)

1) — Be) = [ s () — B ()

In particular, if 8(¢) is a constant, 8o, and r(t) is given by (32), then

1) — 0 86) = 2n e s 118 ) o (0= B3] (47
- _ 1+ 92(0)
"0 =B = T370.0) + GO

iy i 1+ 92(0)
14 2 [1 T a0 + Gzcw)l.,o' (48

If G.(0) is finite, then the first term is a steadily increasing error
and the system fails. If Af = 0, the system does not fail, but a static
error will be present due to the arbitrary phase values, 8, and 6. It is,
therefore, highly desirable that G(w) have a pole at the origin. In the
presence of frequency offset, this pole is essential. In this case, only

[Aft + 8 — Bo]
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the last term in (48) is nonzero, so that a frequency offset leads to a
static error. The system is completely insensitive to the values of the
arbitrary phases, 8, and 6, except during initial start-up.

For the system to be stable, it is required that 1 4+ ¢.(0) + G.(w)
have no zeros in the half plane Im(w) < 0. In most cases, g.(0) < 1,
80 that the usual criteria for stability apply to G»(w).

We now wish to calculate the variance of v, or the mean square
jitter. From (40) and (41), and assuming the static error to be constant,

eu(n) = exn) — e, = %[e? + g:(0)e; — 2 g2(n — Kes(k)

)+ n(i)] +2) —e, (49

where

z(n) = T d.a, E a.-if(k + 1/2). (50)

Let
z(n) = 2d..[5; + g:(0)es + %n(t)] +2(0) — e . (51)
Then (49) may be written as

es(n) = z(n) — 2d,5(1) — 2d, Z g:(n — E)es(k). (52)

k=—o

The zero mean component of the output phase error is

1) =) — v = 1) + E g2(n — k)es(k) (53)

k=—x

n) = o) + X gsln — () — 2den (). (54)

k=—o0

The autocorrelation of (54) is
; ZE{[2dkg(n — k) + sul2digln + m — 1) + uimilviri}
= R,(m) + ; 4? g:(n — k)g:(n + m — DR.(k — 1), (55)

where E(v) denotes the expected value of v and R,(m) = E[v(n)v(n + m)]
is the autocorrelation of ».
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~ In almost all cases of practical interest, g,(0) < 1. Then we may
approximate

% = ga(0)es = 0 (56)
doi) = 320 (57)

and
R T L ] (58)

Subject to these approximations, we can evaluate the discrete Fourier
transform of (55). After some algebraic manipulation, the result ob-
tained is
[1+4+ Ga() [ 8y() + | Golw) [ R, (0) = S,(w) + | Golw) | 8.(w), (59)
where
B.) = X Ri(m) exp (—jma) (60)

is the power spectral density of ».
The variance of v is calculated as

- R, (0) = 1 " 8, () do (61)
Golw) | 1/ S
1 + G,(w) Se(a) do + f [1+ Gi(w) | dw_ (62)
Gz(“-‘) :
I+2) [Ty e |
Sinee G»(w) is narrowband, we may assume that
[ IO T (63)
o |1+ Giw)
and therefore,
Golw) | 1" S, (w)
o | e d +Tfu Tre@T%  ©

The second term indicates that low-frequency components of the
reference source noise are attenuated while high-frequency components
are not. Therefore, if the reference source is derived from transmitted
pilot tones, it should be filtered to a narrow bandwidth before being
used in the timing recovery system.
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In Appendix B, S, («) is evaluated for | w | < 1. This is the only region
of interest when G;(w) is a sufficiently narrow low-pass filter.

S.) = & +7% R0 — RAD] + A + 4', (69
where
4 =% E [ + 1/2) — 1 — 1/2))
206+ 1/2) + =k + 1/2) = [(—k = /2] (6)
and
as= g {=aram +2 3 g0+ 1206 - 172

- E K[f(k+1/2) — f(k — 1/2)][[(=k + 1/2) — (= k—l/Q)} (67)

k=—cx0

If we let
— Gz("’) z
w, 1+ G dw (68)
and
3 _ l g Gs(w) :
=1 f e | (69)

then (64) becomes

& = oo + bz [Ro(0) — Ry + Aseo, + A

l S(w)
8 11+ G 0

This equation is given in the summary with the normalization 7' =
removed. An application to a typical data transmission system is given
in Section IV.

