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The application of mairiz sterative analysis to the solution of waveguide
discontinuity problems s discussed. It is concluded that the “‘Gauss-Seidel”
or ‘“point-single-step” method offers several advantages over more conven-
tional invertive procedures, particularly in the speed of execution. Two
examples are presented as illustrations: analysis of an H-plane discon-
tinuily in a rectangular waveguide and conversion from TE, to TM,,
modes at an abrupt discontinuity in a circular waveguide. The latter
results are shown to be in good agreement with measured values obtained
ih @ previous investigation.

I. INTRODUCTION

The analysis of waveguide discontinuities, for application to the
design of antennas and microwave networks, continues to offer challeng-
ing problems in electromagnetic theory and microwave engineering.
Thus far, the solution of these problems has depended to a large extent
on various approximate techniques, such as variational and quasi-
static methods," which are extremely useful but nevertheless limited
in applicability.

The shortcomings of classical analysis have been surmounted to a
large extent by our ability to solve electromagnetic boundary value
problems by numerical methods, making extensive use of digital com-
puters. Computational techniques are not only an abundant source
of engineering data, which might otherwise require elaborate construc-
tion and experiment, but they can also provide a unique analytical
laboratory in which to evaluate approximate theoretical methods under
easily controlled conditions. In this paper, we shall be concerned with
these numerical methods as they apply to certain waveguide discon-
tinuity problems.

649
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For the sake of simplicity we shall consider, as an example, the
problem of two waveguides with similar cross sections connected to-
gether at the plane z = 0, as illustrated in Fig. 1. A wave is shown
incident from the smaller waveguide impinging on the discontinuity.
The result will, of course, be to excite an infinite number of normal
modes in each guide, some of which carry real power away from the
junction, with the remainder being evanescent and contributing to
the electromagnetic field only in the vicinity of the connecting aperture.
It must be recognized that these evanescent modes play an important
role since they, in part, determine the amplitudes and phases of the
propagating modes. It is the fact that an infinite number of waves
must, in principle, be considered that makes this type of problem so
difficult.

The contents of the paper may be summarized as follows: We begin
by establishing an appropriate form of the uniqueness theorem for
Maxwell’s equations as they apply to boundary value problems of
this type. In numerical analysis, the criteria for uniqueness are of more
than academic interest since they provide meaningful and practical
methods by which to assess the accuracy of results. Next, the normal
mode representation of the fields is discussed, the object being to
arrive at a matrix equation formulation of the problem in which the
components of the unknown vector are the modal coefficients. It is

. INTERFACE

INCIDENT
WAVE

Fig. 1— Waveguides of similar cross section connected at the plane z = 0 by
an abrupt discontinuity. A wave is assumed incident from the smaller guide.
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suggested that this matrix equation may be solved by an iterative
procedure and, upon studying the convergence properties of such
methods we find a critical dependence on the particular algorithm
used. Two examples will be presented as illustrations, analysis of an
H-plane discontinuity in a rectangular waveguide, and conversion from
TE,, to TM,, modes at an abrupt discontinuity in a circular waveguide.
The latter results are shown to be in good agreement with measured
values obtained in a previous investigation.

Rationalized MKS units and the (suppressed) harmonic time de-
pendence exp {—iwt) will be used, unless otherwise specified.

II. UNIQUENESS AND ERROR CRITERIA

A representation of the discontinuity is shown in Fig. 2. It is assumed
that the regions to the left (denoted by —) and to the right (denoted
by ) are each filled with homogeneous material, but with possibly
different constitutive parameters. Maxwell’s curl equations in the
respective regions are thus given by

., 0H*
V XE* = —yu aat
(1
. .E
V XH® = ¢ o

As usual for uniqueness theorems, we begin with two solutions in
each region presumed to be correct, and denote the differences respec-
tively by E*, H** Then from the Poynting theorem,” it follows that

D
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Fig. 2— Waveguide discontinuity showing boundary surfaces A, B, C, D and
respective normals n;, n,, n; D,

_* Physically, these fields would correspond to a waveguide discontinuity problem
without excitation.
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in the — region

ffA (E; X H)'n, dS + ffﬁ (E7 X H7)'n, dS

_ ‘f_a_sz,,- E-E dV — “u%fﬂw H-H dV (2

and in the 4 region that

ffc (E; X H)nydS + ffD (E{ X HY)n,dS

7ﬁ+; + w2 Lt AT
S M‘[[“E E dV — u a{ffHH H 4V, (3

where 9/t denotes differentiation with respect to time and the sub-
seript ¢ denotes the field transverse to the generatrix of the cylinder.
The unit normal vectors n, , n, , n,, and n, are shown in Fig. 2.

