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This paper is concerned with the axvis-crossings of the resultant phase
—m £ 0(t,a) £ 7 of a sinusoidal signal of amplitude \/2a and frequency {,
plus Gaussian noise of unil variance having a narrow-band power spectral
density which is symmetrical about f, . The discontinuous phase process
6(t,a) is present at the output of the IF amplifier of a radio or radar receiver
during the receplion of a sinusoidal signal immersed in Gaussian noise.
Also, the phase process 6(1,a) is basic in Rice’s recent analysis of noise
in FM receivers. The following theoretical results are presented concerning
the axis-crossings (level-crossings) of 6(t,a) at an arbitrary level 6:

(7) The average number of upward (or downward) axis-crossings per
second.

(i2) The condilional probability thal an upward axis-crossing occurs
between t 4 v and t + v + dr given a downward axis-crossing at i.

(727) The conditional probability that a downward axis-crossing occurs
between t + r and t + 7 + dr given an upward axvis-crossing at t.

(@) The conditional probability that an upward axis-crossing occurs
between t + 7 and t + 7 + dr given an upward axis-crossing at i.

(v) The variance of the number of axis-crossings observed in a lime 7.

The theoretical probability functions are presented in graphs as a continuous
function of 7 for various values of 8 and "'’ for the case when the Gaussian
notse has a Gaussian power spectral densily.

I. INTRODUCTION

Consider the stationary random process I(t,a) consisting of a sinusoidal
signal of amplitude v/2a¢ and frequency f, plus Gaussian noise Iy(f),
of unit variance, having a narrow-band power spectral density W,(f — f,)
which is symmetric about f, . Rice’s' graphical representation of I(¢,a)
is illustrated in Fig. 1 in order to define the Rayleigh envelope process
R(t,a) and the resultant phase —= = 6(t,a) £ = The purpose of this
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Fig. 1 — Graphical representation of I(t,a) = V2a cos 2rft + In(t) = R(4,a)
cos [2nfot + 6(f,a)]. The point P wanders around, as time goes by, in the plane of
the figure and generates the phase process 6(f,a).

paper is to present some theoretical results concerning the axis-crossing
points of the stationary, discontinuous phase process 8(t,a). In the
literature, these same points are also called level-crossings. The axis-
crossing points and the axis-crossing intervals of 8(t,a) are defined
in Fig. 2. The axis-crossing points and the axis-crossing intervals of
R(t,a) are defined in a similar manner and were discussed by Rice’
and Rainal.®** The Rayleigh process R(t,a) and the phase process
6(t,a) are present at the output of the IF amplifier of a typical radio
or radar receiver during the reception of a sinusoidal signal immersed
in Gaussian noise. Also, the phase process 8(f,a) is basic in Rice’s’
recent analysis of noise in I'M receivers.

Using a notation consistent with Refs. 3 and 6, we shall present
the following theoretical results, in terms of well-known tabulated
functions, concerning the axis-crossings of 6(t,a) at an arbitrary level ¢
and arbitrary signal-to-noise power ratio “a’’:

(i) Ny, the average number of upward (or downward) axis-crossings
per second.

(%) Q;(r,0,a) dr, the conditional probability that an upward axis-
crossing occurs between { + 7 and ¢ 4+ 7 + dr given a downward axis-
crossing at £.

(#3) Q*(r,0,a) dr, the conditional probability that a downward
axis-crossing occurs between ¢ + 7 and t + 7 + dr given an upward
axis-crossing at {.

() [Ui(r,0,a) — @Qi(r,0,@)] dr, the conditional probability that
an upward axis-crossing occurs between { + 7 and ¢ + 7 + dr given
an upward axis-crossing at f.

II. AVERAGE NUMBER OF AXIS-CROSSINGS PER SECOND

N, , the average number of upward axis-crossings per second of the
level 8 by the phase process 6(t,a), follows directly from some results
due to Rice. Rice' showed that
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N, = f ik [ v oP(R,00), (1)
1] 0
where
, R? i R*  (¢'R) Q*
P(R,0,0") = o Q—TB exp [—? ~ 38 + QR cos § — 5

Q= V2
4 f WA = 10— 1) df

i

B

—nr =0 =

W.(f — f») = one-sided narrow-band power spectral density of Iy(f).
Performing the integrations we find that

N, = %}rﬂ- exp [—asin® 8]®(Q cos 6), 2)

where

dx) = \/12_“’]; e dy.