It should be noted from (69) that w, will be unbounded unless G»(w)
has at least two more poles than zeros. Good design of G:(w) requires
that the second pole (assuming no zeros) occur somewhere in the
vicinity of gain crossover. In this case, w, is approximately equal to w, .

The first term of (70) indicates that the standard deviation of the
jitter caused by frequency offset will be much less than the mean
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of that error. The second term is the jitter produced by the additive
noise. In typical data transmission systems, the signal is filtered such
that B,(1) & 0. In that case, the variance of the jitter is directly pro-
portional to the noise power. Of particular interest is the jitter produced
by signal overlap. It can be seen from (66) that 4, = 0 if f(¢) is an even
function. In that case, the jitter variance is proportional to the cube
of the system bandwidth, and can be made quite small by the use
of narrow filtering. If f(f) is not an even function, then the third term
will usually be much larger than the fourth term. In either case, the
jitter will greatly increase as the filter used to shape f({) is made sharper.

III. THE SAMPLED—DERIVATIVE DETECTOR

An alternative method of adjusting the phase of the sampling wave
makes use of the time derivative of the signal at the sampling times.
Implementation of a sampled-derivative timing recovery system is
about equally complex as a threshold crossing system.

Except for the manner in which the error signals are generated,
the control loop is the same for both systems. Fig. 1 may be used to
describe the sampled-derivative system if the delay in the feedback
path is eliminated and a sampled-derivative detector is substituted
for the threshold crossing detector.

The sampled-derivative detector generates an error pulse during each
bit interval whose amplitude is proportional to the time derivative
of the data signal at the sampling time, multiplied by the polarity of
the signal at that time

e(t) = Ky 2 sgn [s(uT + 1)l + +T) 8(t — nT).  (71)

However, the output data is generated by setting
d, = sgn [s(nT + +T)], (72)

where 4, is the receiver decision on the nth bit. If the error rate is low,
d, = a, with high probability, and (71) may be approximated by

e(t) &~ Ky 2 a,8(nT + +T) 8(t — nT) (73)
if the effect of errors is neglected.
Using (1),
e(t) = Ky 2 a,,[; Gnif (6T + T — BT) + n'(1)] 8(t — nT). (74)

n
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The abscissa of f(¢) in this case is adjusted such that the origin coin-
cides with the peak of f(t).
/'(0) = 0. (75)

If the phase error ¥ — B is small, we may approximate (74) by the
first terms of its Taylor series expansion

e() =Ky 20 aualy — BTf"(0) + g;) auif (KT) +n'(9)] 8(t —nT). (76)

n

As in the previous case,

o(t) = 2 e 5(t — nT) (77

v = K, f "ot — e@) dz + 7 (78)

and we normalize the time variable by setting 7 = 1. Equation (76)
may now be written as

e(m) = Kyl(r — 8)/"(0) + an ; auif'(K) + @' ()

FESO S ol - b | (9

Let
_e(t)
ea(f) 3f (0) (80)
and
g:(l) = —EK.Kf"(0)g.(1). (81)
Then (79) becomes
a) = 8= 1=y — 3 gl — Heulh), (82
where
yn) = fu(o) [E a.—f' (k) + n'(1)]. (83)

Unlike the threshold erossing system, the sampled-derivative system
is a time-invariant linear one when the phase error is small. A model
of the system conforming with (82) is shown in Fig. 3. This model
may be readily analyzed because of its linearity.
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£-y /L €3 +~\ Y
- Ga(w) {
+— 3 _FT

T

Fig. 3— Model of sampled-derivative system.

V) = 3 oo = Heslh) + 7 &9
Vo) = 3 gsn = BB = ) — v + 7. )
The mean error may be found from
1)1 + 6o(0)] = Ga@)B(e) + () (86)
o) — ) = —E) = 1750, &

Equation (87) is identical to (46) if Gs(w) is substituted for G, (w)/[1 +
g2(0)]. All the comments of Section IT concerning the static error and
the desirability of G{w) having a pole at the origin therefore, also apply
to the sampled-derivative system,

The variance of ¥ when the mean error is constant will now be found.