One must also take into account the fact that certain physical con-
siderations will limit the class of admissible solutions. For example,
if we let the surfaces A and D recede to infinity, then all evanescent
modes will have decayed to zero and the respective surface integrals
then represent the power flow away from the discontinuity. Assuming
no loss, the total power must vanish. Furthermore, it can be shown
from Maxwell’s equations that the transverse components of electric
and magnetic field at the interface must be continuous. Adding (2)
and (3), we find that the following time derivative must vanish,

%[e“ [[[ =ear+w [ mmav
+ e fff] E.E dV 4 u* ffv H'-H' dV:I —0, @

We may, however, regard the quantity in brackets as having had
a zero value at some time, say at ¢ = 0, the excitation time. The term
in brackets therefore, vanishes for all time and, since each of the in-
tegrands is positive semi-definite, they must vanish separately. Thus,
at each point in the 4+ and — regions,

Ef —E}=H —H, =0
El —E. =H, —H, =0

and the solution is thereby shown to be unique. We may now state
the following uniqueness theorem for waveguide discontinuity problems.

(%)
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Theorem: The solution to a waveguide discontinuity problem s uniquely
specified if it can be shown to have the following properties:

(#) It salisfies Maxwell's equations and the appropriate boundary
conditions in the regions on each side of the discontinuaity.
(72) The components of electric and magnetic fields tangent to the
inlerface are conlinuous.
(4%) In the case of a lossless discontinuity, energy is conserved.

These three conditions obviously play an important theoretical role
in the solution; where numerical methods are used, they also provide
fundamental criteria by which the accuracy of computed results can
be assessed. Accordingly, we shall define the following quantities to
be used as error criteria: First, there is the parameter ¢, , which indicates
how well the solution conserves energy, given by

ep :I_)%ﬂ_ 1, (6)

where P, , P,, and P,,, are the reflected, transmitted, and incident powers,
respectively. Second, the mean square error in the tangential electric

field is defined by
J[ 1@ -E)Faa
Ef-; — Aperture (7)

ff IE:inn) |2 dA
Aperture

and third, for the magnetic field,

L [[ e -mypraa | .

ff rH:inu) l2 dA
Aperture

where E“* and H** refer to the incident wave.

The smaller the quantities £, €z, and &5, the more closely the
boundary conditions are satisfied, at least in the mean square sense,
and the more accurate we shall consider the solution to be.

III. MATRIX FORMULATION OF THE BOUNDARY VALUE PROBLEM

The most convenient format for numerical solution of waveguide
discontinuity problems is a matrix representation, in which the modal
coefficients form the unknown column vectors and the discontinuity
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is characterized by a square matrix. We recognize that there is also
an analogous integral equation in terms of the aperture electric or
magnetic field. However, since the numerical solution of the integral
equation is generally carried out by reducing it to a matrix equation,
we shall proceed to the matrix formulation directly from the physical
characterization of the boundary value problem. This matrix equation
will then be solved by an iterative method, the theory of which is
discussed in Section IV.

It is assumed that in each of the waveguides, the electromagnetic
fields may be characterized by a denumerable set of known vector
eigenfunctions which may be ordered according to some index. We shall
be concerned only with the transverse fields,* denoted as follows:

*E(r) (p = 1,2, 3, ---) denotes the transverse electric field for the
pth TM mode in the + waveguide, with r as the position vector in
the transverse plane.

“H(r) = transverse magnetic field for the pth TM mode in the
+ waveguide.

*El'(r) = transverse electric field for the pth TE mode in the +

waveguide. ,
*H!’(r) = transverse magnetic field for the pth TE mode in the

+ waveguide.