Equation (2) was also derived by Tikhonov’.

Since 8 = 0 is a level of symmetry we have that N, = N_,. Also,
the average number of downward axis-crossings per second is given
by the right-hand side of (1) with the upper limit of integration of 6
set to —o. Thus, the average number of downward axis-crossings
per second is also equal to N, .

Ti ARE AXIS-CROSSING INTERVALS
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Fig. 2 —The level 6 defines the axis-crossing points and the axis-crossing in-
tervals of the discontinuous phase process 6(¢,a).
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When the level 8 = 4 and “a’’ is large, 2N, represents the average
number of clicks observed in a time 7 at the output of an ideal FM
receiver”® during the reception of a unmodulated carrier in the presence
of receiver noise. The variance of the number of clicks observed in a
time 7 is discussed in Section IV.

III. CONDITIONAL PROBABILITY FUNCTIONS

The reader should refer to Rice® for the definition of all notation
which is not defined in this paper. For the phase process 6(f,a), the
conditional probability @7(r,8,a) dr, the conditional probability that an
upward axis-crossing of the level 8 occurs between ¢ + 7 and ¢ + = + dr
given a downward axis-crossing of the level 8 at ¢, is given by an equation
analogous to Rice’s’ equation (86):

Qi(r,0,0) dr = —dr N;‘f dR;f aR; | dR.f dR,
-0 —-= <0 0
(3)

o g
[ aer [ e otopr,  RE 0, 6 Ra R: 0, 60,
- Jo

where
p(R, R}, 0,00 ,R:,R:, 6, 63)
= iflis L M, [R; + R; 2 R 20?
B (QW)W exp oM ulBy + B: — 2Q(R, + ») cos 6 + 2Q°]

+ 2M ,[R.R] — R,R: — Q(R; — R}) cos 6 + Q(R,6; — R,6;)sin 6]
+ 2M [R.R; — R.R, — Q(R}; — RY) cos 6 + Q(R.0; — R,6;)sin 6]
+ 2M[R\R: — QR, + R,) cos 6 + Q]

+ Mu[R* + R + RI61° + R30,"] + 2Mu[RIR; + R\R.6] fz]]}-

The M’s are given in Rice’s’ Appendix I with
m(@) = [ Wi = fi) cos 2x(f — fo)r d. @
0
By performing the integrations with respect to R{ and I} we find that

Qi(r,6,0) = —N;' f " iR, f " R,
’ ’ (5)

0 -]
f de;f a6, 000p(R, , 6, 6 , R. , 6, 62,
—0 0
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where
RiR;
R,,0,0, ,R,, 0 0)) = — L2
Pl 0, 00, Bes 0,00 = o VAT, — T8

1 2
-exp {—W [Mn(R‘.’ﬂi" + R304°) + 2M,,R,R.06.6;

+ 2Q sin 8[M,, — M ][R, 6] — Rzeg]]}-exp (—Gy/2M)
and

G, = {Mn(Rz; + Rg) + 2M,R\R,

4+ 2Q(Q — R, cos § — R, cos 0)(M,, + M,,)
+ (—_ﬂf?zﬂfﬂ _ ]‘ffsﬂfm + 2M12M13]‘123)
(M3, — M3,)
[(R, — Q cos 6)° + (R, — Q cos 6)°]

+ (_34122]14—23 —_ ﬂ{faMzs + Zﬂfm]‘{mﬂ’[m)
(M3 — M3s)

[2(R, — @ cos )(R. — @ cos 6‘)]}.

By introducing the variables z, ¥, in place of 8] , 8} with the following
transformation

t 1., — M .
, M, ]5 [Mm - M.a] :
REB'.! - [l _ ”22 Yy + Q .1[-_._: _ ‘_11?3 sin 8! (7)
we find that
 N;'M,,

Q_,(T,a,ﬂ) = (2“_)2(1 — ?il§j§ J(rl 3 hl)

@ sin® o0, — ;11,3)2} y ” _
exp{ i T fo dR, fo dR, exp (—G,/2M),

(8)

where
1

ARV
& — v

[ f dy (@ — W)y — hy)e*
hy hy
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_ 4y = 2ray

201 — )
_ M,
T M.,
M- Mla:H:l - nﬁ]* :
b= QliMrzz — My M,, s 6.