T) = v) =7 = — 3 galn — B + 1@ + (), (©8)

k=—c0

where 5(f) is again the reference source jitter. In terms of the power
spectral densities,

_ | G | S,(w)
S0 = | i | 50+ T+6@" e

In Appendix C it is shown that, for |« | < 1,

£, (0)

Sv(w) ~ —f’fE(O)

+ A, + AW, (90)

where

1 - ’ ’ L ff
Ar = gy 2 O E + £(=h)] (1)

=—a
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and
1 3 27 r
A-n = _2f”2(0) t;ﬂ k .f (k)j( k)- (92)
The variance of v is then
2 1"
=2 f 8, () dw (93)
2 _ __l?,,’.’(O) 3 1 N Sy (w)
gy = 77%(0) w + Asw + Ay + ﬂ_j; 1+ Gy lz dw, 949
where
17" Giw) |°
o = wfo ‘1 P | 95)
and
s 1 [% . Galw) |°
wWa -—ﬂ_j; w 1+ G dw. (96)

There is a very strong similarity between (94) and (70). The last
terms are identical, so that it is just as important in the sampled-
derivative system as in the threshold crossing system that high-fre-
quency noise components be removed from the referenced source prior
to use for timing recovery.

The jitter due to additive noise is proportional to the power of the
derivative of the noise. The example in the next section illustrates
that this is not serious if the noise is bandlimited to the same frequency
range as the signal. However, if any high-frequency noise is allowed to
enter the receiver beyond the signal filter, the jitter will be greatly
increased.

The jitter due to signal overlap is very similar to that of the threshold
crossing system. If f(f) is an even function, then its derivative will
be odd, and 4; = 0. Both 4, and 4, increase markedly as the spectrum
of f(¢) is made sharper.

T'inally, unlike the threshold crossing system, there is no additional
jitter term due to static phase error, This jitter component is eliminated
because there is an error pulse generated during each bit interval.

IV. AN EXAMPLE

In order to illustrate the results of the previous two sections, the
output jitter of both a threshold crossing timing recovery system and
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a sampled-derivative system will be calculated for a typical received
data transmission signal.

The signal to be considered is one using half raised-cosine amplitude
shaping which is distorted by linear delay distortion. For simplicity,
it is normalized so that 7 = 1 and the undistorted peak of the signal is 1.

Fw) = A(w) exp [je(w)] (97)
1, 0<w< 72_r

Aw) = - (98)
cos 2 2 , % <w< %E
3 2

olw) = il w > 0. (99)

The outline of the “eye pattern” for this signal is shown in Fig. 4,
along with the central portion of f(f). The eye pattern is formed by
superimposing the signals of all possible message sequences. Closing
of the eye is due to signal overlap.

The time of maximum eye opening is the optimum sampling time in a
minimax sense. When such a sampling instant is chosen, then the error

/‘\/
/—\m)

\/\

f

SDTC M

Fig. 4—Eye pattern outline and mean sampling times for a typical distorted
data signal.
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probability in the presence of additive noise is minimized for the most
adverse message sequence, where all adjacent bits overlap in a manner
that subtracts from the bit being detected.

The mean sampling times are also shown in Fig. 4 for the case of
no static error. The mean sampling time of threshold crossing system,
TC, is such that f{(TC + %) = f(TC — %). The mean sampling time
of the sampled-derivative system, SD, coincides with the peak of f(t).
It is seen that the threshold crossing system chooses a better mean
sampling time than the sampled-derivative system, yet both systems
miss the maximum of the eye opening by a large amount.

In order to compare the jitter due to noise, a particular noise spec-
trum must be considered. Here it will be assumed that the noise is
white noise which has been passed through a receive filter matched
to the undistorted signal. In this case, the noise power spectral density
is of the form

N = —2A@ (100)
L Alw) dw
™ Jo
so that
R.(0) = o., (101)
R.(1) =0, (102)
and
f " 8 Aw) de
RI0) = =" 0. (103)
j; Aw) dw

From (70), the rms jitter due to noise for the threshold crossing
system is calculated to be

oy = 0.6150, Ve, . (104)
For the sampled-derivative system, this quantity is calculated from (94).
oy = 0.6120, Ve, . (105)