By replacing the + by — we have the analogous notation for the
other waveguide. An important point concerning sign convention is
that the unknown modes in the — waveguide will all be taken to
propagate away from the discontinuity, i.e., in the —z direction.
Although the electric field does not change sign when the direction
of propagation is reversed, the magnetic field does, and this fact must
be carefully taken into account.

In order to define the amplitudes of the respective vector wave
functions, we adopt the following normalization,” written in terms of
integrals over the waveguide cross sections:

[ EcErad = w P ©
*4

[ EyErraa = o, (10)
4

in which &, is the respective characteristic wavenumber, and u is the
permeability, which in our case will be the permeability of vacuum,

* 1t is assumed that the individual waveguides can support pure TE and TM
modes, which is the case for applications of interest here.
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since both waveguides will be assumed empty.t By introducing the
Kronecker delta §,,, we have also expressed the fact that the trans-
verse fields in the individual waveguides are orthogonal.

Once the normalizations for the electric wave functions are defined,
those for the magnetic field are also specified since, for both the TE
and TM modes, the transverse electric and magnetic fields are uniquely
related. In particular, for a TM mode

*H, = i;‘% e. X *E/ (11)
p
and for a TE mode
‘HY = + hy e, X “E, (12)
wi

where e, is a unit vector in the z direction. Note again that the sign
convention is such that a field in the — waveguide is taken to be a
reflected wave, travelling away from the discontinuity. The magnetic
field normalization is thus given by

f “Hp-"Hi* dA = w'e b (13)
*4

f CHYCHKR A = | R b, (14)
*4

Both sets of transverse wave functions have the property of com-
pleteness, which is to say that any transverse electric (or magnetic)
field can be synthesized from a set of TE and TM vector wave functions,
provided that the directions of propagation of the normal modes are
known. For the problems to be considered here, this latter information
is available from physical considerations, since all modes propagate
away from the junction with the exception of the incident wave whose
amplitude is known. This amplitude will be taken to be that of a
normalized mode.

We now derive the appropriate matrix representation for the dis-
continuity problem. Assume a dominant (TE) mode wave (E{’, H{’)
is incident from the — guide, setting up a transverse electric ficld in
the aperture just to the left of the junction. This field, referred to as "E, ,
may be synthesized as follows:

) o

“E, = "B/ + Y. A, E. 4+ > "B, EY (152)

p=1 e=1

1 The asterisk (*) denotes the complex conjugate.
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with the modal coefficients 4, and “B, as yet undetermined. The
corresponding transverse electric field on the + side, denoted by “E,,
would then be given in terms of normal modes on the 4 side by

‘E, = Y. "A,'E, + 2 *B,'EJ. (15b)
p=1 q=1
Since the transverse electric field is continuous across the aperture,
we have that

‘E,="E, on C
‘E, =0 on D-C.

As shown in Fig. 2, D-C' represents the conducting wall which makes
up the remainder of the junction, and on which the transverse electric
field must vanish. Expanding (15a) in a Fourier series of modes in
the + waveguide, we find that the modal coeflicients are related by

1 o
>
by |*

+A‘p= +h | f EH +Er* dA +| "qu ‘E;_+E;* dA
c

+ 3 -B, jp “E/.*E'* dA  (16a)

72
| " P 2

+ _i/"—nﬁ 1k 1 - f*r_‘r 11k
B, = za | "EI'E; dA+w2#2qZ=:, A, | TEEy*dA

+ 33 2 B, [ TEYEytaA (16b)
c

a=1

or, more suceinctly, using partitioned matrix representations,

RN g][ij

1 1 -
539 5398 {
(A WM ;
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in which the vectors and submatrices are defined as follows:
F*A.} [*B,]
| |
‘= ‘A| ‘G =|*B,| (18)

Lo L

(3, = [ BB da
)

(19)
(5, = [ BBy da
¢
o1
nE 00 |
foyr = | 0 _;,a 0 - (20)
0 0

and g is the identity matrix. The matrix & whose {ranspose appears
in (17), is the matrix of coupling coefficients, defined as the scalar
products of electric transverse vector wave functions for the wave-
guides on each side of the discontinuity. The four index notation is
interpreted as:

8 [_' T - f “E! - “EI'* dA @1)
T c

]

with analogous definitions for other combinations.