Finally, by introducing the new variables ., 1, in place of R,, R,
with the following transformation

R, =2+ Q cos 8 9)
R, =y, + Q cos 0, (10)
we find, after some simplifications using Jacobi’s® theorem, that
Ql(fseaa) (1])
— —3 —2a Si.ﬂ2 f
— (@ 1 _ 29-1 34 ) —<«asim ¢
[2xN,] 71 m*] Moo (v, hy) exp[ L+ m :|K(m, ha),
where
1 o0 -]
K(m, h —————f dx dy, e*°
( 0) 21:'\/1——_1%‘2 . 0 . o
- ﬁxﬁ + yg — 2mxoYn
° 21 — m?)
hy = —@Q cos 8

m’ 1—m2|t .
h, = —Q|:1 T m][ ., } sin 0.

The conditional probability @*(r,6,a) dr, the conditional probability
that a downward axis-crossing of the level 6 occurs between ¢ + 7
and ¢t + r + dr given an upward axis-crossing at ¢, is obtained from (3)
by changing the signs of the «’s in the limits of integration of 6] and 6; .
We find that Q%(r,8,a) is equal to the right-hand side of (11) with &,
replaced by —h, . This latter result also follows from the symmetry
relation Q% (r,6,a) = Q71(r,—0,a).

The conditional probability [U,(r,0,a) — @.(r,0,a)] dr, the conditional
probability that an upward axis-crossing occurs between ¢{ + 7 and
t + r + dr given an upward axis-crossing at ¢, is obtained from (3)
by changing the lower limit of integration of 8] to +o. We find that
U,(r,0,a) — Q,(r,6,a) is equal to the right-hand side of (11) with the
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function J(r, , h,) replaced by the function J,(r,, h,), where

1 —o0 -] .
Jiry , hy) = %—l—mﬁ drﬂfh dy (x — h)(y — hy)e’. (12)

The conditional probability that a downward axis-crossing occurs
between ¢ + 7 and ¢ + 7 + dr given a downward axis-crossing at ¢
is obtained from (3) by changing the upper limit of integration of
0, to — . The result is that this conditional probability function is
equal to the conditional probability function U,(r,6,a) — Q.(r,6,a) as
one would expect from symmetry.

The functions J(r,, h,), K(m,h,), and J,(r,, h,) are expressed in
terms of Karl Pearson’s '°''"*** tabulated function (d/N) in Refs. 2 and 3.
Thus, the conditional probability functions Q7(r,0,a), Q% (r,8,a), and
U(r,0,a) — Q,(r,8,a) are expressed in terms of well-known tabulated
functions.

Since # = 0is a level of symmetry, we need only discuss the conditional
probabilities when @ is restricted to the interval 0 < 8 < . The
corresponding results when 8 is in the remaining interval —m < 8 < 0
can be deduced from the following symmetry conditions:

Q_I(Tygra’) = Q-‘i(“r,—ﬂ,ﬂ) (18)
[]l(TJBla) - QI(T)GJG') = ITI(T,*G,(T/) - QL(T,—B,(I). (14)

IV. VARIANCE OF THE NUMBER OF AXIS-CROSSINGS IN A TIME 7

ik »”

For an arbitrary level # and arbitrary signal-to-noise ratio “‘a,
let N(r,6,a) denote the number of axis-crossings observed in a time 7.
Then, we have that

EN(r,8,a) = 2N,r (15)
and
Var N(r,8,a) = EN°(r,8,a) — [2N,], (16)
where
FE = Expectation
Var = Variance.
Using McFadden’s'® general result, also see Rice’s derivation in

Bendat,' we have that

EN*(r,0,a) = 2N, + 4N, fr (r — 2)U,(z,0,a) dx. (17)
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In this latter equation, U,(r,0,a) dr denotes the conditional probability
that an axis-crossing occurs between { + = and ¢ + 7 + dr given an
axis-crossing at time ¢. Since the joint probability that an axis-crossing
oceurs between ¢ + r and ¢ + r 4+ dr and an axis-crossing occurs between
t and ¢ + dt can be expressed as

2N,U,(r,0,a) dt dr = 2N,[U,(r,0,a) — Q,(r,0,a)] dt dr
+ N.Qi(r,8,a) dt dr + N,Q(r,0,a) dt dr,

(18)

we have that
UI(T,H,(]:) = [Ul(freya') - Ql(flgsa)] + %Q:(Tlgla) + %Q_!(T)8$a)' (19)
Thus, Var N(r,0,a) can be computed by using (16), (2), (17), and (19)

Var N(r,6,0) = 2Nor + 4N, f "(r — DU, 0,0) dx — [2No7]® (20)

2N,r{1 + 2 fr l:l — %][U](:L',ﬁ,a) — 2N,] dt} (21)
For large , (21) becomes
Var N(r,6,0) = 2N,-:{1 42 f " [U(,0,0) — 2] dm}. (22)

When twice the value of the integral in (22) is small compared with
unity we have that

Var N(7,6,a) = 2N,7. (23)

This is the relation one would expect if the axis-crossing points represent
a poisson point process for which U,(r,0,a) = 2N, for all .