The results are virtually identical. In either case, if ¢, = 0.1 (signal-
to-noise ratio of 20 dB) and w, = 0.01, then the rms jitter due to noise
alone will be 0.61 percent. It should be mentioned that several other
signal pulse shapes were examined, and it was found that the jitter
due to noise was not very sensitive to pulse shape.
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In order to caleculate the jitter due to signal overlap, 4, and A,
were computed from (66) and (91). A, and A, were small enough to
have negligible effect on the jitter. The resultant rms jitter is 0.287 Vi
for the threshold crossing system and 0.265v/w, for the sampled-
derivative system. If w, = 0.01, the jitter is 2.87 percent and 2.65
percent, respectively. This is by no means negligible, and illustrates
the need for very narrow filtering in the timing recovery control loop.
Again there is little difference in the performance of the two systems.

To observe the effects of asymmetry of the signal pulse, let us con-
sider the same signal without phase distortion. Both timing recovery
systems will then set a mean sampling time at the best point. The
jitter due to signal overlap is greatly reduced since 4, and A, are zero.
The computed values of A, and A, are 0.11 and 0.32, respectively.
If wy = 0.01, then the rms jitter due to signal overlap is only 0.01
percent for the threshold crossing detector and 0.03 percent for the
sampled-derivative detector. Both values are completely negligible. It
may be concluded from this calculation that both timing recovery
systems are very sensitive to asymmetry of the signal waveform, both
in terms of choosing the average sampling time and the resultant jitter
about that time.

V. AN IMPROVED TIMING RECOVERY SYSTEM

It was seen in the previous example that both the threshold crossing
timing recovery system and the sampled-derivative system led to
average sampling times which differed considerably from the time of
maximum eye opening. However, it is possible to modify the sampled-
derivative system so that it does seek the time of maximum eye opening
as the average sampling time.

At any time ¢, , the signal amplitude for the worst message sequence,
assuming the current bit is 1, is

D(ty) = f(ts) — E | 1(te + KT) |. (106)

In the region where the eye is open, D(t,) > 0, and the eye opening
is equal to 2D(f,). If a sampling time {, is chosen such that D(t,) <0,
then errors will occur for some sequences even in the absence of noise.

An experimental examination of the eye patterns of a large number
of actual data transmission systems indicates that D(f,) is almost
always a concave function of ¢, . Therefore, if {, is adjusted according
to the gradient of D(t,), then the maximum of D will be found.

It is therefore desired to generate an error signal whose average
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value is
e(t) = KD'(t — BT + 7). (107)

If we again normalize the system so that 7' = 1,

o(t)y = K[f'(t — B+ )
-2 fU+k—B+vsenft+k—pB+v]. (108

k=0

Equation (108) exists and is continuous except at those points
where f(t, + & — 8+ v) = 0.

T'ig. 5 is a block diagram of a system which generates an error signal
whose average is given by (108). The first term of (108) is the average
error signal of the sampled-derivative detector discussed in Section III.
The improved timing recovery system therefore, will consist of a
sampled-derivative system with added correction signals. Enough cor-
rection terms are used to account for those adjacent bits which may
be expected to overlap significantly into the bit interval under con-
sideration.

SHIFT REGISTER

s(t) SAMPLE HARD
a an-
1 AND HOLD LIMIT n n-k
‘
T 1 | |
] I | I 1
1 | I i i
DELAY — == iy
== -
——— -
O+
— e
——— ———= ¥
DIFFER- SAMPLE )
[~ ENTIATE AND HoLO [}
l ek _
| S () ()
. —- \r o
SAMPLE | _t——— b
—4 k_| HARD
AND HOLD [ §——— fx)—. H{w)
L LIMIT
—_—
PHASE
SHIFTER Gi(w)
REFERENCE
SOURCE

Fig. 5—Improved timing recovery system.
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The kth correction signal must have an average value
ex(ty) = Kf'(k + 4) sgn f(k + 1), (109)

where
bh=1—8++~. (110)

This correction signal is formed by first generating an auxiliary
signal z,(n) whose polarity is expected to agree with that of f(k -+ 1,).
The derivative of the signal at the current sampling time is multiplied
by the polarity of the signal at a time displaced from the current time
by k bit intervals. The result is multiplied by the polarity of the auxiliary
signal to form the correction signal.

exn + 1) = Ks'(n + £) sgns(n — &k 4+ 1,) sgn x:(n + 4). (111)

In order to account for overlap into leading pulses as well as lagging
pulses, a fixed delay must be built into the system, as indicated in
Fig. 5. This delay is equal to half the shift register length, so that the
central cell of the shift register stores the polarity of the current bit,
while the other cells store the polarities of preceding and succeeding bits.