The system of equations given in (17) is cle
since the number of unknowns is twice the numb
ever, an additional set can be derived by empl
condition that the transverse magnetic field m
across the interface. The matrix equation, an
corresponding to this second boundary condition, i

+, —]

: @L _ rOji_'_ (w”fzg e |i
Y {9 o " [+, —]

underdetermined

ous to (17), but
iven by

— 7
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in which
1
0
G = (23)
0
. -
[l arpE 00
| 1
D = ; 0 ?7h” iE 0 .- (24)
| 2
0 0
L . . '._

and the matrix 3¢, whose {ranspose appears in (22), is the matrix of
scalar products of magnetic transverse vector wave functions. The
four-index notation is interpreted in the same way as in (21).

It should be noted once again that all the matrices which appear
in (17) and (22) are infinite matrices, corresponding to the fact that
in general an infinite number of modes are excited in the neighborhood
of the discontinuity. In practice, of course, there must be a truncation
and the problem then becomes one of solving a set of matrix equations
whose order, N, depends on the accuracy required. Unfortunately
there is, as yet, no way in which the number of modes required to produce
a given accuracy gan be predicted. We can only emphasize the need
for meaningful erfor criteria which will act as a guide in choosing a
number of modes Jghich will be large enough to give sufficiently accurate
results but at thef@me time not be so large as to require excess com-
putation. It is exfiéted that the criteria given in Section II will prove
very useful in spect.

IV. MATRIX ITERABVE METHODS

8 previous section that the waveguide discontinuity
here can be formulated in terms of a system of
ions. This is a recurrent theme in mathematical
ensive theory concerned with the efficient solution
has evolved. In this section, we shall be concerned

It was shown i
problem of inte:
linear algebraic
physics, so that a
of matrix equatio
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with some of the elements of this theory, placing particular emphasis
on the solution of matrix equations by iteration.

The system of linear algebraic equations which results from satisfying
the aperture boundary conditions on the transverse electric and mag-
netic fields can be written in the matrix forms

o= U+ R (25)
“a =04+ 8%a, (26)
where
‘o = [ ‘1 , @7)
®

the vectors U and U and the matrices ® and 8§ being correspondingly
identified from (17) and (22). Equations (25) and (26) are ecasily un-
coupled to give

[4 —®RS] T = U+ RV (28)
[ — 8®]-"a = UV + SU (20)

both of which are seen to have the general form
Mz = y. (30)

In (30), « is an N-dimensional complex vector whose components
are the coefficients of the normal modes in the two waveguides, 9 is
an N X N complex matrix characterizing the discontinuity, and y is an
excitation vector due to the incident wave.

The obvious method of solving (30) is to compute the inverse of 91
and thus directly obtain

x =M 'y. (31)

However, we should recognize that it is the solution vector z which
is required, and that computing the inverse is not always the best equa-
tion solving technique. For example, because the modal coefficients
may decrease slowly with mode index, an accurate approximation of
the physical problem often requires that 9 be a very large matrix,
and inversion procedures for large complex matrices require considerable
computational effort. An alternate approach is therefore suggested,
namely the solution of (30) by a method of iteration.

In an iterative algorithm, we begin with an initial “guess” for the
solution and, from this, generate a supposedly improved solution,
repeating the process until successive iterations give results which
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Fig. 3—-H-5)Iane discontinuity in a rectangular waveguide. The incident mode
is a TE;, mode (electric field vertical).

agree to within some prescribed norm. The solution to which the
procedure converges must, of course, be independent of the initial as-
sumplion.

A tempting iterative procedure for the present problem is suggested
by writing (28) in the form

o= U+ RO+ RS a (32)
with an initial assumption
&' = a4+ @0. (33)

Physically this corresponds to first assuming the aperture electric
field to be that of the unperturbed incident wave, and calculating the

o
o
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o
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REAL PART OF *TE,, COEFFICIENT

0 2 4 6 a8 10 12 14 16 i8 20 22
NUMBER OF ITERATIONS

Fig. 4—Transmission coefficient of an H-plane discontinuity.
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TE and TM modal coefficients in the + waveguide on this basis. The
corresponding magnetic field is then determined on the + side of the
aperture and, with the aid of the appropriate continuity condition,
is used to find the magnetic field and subsequently an “improved”
electric field in the — region. This second guess for the aperture
electric field is then used to repeat the process, ete.