Rice® assumed a poisson point process for the case § = = and “a”
large in order to use (23) in his analysis of noise in FM receivers. Indeed,
for the case of a Gaussian autocorrelation function (22) serves to justify
Rice’s use of (23) for large 7, # = =, and a = 4. For this case, with
@ = 4, numerical integration showed that the value of the integral
in (22) is approximately 0.05.

Notice that (22) not only applies to the point process defined by
68(t,a) but also applies to more general stationary point processes.

Incidentally, the probability function U,(r,6,a) can also be used to
compute, approximately, the probability density p.(r,8,a) of the axis-
crossing intervals z; by using the following basic integral equation of
renewsal theory:

po(7,0,0) = U,(r,0,a) — po(7,0,a) * U,(r,0,0). (24)
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The symbol * denotes the convolution operation, that is,
fra=[ 1 —pa. (25)

Equation (24) is based on the assumption that a given axis-crossing
interval is statistically independent of the sum of the previous (m + 1)
axis-crossing intervals for all non-negative integral m. A theorem in
Paragraph 5.2 shows that the assumption is false when m = 0. Thus,
(24) can only yield approximate results.

The exact probability density of the axis-crossing intervals z; is at
present unknown. However, the first moment of this probability density
is equal to [2N,]7".

V. SOME SPECIAL CASES AND A THEOREM

In this section we shall state some special cases of the conditional
probability functions. We shall also present a theorem concerning the
dependence of two successive axis-crossing intervals,

5.1 Large v and Fixed 8, a

As 7 becomes large we find that Q7(r,6,a), Q7(r,8,a), and U,(r,6,a) —
Q,(r,0,a) approach the value N, as one would expect.
5.2 Small  and Fized 6, a

By expanding m(r) as

m(r) =1 —grg +

bor'
4!

by | 7° |
5!

by |7 |

ST

+ o, 26

we find that as r — 0 from the right with b; = 0

Qi(r00) ~ QiCr 0.0 — 2 [ 3VE + 21 (27)
Ui(r,8,0) — Qu(r,6,a) — ?é_z; [3—\/132?;”} (28)

Equation (28) suggests that wiggles having infinite rapidity and infini-
tesimal amplitude are associated with the phase process 6(t,a) when
by = 0or W, (f — fo) = O(f ") as f — .

We also find that for small = with b, = 0:

b! - Bz
44

Q\(r,0,a) = J(1,hy)7 exp [—g (7@ sin B)g:l (29)
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Qi(r.0,a) = Eu_;gﬁ J(1,—h)T exp [—g (7@ sin 0)2:| (30)

Uy(r,8,a) — Q\(r,0,a) = 1)4;9,82 Ji(r, b)) oexp [—g (7@ sin 9)2:|, (31)

where

. pQ sin 6
' \/bJ - 52

It is interesting to compare the above results with the corresponding
results at the level I of a Gaussian process I({) having the normalized
autocorrelation function m(r). That is, compare the above results
with Rice’s’ equation (63) or Rainal’s’ equations (44), (52), (53), and
(54) when I = @ sin 8. The results are identical.

Thus, a theorem® concerning the dependence of two successive axis-
crossing intervals of the Gaussian process I(t) also applies to the phase
process 0(t,a). That is, if 8(t,@) is a phase process, defined in paragraph
one, having a finite expected number of axis-crossing points per unit
time at any level 8, then two successive axis-crossing intervals at that
level 6 are statistically dependent.

The theorem implies that successive axis-crossing points do not
form a Markov or Poisson point process.

h

5.3 Q% (r,0,a) for small 7, b, = 0, and large Q sin 6

For small = and large @ sin 6 with b, = 0 or W,(f — fo) # O(f")
as f — o, we find from (30) that

Q(r,0,0) = gr(Q sin 6)° exp [—g (+Q sin a)*]. (32)

Thus, Q*(r,0,a) is approximated by a Rayleigh probability density
identical to Rice’s’ equation (65) when I = @) sin 6.