The auxiliary signal is formed by multiplying the value of the signal
at the current sampling time by the polarity of the signal which pre-
ceded this signal by & bit intervals. If k is negative, the polarity of a
succeeding bit is used. The resultant is filtered by a narrow filter,
H(w), to form the auxiliary signal z, .

z(n) = D hin — m)s(m) sgn s(m — k), (112)
where the time displacement ¢, is ignored.
If we assume that the error rate is low, as was done in Section III,

then we may approximate sgn s(n) = a, with little loss of accuracy.
Using this approximation and substituting (1) into (112),

2i(n) = XMI hn — m)[@n_n(t) + J(&) + Gnes ): am-if@)].  (113)

The mean of z, is
z, = f(k)H(0). (114)

In Appendix D it is shown that the variance of z; is

2 1 * 2 2 ]. - 2
=5 _[_m | H) | [6; + 5 f_w | Fa) |? du + P;.(_w)} dw, (115)

where P.(w) is the Fourier transform of

pt) = f(k — Df(k + 1). (116)
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If H(w) is sufficiently narrowband, then it can be seen from (115)
that the variance of z, will be small. Then, if f(k) is not too small,
it may be expected that the polarity of x, will agree with that of f(k)
with high probability.

We will now examine the mean value of the correction signal. Using
the assumption of low error probability and substituting (1) into (111),
the correction signal is

en + 1) = Ka,_. 2 a._f'(n + 1) sgn x,(n + 1,). (117)

In order to find the mean of (117), we make the approximation that
zy(n) is independent of a,_, and a,_; . As a justification of this ap-
proximation, note from (113) that

| Gy s @uey = J(RHO) + fORO) + f2k — Dh(I — k) (118)
2| Gy ) 0y X T (119)

since h(n) < H(0) for a narrowband filter. Let
P, = Prob [sgn z, = sgn {(k)]. (120)

Then
e =~ K(2P — Df'(k + t) sgn f(k + t). (121)

When the magnitude of f(k + ¢,) is sufficiently large, P =~ 1 and the
mean of the kth correction signal is approximately the desired value.
In the vicinity of a zero of f(k + ¢,), 3 < P < 1, and the correction
signal will at least have the correct polarity, although not the correct
magnitude. Ideally, the correction term should be a discontinuous
function of ¢, at a zero of f(k + ¢,). The actual correction signal will
have a mean value which is continuous, but the sharpness of change in
the vicinity of a zero will increase as H(w) is made narrower.

The rms jitter of this timing recovery system is extremely difficult
to evaluate because of the presence of many nonlinear operations.
However, this jitter may be expected to be much greater than that
of a sampled-derivative system, since each correction signal may be
expected to introduce jitter of the same order of magnitude as the
main error signal. Narrow filtering in the control loop is therefore
essential.

The mean sampling for the example of Section IV when this improved
timing recovery system is used is shown in IFig. 4 as “IM". It is seen
that the time of maximum eye opening has been found. For this example,
only one leading and one lagging correction term were sufficient to
choose this mean sampling time.
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VI. EXTENSIONS

Each of the timing recovery systems described here may be modified
to work with m-level digital data signals instead of only binary formats.
Since in multilevel systems the eye is much narrower, the effects of
static timing error and jitter are much more serious.

A threshold crossing detector may be constructed which generates
an error pulse whenever the signal crosses any one of the m — 1 thresh-
olds. During any signal interval, any number of error pulses between
zero and m — 1 may be present. Such a system is extremely difficult
to analyze, but has been found to work well in practice, provided
that some auxiliary means is used to correct the mean sampling time.

The sampled-derivative detector is very easily extended to multi-
level systems if the signal derivative is multiplied by the output symbol
value in forming the error signal. If the a,’s are scaled so as to form
a set of unit variance, then the analysis of Section IIT applies directly.