As a test, this algorithm was applied to analysis of an H-plane dis-
continuity in a rectangular waveguide, the incident wave being a
TE,; mode of normalized amplitude [see (14)] as in Fig. 3. The dimen-
sions were ka, = 4.5 and ka, = 3.5 where k is the free space wave-
number. With this choice of parameters, only the TE,, modes can
propagate in each guide. (This problem is discussed in further detail
in Section V.)

Fig. 4 shows the result of calculating the real part of the modal
coefficient for the TE,, mode in the larger waveguide, plotted as a
distribution of points giving the value at each iteration. The Fourier
series for this particular example was truncated after twenty five terms,
Aside from a small amplitude oscillation of less than one percent rms,
the results seem reasonable, especially in view of calculations for the
mean-square errors £ and &, which are illustrated in Fig. 5. These
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x ‘i\
Qo0.020 S
@
w
y \ \
%0016
3 \x/‘)\l
(] €

H

Zo.o12 \ - x —
:‘(J Q. S —
=

0.008 A

0.004 . — ]

|
‘e
0
0 2 a 6 8 10 12 14 I 18 20 22

NUMBER OF ITERATIONS

Fig. 5—Mean square errors in transverse electric and magnetic fields for an
H-plane discontinuity.
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Fig. 6—Oscillatory instability of a nonconvergent algorithm for the H-plane
discontinuity analysis.

decrease monotonically with succeeding iterations, &y approaching
approximately 0.001 and &z a value of about 0.012. The larger error
in the magnetic field can be attributed to the singular behavior in
H near the corner of the discontinuity. The asymptotic value of the
energy parameter ¢p is approximately 0.007.

The apparently accurate results obtained using this algorithm are
in fact quite deceptive, and may actually be attributed to the propitious
initial choice for the aperture electric field. It will be recalled that a
very important criterion for validity of an iterative procedure is that the
results be independent of the initial assumption. In order to determine
whether such a criterion is satisfied for this particular algorithm, the
TE,, modal coefficient for the larger waveguide was arbitrarily doubled
after the fourth iteration, which is equivalent to deliberately assuming a
poor initial choice for the aperture field. The effect, shown in Iig. 6,
indicates that the algorithm does not relax to the previous values, but
continues to oscillate with a large amplitude. Similarly large fluctua-
tions oceur in &z, €x, and &5, the conclusion being that this particular
precedure is not satisfactory, and can be expected to give reasonable
results only if the initial choice is a very good one. The reason for this
instability will become apparent after we consider those aspects of
matrix-iterative analysis which are relevant to these problems.

In the usual framework for iterative procedures, the matrix equation
satisfied by the unknown vector z is written in the form

Tz = Mz + f, (34)

where 91 and f are appropriate to the particular scheme being used.
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This leads very naturally to the recursive formula relating the m + 1
to the m iteration,

™ = g™ + . (35)
We denote the error vector at any iteration by ™, where
g™ = 2™ — g, (36)

and Z is the exact solution to (34). Then, by substituting (36) into (35),
we find that ¢™*" is related to €™ by

8(m+l) — f)nf,‘(m), (37)

Therefore, the error at the mth iteration is expressible in terms of the
initial error by

e = e, (37a)

For an absolutely converging solution we thus require that

{m

e™ 50 as m— o« (38)
regardless of the initial guess z‘”. This is equivalent to
M —0 as m— (39)

where the 0 in (38) and (39) denotes a null vector or matrix, respectively.
It can be shown® that an N X N complex matrix 91 is ‘“‘convergent’’, in
the sense of (39), if and only if all the eigenvalues X; of 9 magnitude
less than unity, i.e.,

[N | <1 all 4 (40)

We can easily see why this requirement will guarantee convergence,
at least for the special case where the eigenvectors a; of 91 span the
space of N-dimensional complex vectors. The initial error is then
expressible as