5.4 a = 0 and arbitrary 6, r
When a = 0 we find that

Q_I(Tr0|0) = QT(TerO)

28741 — m*] ¢ 5121;—2 [ — cos' 1) (33)

+ V1 = e — cos™' m]
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UI(T',G,O) - Q](T!BIO) ‘)ﬁ %“ — m ]“* (.n) )2 TI cosil Tl
(34)
+ V1 = ri]fr — cos™" m],
where
O0<cos'r, =nx
0<cos'mZm.

Thus, when a = 0 the conditional probabilities are independent of
the level # as one would expect.

5.5 Large a, 8 = 0, and arbitrary r

When “‘a” is large and 8 = 0 we find that

Q3(7,0,0) = Qi(r,0,a) (35)

= L= ) E [ — cosT ) + VI = 1]
Ur(r0,0) — Qi(7,0,0) 6
=gl —m T_' L ll AL V1=

i ’P

Thus, when is large and 6 = 0, the conditional probabilities are
independent of “a.

Again, it is mteresting to compare the above results with the corre-
sponding results at the level / = 0 of a Gaussian process I(t) having
the normalized autocorrelation function m(r). That is compare the
above results with Rice’s® equations (62) and (85a). The results are
identical. One would expect identical results from Rice’s' equation (3.6).

5.6 0 = 7 and arbitrary a, 7

When ¢ = = we find that
Q\(rma) = Q\(rm.a)
B0~ m) e~ Q1" 22 [ — cos”' 1,

+ V1 = K(m,Q  (37)
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UI(T:T"![") - (l)l(.rl"r!”_’
— [ — m e~ L2 [y o8 r+ VI HIK(mQ). (38)

VvI. RESULTS FOR A GAUSSIAN AUTOCORRELATION FUNCTION

For purposes of computation we shall take Wy(f — fo) and m(r) as
follows:

Wﬂ—m=a&%m{j;ﬁq (39)
and
m(r) = exp [ﬁ‘;ﬂ—ﬂ—:l (40)

This particular selection was also made by Rice® and Rainal* in their
study of the duration of fades associated with the Rayleigh process
R(t,a).

From (40) we see that it is convenient to define normalized time as
u, = 2xa,r. All our results are plotted with respect to normalized time
w, . The units of N, are now ‘‘crossings per unit of normalized time.”

Figs. 3 through 11 present the resulting conditional probability
functions for various values of the level # and for various values of
signal-to-noise power ratio “a”’. For large values of u all of the
conditional probability functions approach the value of N, in accordance
with Paragraph 5.1.

Figs. 9 and 11 compare Q*(r,0,a) for # = /2 and a = 4, 10 with a
corresponding Rayleigh density in accordance with (32). Thus, we
conclude that the Rayleigh probability density is a good approximation
when 7 is small and @ sin 8 = v/2a sin 6 = 24/2.

Fig. 7 compares well with Figs. 2 and 3 of Ref. 6. Thus, we conclude
that (35) and (36) are good approximations when a = 4.

VII. CONCLUSIONS

The theoretical probability functions Q3(r,6,a), Qi(r,6,a), and
U,(r,6,a) — Q(7,0,a) are expressible in terms of well-known tabulated
functions. These results can be used to compute Var N(r,0,a), the
variance of the number of axis-crossing points observed in a time 7.
These results can also be used to compute, approximately, the prob-
ability density of axis-crossing intervals z; via renewal theory. The
exact probability density is at present unknown.
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Fig. 8 —Plots of the probability function @,~(us, 8, a) associated with the axis-
crossing points defined by the level 8 of 6(¢,a). 6(t,a) denotes the resultant phase of
a sinusoidal signal plus narrow-band Gaussian noise having autocorrelation function
m(7). “a’ denotes the signal-to-noise power ratio.
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Fig. 9 —Plots of the probability function Qi*{us, 8, ) associated with the axis-
crossing points defined by the level 8 of 8(¢,a). 6(f,a) denotes the resultant phase of
a sinusoidal signal plus narrow-band (Gaussian noise having autocorrelation function

m(r). “a” denotes the signal-to-noise power ratio.
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Fig. 10 —Plots of the probability function Ui(us, 6, a) — @i(us, 6, a) associated
with the axis-crossing points defined by the level 8 of 6(t,a). 6(f,a) denotes the
resultant phase of a sinusoidal signal plus narrow-band Gaussian noise having
autocorrelation function m(r). “a’’ denotes the signal-to-noise power ratio.
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Fig. 11 —Plots of the probability function @,*(us, 6, a) associated with the axis-
crossing points defined by the level 8 of 8(f,a). 6(¢,a) denotes the resultant phase of
a sinusoidal signal plus narrow-band Gaussian noise having autocorrelation function
m(r). “a”’ denotes the signal-to-noise power ratio.