The improved timing recovery system is modified for use with multi-
level signaling in a manner similar to that of the sampled-derivative
system. However, the signal margin against noise for the worst message
sequence is now

D(ty) = {(t) — (m — 1) kZ | by + KT) |. (122)

Comparing this criterion with that of (106), it is seen that each of the
correction signals must be weighted by the quantity m — 1 in order
to find the time of maximum eye opening.

Extension of these techniques to partial response systems is also
straightforward. Since the modifications depend on the particular
partial response system used, a description will not be presented here.

All of the systems analyzed here used linear control loops. This
permitted the calculation of jitter variance in terms of loop bandwidth.
However, the implementation of these systems may frequently be
simplified considerably by using nonlinear control systems. A particular
method which has met with practical success uses the polarity of each
error pulse to adjust the sampling phase by a small fixed increment.

APPENDIX A

Evaluation of e,*
Equation (40) is of the form
es(n) = 2d,.[c,. — 2 guln — k}eg(lc)] , (123)
k

=—m

* The approach used here was suggested by J. E. Mazo.
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where d, = 0 or 1 with equal probability and are independent. The
random variables ¢, are uncorrelated with the d,’s.
From (123) and the properties of d, ,

ex(n) = d,ex(n) (124)

and

dyes(k) = des(k), if n > k. (125)

We first find the average of (123) over all ¢, and all d, , & < n. This
average of a random variable » will be denoted by (v), while the average
over all ¢, and d, will be shown as 7.

(eslm) = 2d,n — 2 ‘"E gun — E)duea(h)). (126)

Using (124)
(ex(n)) = 2d,c, — 2g.(0)es(n)) — 2 *E gx(n — K){d,ex(k)).  (127)

f=—og

The only random variable in (127) is d, . The overall average, e,(n),
is therefore the average of (127) over d, . Using (125), we obtain

) = & = 200000 = 3 galn = Beal) (128)

) = 6 — g0l — X goln — Kk (129)

which is the result shown in (41).
APPENDIX B
Evaluation of S, (w)
From the definition of d, in (29), we may express 2d, as
2d, =1 — a,a,,,. (130)

Then (51) may be rewritten as
2(n) X —a,a,.005 + 2(0) + % (a, — a,.)n(l), (131)

where the term g,(0)e, has been neglected.

We wish to evaluate the power spectral density of z. It will first be
shown that the approximation of z given in (131) is zero-mean. Since
the a,’s are zero-mean and independent, and the noise n(t) is zero-
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mean and independent of all other random processes, then the first
and last terms of (131) are zero-mean. The mean of z is readily found
after substituting (130) into (50).

1

) = 3 (@ = @) 2 an i+ Y (132)

=0, —1

z(n) = 0. (133)

The mean value of z(n) as given in (131) is therefore zero. It may

similarly be shown that the three terms of (131) are mutually uncor-
related. The autocorrelation of z is then

R.(m) = 0,0,1100sn0nsms1 €2 + R (m)

32 (@ = @@ = GrrmedB(m)  (134)

RA0) = & + R0) + 2 .(0) (135)
Ru(21) = R(£1) — EIER,,(:tl) (136)
Ru(m) = Ru(m), m =0, »1. (137)

From (132),

R.(m) = %H;] M;l (@0 = @) @rrm — Cormst) B inimes
Stk + B+ %) (138)

RO =5 3 f+D (139)
R(ED) = =55 1 3 f6+ DG = 3) + (—DI@) (140)

R.(£m) = 33 [fm + 3 — fon = Blf(=m + ) — f(=m — B),
m=0, 1. (141)

The power spectral density of = can now be calculated for | | < .

8. = 3 R.(m) exp (—jum) (142)

m=—c0

S.(w) = R,(0) + 2 i R.(m) cos wm, (143)
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Since x will be passed through a very narrow filter, we are interested

in the spectrum of 2 only in the region | @ | << 1. In this region, (143)
may be approximated by

S.(w) ~ R.(0) + 2 2 R.(m) — o° Z:: m’R,(m). (144)

This approximation is valid if the third derivative of S.(w) is bounded.®
This will be true if R,(m) decreases as O(m™°). If the Fourier transform
of {(t) is continuous, then f(m) decreases as O(m™"). In this case, it
can be seen from (137) and (141) that R.(m) decreases as O(m™°),
so that the approximation (144) is valid for | w | < 1.