N
e = 3 Cuay, (41)
1=1

where the C; are constants. The error at the mth iteration then be-
comes, from (37),

i=1

N N
e™ = 3 Ca"a; = 2 O\ (42)

and, as m — o, each term in the sum approaches zero, provided,
of eourse, that (40) is satisfied.
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Equation (42) also reveals useful information concerning the speed
of convergence, which is seen to depend on how close the magnitudes
of the A; are to unity. Clearly if the largest eigenvalue is very near
one in magnitude, the convergence will be very slow and hence a large
number of iterations will be required. It would be logical, in the light
of this reasoning, to evaluate the magnitude of the largest eigenvalue
for the H-plane discontinuity problem discussed proviously. Unfor-
tunately, because of the geometrical asymmetry, the matrix 91 is not
Hermitian and so the usual computational techniques for determining
eigenvalues cannot be used. We can, however, find an upper bound
for the modulus of the maximum eigenvalue, p(91) = max {| \; [},
given by’

(M) = [p(om'om) . (43)

where T denotes the conjugate transpose matrix. Note that 9™ is
Hermitian, so that standard computer programs can be used to evaluate
its eigenvalues. We find for the previous H-plane problem that | A, | = 1.16
which, although, not conclusive, shows the possibility of such an os-
cillatory instability.

One technique which is suggested as a means of obtaining a con-
vergent algorithm is called the “Richardson” or “‘point-Jacobi’” method.*
In this approach, the matrix 9 is first partitioned as

M=D+ £+ U, (44)

where © is a diagonal matrix containing the diagonal terms of 91, £
is a strictly lower triangular matrix and U is a strietly upper triangular
matrix. The system (34) is then written as

(9 — Dz =(L+ Wz + f (45)
from which
z=(9— DL+ Wz + (s — DS
= Myzx + fr, (46)

(46) being the matrix representation of the ‘“Richardson” or ‘‘point-
Jacobi” method.

A modification of this procedure is referred to as the ‘“Gauss-Seidel”
or “point-single-step” iteration method.® Note that in solving (46) by
iteration, the components of 2'™*" are all computed from the com-
ponents of z'™. Intuitively, it would seem more attractive to use the
latest estimates of x, i.e., in computing z{"*"’ we should use, wherever
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they appear, the components x;""" (k < j) already computed, and
in this way utilize the most accurate information available. This pro-
cedure is, in fact, easier to implement in a computer program and,
in addition to requiring less storage, often has better convergence
properties than Richardson’s method. It may be shown that the matrix
representation, analogous to (46), for the “Gauss-Seidel” method is
ro= Mg + ff; (47)
M = (9 — D — L) 'u (48)
fo=(—D—207
D, £, and U having been defined previously.

The eigenvalue condition given in (40) is, of course, a very restrictive
one, so that iteration procedures cannot be applied with success to
every system of equations. However, when a convergent matrix I
can be found, the methods which have been discussed offer several
distinet advantages over a straightforward matrix inversion. For ex-
ample, if the order of the system is N, then it can be shown that each
iteration requires approximately N* multiply-add operations.* On the
other hand, an inversion requires at least N° multiply-adds, so that
the relative saving is the ratio of the order N to the number of itera-
tions required. It is often the case that the maximum eigenvalue is so
small that the number of iterations required for an accuracy equivalent
to that obtained by inversion is considerably less than N.

Iterative methods also have the property that the solution accuracy
is “adjustable”, in the sense that once the solution has converged to
the point where some norm, e.g., €z or &4 defined previously, is less
than a specified tolerance, the iteration process can be terminated.
This property is especially attractive in view of the fact that truncation
errors have already been introduced, and it would therefore be super-
fluous to accurately invert a system which is itself approximate. By
having the option of terminating the iterative procedure, we introduce
an additional degree of freedom by which we can optimize the computa-
tional program.

V. APPLICATIONS

The iterative techniques discussed in the previous section will now
be applied to two problems of interest, namely the H-plane discontinuity

* A multiply-add consists of the multiplication of two complex numbers and the
adding of the result to a third com{)lex number. For repetitive computational
algor:ithll'ns, the number of multiply-adds is a measure of the computational effort
required.
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problem mentioned in Section IV and the analysis of TE,, — TM,,
mode conversion at a step discontinuity in a circular waveguide. In
both of these examples the required matrix elements may be expressed
in convenient closed forms, which considerably reduces the required
computational effort.