Because the level 6 = 0 is a level of symmetry, resultsfor0 < § < =
imply results for —7 < ¢ < 0.

When W,(f — f,) = O(f *) as f — «, wiggles having infinite rapidity
and infinitesimal amplitude are associated with the phase process 8(t,a).

When 8 = 0 with the signal-to-noise power ratio @ = 4, the con-
ditional probability functions associated with the phase process 8(t,a)
are equal, approximately, to the corresponding results for a certain
Gaussian process.

When W,(f — fo) % O(f™*) as f — =, and @ sin 6 is large, Q%(r,6,a)
for small 7 is approximated by a Rayleigh probability density.

When 8 = 7 and ¢ = 4, Var N(r,6,a) for large r is equal, approxi-
mately, to 2N,7, the variance resulting from a poisson point process.

When N, is finite, two successive axis-crossing intervals of 6(t,a)
are statistically dependent. Thus, the axis-crossing points do not
represent exactly a Markov point process or a poisson point process.

VIII. ACKNOWLEDGMENT

It gives me great pleasure to acknowledge stimulating discussions
with S. O. Rice. I am also indebted to R. T. Piotrowski for programming
the digital computer.



754 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1967

REFERENCES

10.

11.

12.
13.
14.

. Rice, 8. 0., Statistical Properties of a Sine Wave Plus Random Noise, BS.T.J,

27, January, 1948, pp. 109-157.

. Rice, S. 0., Distribution of the Duration of Fades in Radio Transmission,

BS.T.J., 37, May, 1958, pp. 581-635.

. Rainal, A. J., Axis-Crossing Intervals of Rayleigh Processes, BS.T.J., 44, July-

August, 1965, pp. 1219-1224,

. Rainal, A. J., Duration of Fades Associated with Radar Clutter, B.S.T.J., 44,

Qctober, 1966, pp. 1285-1298.

. Rice, 8. 0., Noise in FM Receivers, in Time Series Analysis, M. Rosenblatt,

Editor, John Wiley and Sons, Inc., New York, N. Y., 1963, Chapter 25, pp.
395-422.

. Rainal, A. J., Zero Crossing Intervals of Envelopes of Gaussian Processes,

Technical Report, No. AF-110, DDC No. AD-601-231, The Johns Hopkins
University, Carlyle Barton Laboratory, Baltimore, Maryland, June, 1964.
Abstracted in IEEE Trans. Inform. Theor., I7-11, January, 1965, p. 159.

. Tikhonov, V. I, Mean Number of Frequency and Phase Surges, Radio Eng.

Elec. Phys., No. 6, June, 1962, p. 888, Equation 23.

. Blachman, N. M., FM Reception and the Zeros of Narrowband Gaussian

Noise, IEEE Trans. Inform. Theor., IT-10, July, 1964, pp. 235-241.

. Aitken, A. C., Determinants and Matrices, Interscience Publishers, Inc., New

York, N. Y., 1958, p. 97.

Pearson, Karl, ed., Tables for Statisticians and Biometricians, Cambridge Uni-
versity Press, 1931, Part IT, Table VIII, Vols. of Normal Bivariate Surface,
pp. 78-109.

National Bureau of Standards (1959), Tables of the Bivariate Normal Dis-
tribution Function and Related Functions, Applied Math. Series 50, U. 8.
Government Printing Office, Washington 25, D. C.

Gupta, 8. S., Probability Integrals of Multivariate Normal and Multivariate t,
Ann. Math. Stat., 34, No. 3, September, 1963, p. 792.

McFadden, J. A., On the Lengths of Intervals in a Stationary Point Process,
J. Royal Stat. Soc., Series B, 24, No. 2, p. 370, 1962, Equation 3.4.

Bendat, J. 8., Random Noise Theory, John Wiley and Sons, Inc., New York,
N. Y., 1958, p. 396.