Sw) A&+ ZAR0) — Ru(D) + X £+ )
b k=0,—1

— X+ Dk — B — [(—HiB)

k#0,£1

m=2

3 om+ B — fon — HI(=m + ) — f(—m — %)1}

+ w"{ > flk + Dtk — B + 1(—=HIE)

k#0,£1

o0

— 2w ffm + 8 — fm — PIf(—m — 3 — f(—m — %)]}- (145)

m=2

After some manipulation, and using (26), (145) may be reduced to

S.w) = & + %{R..(O) — R +5 3 U0+ — 1k — D)

=—
2

)

20’ {—W%) +2 3 f0 + Dtk = )

==

24k + B+ f—k + ) = f(—k —

[

+

k=—w

— 3 R+ ) — 10— DI~k + B — =k = %)1}- (146)

APPENDIX C

Evaluation of S,(w)
We wish to find the power spectral density of

yn) = f—i@ (2 anedf (B) + /(D). (147)
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The autocorrelation of y is

R,(m) = Z Z Al s m@nm i@y () (1)

f”z(o k=0 I#£0
+ @@, .n’ (D0 (1 + m)] (148)
R,(0) = f,,z(o) [ Z (k) — RY(0)]. (149)
For m # 0,
1 ’ o
R,(m) = fr—m@f (m)f'(—m). (150)

Under the same conditions stated in Appendix B, the power spectral
density of ¥ may be approximated in the region | w | < 1 by

=

S, = R,0) +2 2 R,(m) — o Z m’R,(m). (151)
m=1 m=
Using (75) we obtain

S, (w) ~ }ml@ {—Ri’(ﬂ) + i F®' k) + '(= k)]

k=—ng

- Z Ff (k) f'( —fr)} (152)

APPENDIX D

Evaluation of o2,
The variance of z, is the mean square value of the zero-mean random
process

wln) — & = 2 b — mann() + 2 anf@). (153)

m#=p

Since the noise and the message are independent, the variances
of the two components of (153) will add to form the total variance.
The variance of x, due to the noise is

o= 2 2 hn — mh(n — Q)10 n(t)n(t,) (154)

; Kn — mn*(t) (155)

Il

2
oy

o= %rcrﬁ L | Hw) | de. (156)
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The total variance of x; is then
dho=al+ 20 20 2 2 hn — mh(n — Q)an iy 1m0y,
m q p=k r=k
J@g.  (157)

Nonzero contributions arise from those terms where ¢ = m and
r = p and from those terms where r = 2k — pand g = m + k — p.

ol = ot + 2 2 [k — m)fi(p)

m  p#k

+ h(n — m)hin — m — k + p)f(p)f(2k — p)]. (158)

Any one of the terms of (158) is small compared to the sum. We
may therefore approximate (158) by including the missing p = & terms.

2 2 1 m 2 ® N
a,k%al+g§£m‘H(w)ldw[m{ﬁ(w)lidm+a§, (159)
where

oi = 2 2 h(mh(m — & + pI@fk — p) (160)

and it is assumed that H(w) is bandlimited to | @ [ < .

7t = 1o [[[[ H@HGFOFG) T exp lime + ]

. E exp [ip(u + v — )] exp [jk(2y — w)] dw du dv dy (161)

_ ﬁ [ [ f [ i H@HWFOFG) 5 — w) 6@ — v — 1)

o =

cexp [jh(2y — w)] dw du dv dy (162)
o= [ H@H(=w) do [ Fly—wF@) exp lik2y — o) dy (163
o= [ 1HE [do [ 1@ = ) exp [=ite = )]

F(y) exp (jky) dy.  (164)

The second integral in (164) may be recognized as 27 times the
Fourier transform of

pt) = fle = Dfk + 1) (165)
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so that
2 1

77 on

Substituting (166) and (156) into (159)

A= f: | H) | [0,2, + 4 f_: | P |* du + P,,(w)] do. (167)

f_ : | Hw) | Pu(e) do. (166)
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