5.1 H-plane Discontinuity in a Rectangular Guide

In Section IV, the H-plane discontinuity of Fig. 3 was analyzed
using an iterative algorithm which was observed to exhibit an oscillatory
instability when initiated with a poor approximation to the actual
solution. Tt was concluded that this was due to the eigenvalues of the
iteration matrix 9 being close to, or perhaps greater than unity. We
now consider the same problem using the Gauss-Seidel method which,
on the basis of the previous discussion, is expected to improve matters
substantially.

We assume a normalized TE,, mode incident from the smaller guide.
Because of the symmetry of the junction, such a wave excites only
TE modes in both the + and — regions. The problem is, of course,
to determine the corresponding modal coefficients for the fields on
each side of the discontinuity. We shall present results only for the
transmitted TE,, mode, which is the only mode propagating in the
larger waveguide for the present dimensions, ka, = 3.5, ka, = 4.5.

It can be shown® that the normalized vector wave functions are
given by

- Twg . | prm
E) = e, sin [— x4+ a ]
VvV 2a,b a, (@ + @)

‘El = e, Wi gin I:p_rr_ (@ + az):l ,
’ Vv 2a,b 2a,

where a, , a,, and b are the dimensions of the guide as shown and e, is

a unit vector in the y direction. The corresponding magnetic vector

wave functions can be found from (12). The respective propagation

constants are

(49)

- [ (5]
- [~ )]

From (21) and (49) we find that the coupling coefficients for the electric
fields are given by
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Eo {_ ' +} = 2y’ 5111 BT i 4T ry Jm-l— sin (H + @ q 7_")

I 2 = a, 2 as 2
) 1}9# + a
+ ————sin (12E p” )1 (51)

- J

The appropriate magnetic field coupling coefficients are easily found
from (51) using the relation

+, — 1 i
3o = — 3577 =577% € ’ , 5H2
(i” rr ] Z:” Z;'* [I! IIJ (J )
where Z, denotes the modal impedance, equal to
2z = 2. (53)

h.”

The results for the TE,, modal coefficient, *B,, as obtained using
the Gauss-Seidel iteration method, are conveniently represented in
Table I. Also given are the numerical values for the error parameters
ep, €p and &y . Truncation for this example was at 25 modes in each
waveguide.

We conclude that for most applications, two iterations would probably
have been sufficient, corresponding to a saving of greater than 90 percent
in actual execution time, compared to a matrix inversion. The reason
for this extremely rapid convergence is, as expected, in the magnitude
of the largest eigenvalue, which was found, using (43), to be less than
0.078.

As a means of establishing the convergence of the normal mode
solution, we have plotted in Figs. 7 and 8, the mean square errors
ep and &y , respectively, as a function of the number of modes taken.

TasLE I — REsurTs UsiNG THE GAUSS-SEIDEL METHOD FOR ANALYSIS
oF THE H-PLANE DiscoNTINUITY

I T8 Energy
Iteration | coefficient TS error TMs error
number | Real Imaginary €p €p €y
1 0.97445 0.00951 —0.62 X10* 0.5X1078 0.01445
2 0.97747 0.00455 —0.74X107% | 0.49X1076 0.01355
3 0.97747 0.00426 0.85X107% | 0.49X1075 0.01350
4 0.97747 0.00424 0.71X107% | 0.49X1075 0.01349
5 0.97747 0.00424 0.51X1077 | 0.49X1075 0.01349
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Fig. 7—Mean square error &g, as function of the number of modes used, for
H-plane discontinuity.

These figures give genuine significance to the term ‘“‘convergence in
mean square’”’, since they indicate that the use of more terms leads
to better agreement with the boundary conditions in the mean square
sense. Again, the error is uniformly higher for the magnetic field than
for the electric field, due to the singularity at the corner of the dis-
continuity.

It is finally of interest to determine the effect of a poor initial estimate
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Fig. 8 —Mean square error & as function of the number of modes used, for
H-plane discontinuity.
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TABLE II —RESULTS OF SPOILING ELECTRIC FIELD AT 4TH ITERATION

TEs coefficient

Iteration

number Real Imaginary
3 0.97747 0.00426
4 1.94165 0.02572
5 0.98052 —0.00063
6 0.97747 0.00396
7 0.97746 0.00423

of the solution. We find that, unlike the simple algorithm discussed
in the previous section, the Gauss-Seidel procedure is very stable,
returning to the correct “steady state’ solution within a few iterations
after the spoiling was introduced. The results are shown in Table II,
again for a trunecation of 25 modes in each waveguide.

5.2 Mode Conversion at a Step Discontinuity in a Circular Waveguide

The second problem to which these techniques were applied is that
of calculating the TE,, — TM,, mode conversion at an abrupt dis-
continuity in a circular waveguide. Recent studies have indicated that
this configuration is a very efficient transducer for use in dual mode
conical horns." The discontinuity is illustrated in Fig. 9 which shows
the TE,, mode, incident from the smaller guide, being converted to
a combination of TE,, and TM,, modes propagating in the larger guide.

The normalized TE and TM vector wave functions are known''
and, fortunately, it is possible to determine the appropriate coupling
coefficients. I'or the elements of the matrix we find ithat

Fig. 9—TE,, — TM,, mode conversion at a discontinuity in a circular waveguide.
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2 ~h! *h;*.-qul(x,, 9)
8.“.{ : +} - b (54)
’ , ’ (? -7«':2: — xz)Jg(ﬁq)
2w2,u2by2y I:J (a y ) b J (a y )]
- 1 Ypla o\7 Yo — —J1\7 Ya
bl | =7 e ¢
ol (B - ) VaE- D6 D
el
Spu ' = " (112 (56)
L, qug(ﬂ’;q) (yp - 1)
o [_' +] = 0. (57)

In (59) through (62) we have used the following notation:

a — radius of smaller waveguide,
b — radius of larger waveguide,
z, — pth zero of J,(z),

y, — pth zero of J{(y).

The elements of the matrix 3 can easily be found from the impedance
relations of (11) and (12).

One parameter which has been found to be useful in characterizing
the mode conversion properties of the discontinuity is the conversion
coefficient C, defined as the ratio of the p-components of electric field
for the two modes evaluated at the wall of the larger waveguide, i.e.,
TM

dB. (58)

p=b

C = 20 log,,

—r
TE

i

This quantity was calculated for the particular discontinuity a = 1.05",
b = 1.4" over the frequency range 5.2 to 7.0 kHz, these parameters
having been chosen for purposes of comparison with available experi-
mental data. Truncation of the normal mode expansion was made
after twenty-five TE and twenty-five TM modes in each waveguide.
The iterative sequence was terminated when successive values of the
modal amplitudes differed by less than 107°. It was found that typical
values for the error criteria are e &~ 1077, and &z, ey &~ 0.015. These
results indicate that for a given accuracy, a much lower value can be
expected for &p , which is a function only of the lower-order modes,
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Fig. 10—TE; — TMu conversmn coefficient of a step discontinuity in a circular
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than for ¢; and &5, which depend on the higher-order terms as well.

In Fig. 10 we have plotted the computed values of the conversion
coefficient, defined in (58), as a function of frequency. Also shown,
as discrete points, are experimental results obtained previously.'’ The
theoretical values are seen to be in very good agreement.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have considered the solution of those matrix equa-
tions which arise in the analysis of a class of waveguide discontinuity
problems. In searching for criteria to estimate the accuracy of computed
results, we have found that the uniqueness theorem itself yields a
convenient set of error parameters which are easily implemented in
the computational program.

It is suggested that an iterative technique, particularly the “Gauss-
Seidel” or ‘“point-single-step”” method often leads to a rapidly con-
verging solution, thus offering several advantages over the usual inver-
tive procedures, particularly in the speed of execution. Of particular
interest is the fact that when this method is applied to the analysis
of TE,, — TM,, mode conversion at an abrupt discontinuity in a
circular waveguide, it yields a rapidly convergent and accurate solution.
This has been established not only on the basis of theoretical error
criteria, but also by comparison with experimental results previously
obtained.
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